Topics in Analysis on Manifolds

Joseph Bernstein

November 26, 2003

1. Notion of a smooth manifold (in \mathbf{R}^N). Morphisms. Submanifolds

2. Notion of tangent and cotangent spaces. Differentials.

3. Submersive morphisms. Immersions.

4. Families of morphisms

5. Notion of transversality.

Let $\nu: X \to Y$ and $\lambda: Z \to Y$ be morphisms of manifolds. We say that ν and λ are **transversal** if for any $x \in X, z \in Z$ either $\nu(x) \neq \lambda(z)$ or they are equal and $d\nu(T_xX) + d\lambda(T_zZ) = T_yY$, where $y = \nu(x) = \lambda(z)$.

6. First main result: Sard's Lemma.

Let $\nu : X \to Y$ be a morphism of smooth manifolds. Then for almost every point $y \in Y$ ν is transversal to the imbedding $i : y \to Y$.

7. Corollary. Let $\nu : S \times X \to Y$ be a family of morphisms and $\lambda : Z \to Y$ a morphism.

Suppose we know that the morphism ν is transversal to λ .

Then for almost every $s \in S$ the morphism $\nu_s : X \to Y$ is transversal to λ .

8. Second main result. Deformation theorem.

Let $\nu_0: X \to Y$ me a morphism of manifolds. Then there exists a base S and a family of morphisms $\nu: S \times X \to Y$ such that

(i) ν is a submersive morphism (in particular it is transversal to any morphism $\lambda : Z \to Y$).

(ii) For some point $s_0 \in S$ the morphism ν_{s_0} coincides with ν_0 .

9. Corollary Mooving Lemma.

For any morphism $\nu : X \to Y$ there exists an arbitrary close deformation $\nu' : X \to Y$ which is transversal to a given morphism $\lambda : Z \to Y$.