Problem assignment 1

Representations of *p***-adic groups**

Joseph Bernstein

November 17, 2003

We will denote by \mathbf{F} a fixed local non-Archimedian field.

1. Let V be a finite dimensional vector space over **F** considered as an *l*-group. Denote by \hat{V} the Pontryagin dual group $\hat{V} = Hom(V, \mathbb{C}^*)$.

(i) Show that there exists a natural (though not canonical) isomorphism $\hat{V}\cong V^*.$

(ii) Show that the Hecke algebra $\mathcal{H}(V)$ is naturally isomorphic to the algebra $S(\hat{V})$.

(iii) Show that the category $\mathcal{M}(V)$ is naturally equivalent to the category $Sh(\hat{V})$.

2. Let $G = GL(2, \mathbf{F})$ be the group of 2×2 matrices. Denote by P the subgroup of matrices $g = (a_{ij}) \in G$ for which $a_{21} = 0$ and $a_{22} = 1$.

(i) Show that P has a normal subgroup V isomorphic to the additive group \mathbf{F} .

(ii) Show that the quotient group P/V is naturally isomorphic to the multiplicative group \mathbf{F}^* and that this group acts on V via multiplication.

3. Show that the category of smooth representations $\mathcal{M}(P)$ is equivalent to the category $Sh_{\mathbf{F}^*}(\hat{V})$ of \mathbf{F}^* -equivariant sheaves on the *l*-space \hat{V} .

4. Using problem 3 give classification of all irreducible (smooth) representations of the group P.