Problem assignment 1

Functions of Complex Variable 2

Joseph Bernstein
March 24, 2004

1. Define the integral $\int_{0}^{\infty} x^{\lambda} e^{i x} d x$ and compute its value as a function of λ.
2. Prove that $\sum_{n \geq 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
3. Compute the logarithmic derivative Γ^{\prime} / Γ at points $z=1,2,3 \ldots$
4. (i) Let f be a non zero meromorphic function on \mathbf{C}. Show that its logarithmic derivative $g=f^{\prime} / f$ is a meromorphic function with poles of first order and integral residues.
(ii) Conversely show that any meromorphic function g with poles of first order and integral residues is a logarithmic derivative of a meromorphic function.
5. Let f, g be entire functions.
(i) Show that they have gcd (greatest common divisor) h. This means that f and g are divided by h and h divides any other entire function u with this property.
(ii) Show that there exist entire functions A, B such that $h=A f+B g$.
6. Let f, g be entire functions of order ρ.
(i) Show that $f+g$ and $f g$ are entire functions of order ρ.
(ii) Show that if the function $h=f / g$ is entire then it is also of order ρ.
7. (i) Compute the function $\prod_{n=1}^{\infty}\left(1+\frac{z^{4}}{n^{4}}\right)$
(ii) Show that $e^{z}-1=z e^{z / 2} \prod_{n=1}^{\infty}\left(1+\frac{z^{2}}{4 \pi^{2} n^{2}}\right)$
8. Let $f=f(z)$ be an entire function that has no more than exponential growth, i.e. $|f(z)| \leq C \exp (C|z|)$. Suppose we also know that it is periodic with period 1.

Show that f is a polynomial of the function $q=\exp (2 \pi i z)$.

