Problem assignment 3

Algebraic Geometry and Commutative Algebra II
 Joseph Bernstein
 May 11, 2005.

Some cohomological constructions.

1. Five lemma. Let L, M be two complexes and $\nu: L \rightarrow M$ a morphism of complexes, i.e. a collection of morphisms $\nu_{i}: L^{i} \rightarrow M^{i}$ commuting with differentials.

Let us assume that the complexes are exact, morphisms ν_{1} and ν_{-1} are isomorphisms, ν_{2} is epimorphic and ν_{-2} is mono.

Sow that the morphism ν_{0} is an isomorphism.
Cone construction. Let $\nu: L \rightarrow M$ be a morphism of complexes. We construct a new complex $\operatorname{Cone}(\nu)$ as follows. We extend ν to a complex of complexes placing L and M in places -1 and 0 , consider the corresponding bicomplex B and set $\operatorname{Cone}(\nu):=\operatorname{Tot}(B)$.
2. (i) Write explicit formulas for the complex Cone (ν). Show that there exists a short exact sequence of complexes $0 \rightarrow M \rightarrow$ Cone $(\nu) \rightarrow L[1] \rightarrow 0$.

Deduce from this a long exact sequence connecting cohomologies of L, M and Cone (ν).
(ii) Show that the morphism of complexes ν is a quasiisomorphism iff the complex Cone (ν) is acyclic.
(ii) Show that if ν is injective then $\operatorname{Cone}(\nu)$ is quasiisomorphic to the quotient complex M / L.
3. Let $\nu: B \rightarrow B^{\prime}$ be a morphism of bicomplexes. Suppose we know that for every row ν induces quasiisomorphism of the complexes $\nu: \operatorname{Row}^{j}(B) \rightarrow$ Row ${ }^{j}\left(B^{\prime}\right)$. Show (under appropriate finiteness assumptions) that ν induces a quasiisomorphism of total complexes $\operatorname{Tot}(B) \rightarrow \operatorname{Tot}\left(B^{\prime}\right)$.
(Hint. Using problem 2 reduce this statement to Grothendieck's lemma).
Truncation. Let k be an integer. We define truncation functor $\tau_{\leq k}$ from category of complexes into itself as follows. For a complex M we consider subcomplex $L=\tau_{\leq j} M$, where $L^{i}=M^{i}$ for $i<k, L^{i}=0$ for $i>k$ and $L^{k}=\operatorname{ker}\left(M^{k} \rightarrow M^{\bar{k}+1}\right)$.
4. Show that $H^{i}(L)=H^{i}(M)$ for $i \leq k$ and $H^{i}(L)=0$ for $i>k$.

Compute cohomologies of the quotient complex M / L.
5. Let $B^{i j}$ be a bicomplex. Suppose that every row is acyclic outside column 0. Prove (under appropriate finiteness assumptions) that the total complex $\operatorname{Tot}(B)$ has the same cohomologies as the complex combined from objects $H^{0}\left(B^{i j}, d\right)$.

In fact these complexes are quasiisomorphic.

