Problem assignment 4

Algebraic Geometry and Commutative Algebra II

Joseph Bernstein
May 14, 2005.

1. Let X be a curve in \mathbf{P}^{2} defined by a polynomial of degree d.
(i) Suppose X is non-singular. Can you compute its genus.
(ii) Suppose X is non-singular outside k points and at these points it has simplest nodal singularities.

Compute the arithmetic genus of X. Compute the geometric genus of X i.e. the genus of its smooth model.

Let V be a finite dimensional vector space over k and \mathbf{V} the corresponding algebraic variety. We set $\mathbf{V}^{*}=\mathbf{V} \backslash 0$ and denote by j the imbedding $j: \mathbf{V}^{*} \rightarrow \mathbf{V}$.
2. Let F be an \mathcal{O} module on \mathbf{V}^{*}.
(i) Show that $H^{i}\left(\mathbf{V}^{*}(F)\right)=\Gamma\left(\mathbf{V}, R^{i} j_{*}(F)\right)$
(ii) Show that for $i>0$ the action of the algebra $\mathcal{O}(\mathbf{V})$ on the cohomology space $H^{i}\left(\mathbf{V}^{*}(F)\right)$ is locally nilpotent when restricted to the maximal ideal of the point 0 .
3.. Let F be a coherent \mathcal{O}-module on $\mathbf{P}(V)$. Show that we can embed F into a coherent acyclic \mathcal{O}-module.

Show that we can find a resolution of F of length $\leq \operatorname{dim} V$ by coherent acyclic \mathcal{O}-modules.
4. Let F be a coherent \mathcal{O}-module on $\mathbf{P}(V)$. Show that for large k the dimension $\operatorname{dim} \Gamma(\mathbf{P}(V), F(k))$ is a polynomial in k of degree equal to the dimension of support of F.

