Problem assignment 1

Introduction to Differential Geometry

Joseph Bernstein
November 3, 2005.

Problems in linear algebra.

1. Let $A: V \rightarrow W$ be a morphism of vector spaces, $K=\operatorname{ker} A$ its kernel and $I=\operatorname{Im} A$ its image.

Show that $K \subset V$ and $I \subset W$ are linear subspaces.
Show that A is mono iff $K=0$. Show that if $K=0$ and $I=W$ then A is an isomorphism, i.e. there exists an inverse morphism $B: W \rightarrow V$ such that compositions $A \circ B$ and $B \circ A$ are identity morphisms.
2. Let V be a vector space and $L \subset V$ a subspace. Show that there exists a vector space Q and an epimorphism $p: V \rightarrow Q$ such that ker $p=L$.

Show that the pair (Q, p) is uniquely defined up to canonical isomorphism (i.e. any two such pairs are canonically isomorphic).

The space Q is called the quotient space; usually it is denoted by V / L.
[P] 3. Let V be vector space of dimension $n<\infty$ and $L \subset V$ be a subspace of dimension l. Show that there exists a basis e_{1}, \ldots, e_{n} of the space V such that vectors e_{1}, \ldots, e_{l} form a basis of L.

Show that in this case the vectors e_{l+1}, \ldots, e_{n} (or more precisely their images) form a basis of the quotient space V / L.
[P] 4. Let V be a vector space of dimension $n, L, L^{\prime} \subset V$ subspaces of V. Show that if $\operatorname{dim} L+\operatorname{dim} L^{\prime}>n$ then L and L^{\prime} have a non-zero intersection.
[P] 5. Let V be a vector space of dimension n and $L \subset V$ a subspace. Consider its orthogonal complement $L^{\perp} \subset V^{*}$ defined by $L^{\perp}:=\left\{f \in V^{*}|f| L=\right.$ $0\}$.
(i) What is the dimension of L^{\perp} ?
(ii) Show that $(R \cap L)^{\perp}=R^{\perp}+L^{\perp}$ and $(R+L)^{\perp}=R^{\perp} \cap L^{\perp}$.
(iii) Show that $\left(L^{\perp}\right)^{\perp}=L$.
(iv) Show that L^{\perp} is naturally isomorphic to $(V / L)^{*}$.
6. Let B be a symmetric bilinear form on V. Denote by Q the corresponding quadratic form on V defined by $Q(x)=B(x, x)$.
(i) Show that the form B could be recovered from Q.
(ii) Show that a function Q on V is a quadratic form iff in any coordinate system it could be written as $\sum a_{i j} x_{i} x_{j}$.
[$\mathbf{P}]$ (iii) Show that Q is a quadratic form iff it is homogeneous function of degree 2 which for any $a, b \in V$ satisfies the condition that the function $Q(x+a+b)-Q(x+a)-Q(x+b)+Q(x)$ is constant function.
7. Let V, Q be a finite dimensional Euclidean space. Show that it is isomorphic to $\left(\mathbf{R}^{n}, Q_{0}\right)$, where Q_{0} is the standard quadratic form $Q_{0}\left(x_{1}, \ldots, x_{n}\right)=$ $\sum x_{i}^{2}$.
[P] 8.. Let Q^{\prime} be a quadratic form on an Euclidean space (V, Q). Show that there exists a constant $C>0$ such that $\left|Q^{\prime}(x)\right| \leq C Q(x)$ for all $x \in V$.

