Problem assignment 1

Introduction to Differential Geometry

Joseph Bernstein

November 3, 2005.

Problems in linear algebra.

1. Let $A:V\to W$ be a morphism of vector spaces, $K=\ker A$ its kernel and I = ImA its image.

Show that $K \subset V$ and $I \subset W$ are linear subspaces.

Show that A is mono iff K = 0. Show that if K = 0 and I = W then A is an isomorphism, i.e. there exists an inverse morphism $B:W\to V$ such that compositions $A \circ B$ and $B \circ A$ are identity morphisms.

2. Let V be a vector space and $L \subset V$ a subspace. Show that there exists a vector space Q and an epimorphism $p:V\to Q$ such that $\ker p=L$.

Show that the pair (Q, p) is uniquely defined up to canonical isomorphism (i.e. any two such pairs are canonically isomorphic).

The space Q is called the **quotient space**; usually it is denoted by V/L.

[P] 3. Let V be vector space of dimension $n < \infty$ and $L \subset V$ be a subspace of dimension l. Show that there exists a basis $e_1, ..., e_n$ of the space V such that vectors $e_1, ..., e_l$ form a basis of L.

Show that in this case the vectors $e_{l+1}, ..., e_n$ (or more precisely their images) form a basis of the quotient space V/L.

- [P] 4. Let V be a vector space of dimension $n, L, L' \subset V$ subspaces of V. Show that if dim $L + \dim L' > n$ then L and L' have a non-zero intersection.
- [P] 5. Let V be a vector space of dimension n and $L \subset V$ a subspace. Consider its orthogonal complement $L^{\perp} \subset V^*$ defined by $L^{\perp} := \{ f \in V^* | f | L = \}$
 - (i) What is the dimension of L^{\perp} ?
 - (ii) Show that $(R \cap L)^{\perp} = R^{\perp} + L^{\perp}$ and $(R + L)^{\perp} = R^{\perp} \cap L^{\perp}$. (iii) Show that $(L^{\perp})^{\perp} = L$.

 - (iv) Show that L^{\perp} is naturally isomorphic to $(V/L)^*$.
- **6.** Let B be a symmetric bilinear form on V. Denote by Q the corresponding quadratic form on V defined by Q(x) = B(x,x).
 - (i) Show that the form B could be recovered from Q.
- (ii) Show that a function Q on V is a quadratic form iff in any coordinate system it could be written as $\sum a_{ij}x_ix_j$.
- [P] (iii) Show that Q is a quadratic form iff it is homogeneous function of degree 2 which for any $a,b \in V$ satisfies the condition that the function Q(x+a+b) - Q(x+a) - Q(x+b) + Q(x) is constant function.
- 7. Let V, Q be a finite dimensional Euclidean space. Show that it is isomorphic to (\mathbf{R}^n, Q_0) , where Q_0 is the standard quadratic form $Q_0(x_1, ..., x_n) =$ $\sum x_i^2$.
- [P] 8.. Let Q' be a quadratic form on an Euclidean space (V,Q). Show that there exists a constant C > 0 such that $|Q'(x)| \leq CQ(x)$ for all $x \in V$.