Problem assignment 4.

Introduction to Differential Geometry.

Joseph Bernstein
November 24, 2005.
[P] 1. Let $\pi: X \rightarrow Y$ be a morphism of domains, a a point of X and $b=\pi(x) \in Y$. Consider the differential $T=D \pi: T_{a} X \rightarrow T_{b} Y$.
(i) Suppose T is invertible. Show that π is a local diffeomorphism (i.e. there exist local coordinate systems $\left(x^{1}, \ldots, x^{n}\right)$ on X and $\left(y^{1}, \ldots, y^{n}\right)$ on Y such that $\left.\pi^{*}\left(y^{i}\right)=x^{i}\right)$.
(ii) Suppose T is imbedding. Show that locally π is isomorphic to the standard linear imbedding (in coordinates this means $\pi^{*}\left(y^{i}\right)=x^{i}$ for $i=1, \ldots, n=$ $\operatorname{dim} X$, and $\pi^{*}\left(y^{i}\right)=0$ for $n<i \leq m=\operatorname{dim} Y$).
(iii) Suppose T is onto. Show that locally π is isomorphic to the standard linear projection (in coordinates $\pi^{*}\left(y^{i}\right)=x^{i}$).
(iv) Suppose that the differential $D \pi$ has constant rank k at all points of X close to a. Show that then π is locally isomorphic to a linear morphism (in coordinates $\pi^{*}\left(y^{i}\right)=x^{i}$ for $i=1, \ldots, k$ and $\pi^{*}\left(y^{i}\right)=0$ for $\left.i>k\right)$.
[P] 2. Consider Euclidean space $V=\mathbf{R}^{3}$ with coordinates (x, y, z). Denote by S the unit sphere in V defined by equation $x^{2}+y^{2}+z^{2}=1$. Let B denote the Riemannian metric on S induced by the standard metric on V.

Let $N=(0,0,1) \in S$ be the north pole. Consider functions (x, y) as coordinate system on S near point N.
(i) Write down the metric B in these coordinates (Hint. Write B as $d x^{2}+$ $\left.d y^{2}+d z^{2}\right)$.
(ii) Compute the gradient $\operatorname{grad}(x)$ of the function x with respect to the Riemannian metric B. Compute $\operatorname{grad}(y)$.
(iii) Let f be a smooth function on S. Using coordinate system (x, y) write down formula for computing the differential $d f$ and the $\operatorname{gradient} \operatorname{grad}(f)$.
$[\mathbf{P}]$ 3. Let $c(t)$ be a parameterized curve in \mathbf{R}^{n}. Introduce the natural parameter s (which is called length) on this curve so that $d s / d t=\|d c(t) / d t\|$ and consider the curve $c(s)$ parameterized by s. By definition the vector $v(s)=$ $d c / d s$ has length 1 at every point s.

Show that the vector of derivative $d v(s) / d s$ is orthogonal to v at every point.
$[\mathbf{P}]$ 4. Consider 1-form $\alpha=y d x+x d y+z d z$ on \mathbf{R}^{3}.
Compute the integral of α along the curve Γ given by $c(t)=\left(\sin t, t^{3}, t^{2}\right)$ where $0 \leq t \leq 1$.
[P] 5. Consider the unit circle $\Gamma \subset \mathbf{R}^{2}$ and choose anti-clockwise orientation on it. Compute the integral $\oint_{\Gamma} \alpha$, where $\alpha=y d x \in \Omega^{1}\left(\mathbf{R}^{2}\right)$.
[P] 6. Let A be an associative algebra (for example, algebra of endomorphisms of some linear space V). Let us define a new operation [,] on A by $[a, b]=a b-b a$. It is clear that [,] is a bilinear skew-symmetric operation.
(i) Show that [,] satisfies Jacobi identity
$[a,[b, c]]+[c,[a, b]]+[b,[c, a]=0$.
Show that for any $a \in A$ the operator $\partial=A d_{a}: A \rightarrow A$ defined by $A d_{a}(x)=[a, x]$ is a derivation for both multiplication $(a, b) \mapsto a b$ and commutator operation $(a, b) \mapsto[a, b]$.
[P] 7. Let ξ, η be two vector fields on a domain U. Let us choose a coordinate system $\left(x^{i}\right)$ on U and write these fields in these coordinates $\xi=\sum u^{i} \partial_{i}, \eta=$ $\sum v^{j} \partial_{j}$.

Write explicit formula for the commutator vector field $[\xi, \eta]$.
8. Let V be a finite dimensional vector space, B a symmetric bilinear form on V. Denote by $\nu: V \rightarrow V^{*}$ the corresponding operator.

Choose a basis $\left(e_{i}\right)$ of V and denote by $\left(f^{i}\right)$ the dual basis of V^{*}.
Show that the matrix of the operator ν with respect to these bases coincides with the matrix $M_{i j}=B\left(e_{i}, e_{j}\right)$ of the form B.

Suppose that the form B is nondegenerate and denote by B^{*} the corresponding form on V^{*}. Show that the matrix M^{*} of the form B^{*} is the inverse matrix to M.(9. Let U be a domain, $A=S(U)$ the algebra of smooth functions on U. Every function $f \in A$ defines a linear operator $\bar{f}: A \rightarrow A$ given by multiplication by f.

Let $\operatorname{End}(A)$ be the algebra of all linear operators $T: A \rightarrow A$. We define subspaces $D^{-1} \subset D^{0} \subset D^{1} \subset \ldots \subset D^{k} \subset \ldots \subset \operatorname{End}(A)$ using inductive procedure
$D^{-1}=0, D^{k}=\left\{T \in \operatorname{End}(A) \mid[\bar{f}, T] \in D^{k-1}\right.$ for all $\left.f \in A\right\}$.
The space D^{k} is called the space of differential operators of degree $\leq k$. The space $D=D(U):=\bigcup D^{k}$ is called the space of differential operators on U.
(i) Show that $D^{k} \cdot D^{l} \subset D^{k+l}$. In particular, this shows that the space of differential operators is an algebra.
(ii) Show that D^{0} consists of operators \bar{f} for $f \in A$; in other words $D^{0}=$ $S(U)$.
(iii) Show that $D^{1}=S(U) \oplus V e c t(U)$.
(iv) Introduce a coordinate system $\left(x^{1}, \ldots, x^{n}\right)$ on U. Show that every differential operator T can be uniquely written in the form $T=\sum f_{\alpha} \partial^{\alpha}$ where the sum is taken over all multi indexes $\alpha=\left(i_{1}, \ldots, i_{n}\right), f_{\alpha} \in S(U)$ and $\partial^{\alpha}:=$ $\partial_{1}^{i_{1}} \cdot \ldots \cdot \partial_{n}^{i_{n}}$.

