Problem assignment 4.

Introduction to Differential Geometry.

Joseph Bernstein

November 24, 2005.

[P] 1. Let $\pi : X \to Y$ be a morphism of domains, a a point of X and $b = \pi(x) \in Y$. Consider the differential $T = D\pi : T_a X \to T_b Y$.

(i) Suppose T is invertible. Show that π is a local diffeomorphism (i.e. there exist local coordinate systems $(x^1, ..., x^n)$ on X and $(y^1, ..., y^n)$ on Y such that $\pi^*(y^i) = x^i$).

(ii) Suppose T is imbedding. Show that locally π is isomorphic to the standard linear imbedding (in coordinates this means $\pi^*(y^i) = x^i$ for i = 1, ..., n =dim X, and $\pi^*(y^i) = 0$ for $n < i \le m =$ dim Y).

(iii) Suppose T is onto. Show that locally π is isomorphic to the standard linear projection (in coordinates $\pi^*(y^i) = x^i$).

(iv) Suppose that the differential $D\pi$ has constant rank k at all points of X close to a. Show that then π is locally isomorphic to a linear morphism (in coordinates $\pi^*(y^i) = x^i$ for i = 1, ..., k and $\pi^*(y^i) = 0$ for i > k).

[P] 2. Consider Euclidean space $V = \mathbb{R}^3$ with coordinates (x, y, z). Denote by S the unit sphere in V defined by equation $x^2 + y^2 + z^2 = 1$. Let B denote the Riemannian metric on S induced by the standard metric on V.

Let $N = (0, 0, 1) \in S$ be the north pole. Consider functions (x, y) as coordinate system on S near point N.

(i) Write down the metric B in these coordinates (**Hint**. Write B as $dx^2 + dy^2 + dz^2$).

(ii) Compute the gradient $\operatorname{grad}(x)$ of the function x with respect to the Riemannian metric B. Compute $\operatorname{grad}(y)$.

(iii) Let f be a smooth function on S. Using coordinate system (x, y) write down formula for computing the differential df and the gradient $\operatorname{grad}(f)$.

[P] 3. Let c(t) be a parameterized curve in \mathbb{R}^n . Introduce the natural parameter s (which is called length) on this curve so that ds/dt = ||dc(t)/dt|| and consider the curve c(s) parameterized by s. By definition the vector v(s) = dc/ds has length 1 at every point s.

Show that the vector of derivative dv(s)/ds is orthogonal to v at every point.

[P] 4. Consider 1-form $\alpha = ydx + xdy + zdz$ on \mathbb{R}^3 .

Compute the integral of α along the curve Γ given by $c(t) = (\sin t, t^3, t^2)$ where $0 \le t \le 1$.

[P] 5. Consider the unit circle $\Gamma \subset \mathbf{R}^2$ and choose anti-clockwise orientation on it. Compute the integral $\oint_{\Gamma} \alpha$, where $\alpha = ydx \in \Omega^1(\mathbf{R}^2)$.

[P] 6. Let A be an associative algebra (for example, algebra of endomorphisms of some linear space V). Let us define a new operation [,] on A by [a,b] = ab - ba. It is clear that [,] is a bilinear skew-symmetric operation.

(i) Show that [,] satisfies Jacobi identity

[a, [b, c]] + [c, [a, b]] + [b, [c, a] = 0.

Show that for any $a \in A$ the operator $\partial = Ad_a : A \to A$ defined by $Ad_a(x) = [a, x]$ is a derivation for both multiplication $(a, b) \mapsto ab$ and commutator operation $(a, b) \mapsto [a, b]$.

[P] 7. Let ξ, η be two vector fields on a domain U. Let us choose a coordinate system (x^i) on U and write these fields in these coordinates $\xi = \sum u^i \partial_i, \eta = \sum v^j \partial_j$.

Write explicit formula for the commutator vector field $[\xi, \eta]$.

8. Let V be a finite dimensional vector space, B a symmetric bilinear form on V. Denote by $\nu: V \to V^*$ the corresponding operator.

Choose a basis (e_i) of V and denote by (f^i) the dual basis of V^* .

Show that the matrix of the operator ν with respect to these bases coincides with the matrix $M_{ij} = B(e_i, e_j)$ of the form B.

Suppose that the form B is nondegenerate and denote by B^* the corresponding form on V^* . Show that the matrix M^* of the form B^* is the inverse matrix to M.

 (\Box) **9.** Let U be a domain, A = S(U) the algebra of smooth functions on U. Every function $f \in A$ defines a linear operator $\overline{f} : A \to A$ given by multiplication by f.

Let End(A) be the algebra of all linear operators $T : A \to A$. We define subspaces $D^{-1} \subset D^0 \subset D^1 \subset ... \subset D^k \subset ... \subset End(A)$ using inductive procedure

 $D^{-1} = 0, D^k = \{T \in End(A) | [\bar{f}, T] \in D^{k-1} \text{ for all } f \in A\}.$

The space D^k is called the space of **differential operators of degree** $\leq k$. The space $D = D(U) := \bigcup D^k$ is called the space of **differential operators** on U.

(i) Show that $D^k \cdot D^l \subset D^{k+l}$. In particular, this shows that the space of differential operators is an algebra.

(ii) Show that D^0 consists of operators \overline{f} for $f \in A$; in other words $D^0 = S(U)$.

(iii) Show that $D^1 = S(U) \oplus Vect(U)$.

(iv) Introduce a coordinate system $(x^1, ..., x^n)$ on U. Show that every differential operator T can be uniquely written in the form $T = \sum f_\alpha \partial^\alpha$ where the sum is taken over all multi indexes $\alpha = (i_1, ..., i_n), f_\alpha \in S(U)$ and $\partial^\alpha :=$ $\partial_1^{i_1} \cdot ... \cdot \partial_n^{i_n}$.