Problem assignment 6.

Introduction to Differential Geometry.

Joseph Bernstein

December 15, 2005.

1. Let U be a domain and M a closed submanifold of U. Show that the restriction morphism $r: \Omega(U) \to \Omega(M)$ is onto.

2. Let *M* be a manifold of dimension *n* with orientation μ . Show that there exists a differential *n*-form ω on *M* such that at every point of *M* ω is not 0 and is compatible with μ .

3. Calculate the exterior derivative of the following forms in \mathbf{R}^3 :

 $z^2 \cdot dxdy + (z^2 + xy) \, dxdz$

 $13xdx + y^3dy + xz \cdot dz$

 $f \cdot dg$ where f, g are functions

 $(x+2y^3)(dzdx+1/2dydx)$

4. Consider differential 1-form $\alpha = dz + xdy$ on \mathbb{R}^3

a) Compute $\eta = d\alpha$ and $\omega = \alpha d\alpha$.

b) Show that for any 2-dimensional submanifold $Y \subset \mathbf{R}^3$ the restriction of α to Y is not identically 0.

5. Let $D: \Omega(X) \to \Omega(X)$ be a linear operator of degree d (i.e. $D(\Omega^i) \subset \Omega^{i+d}$).

We say that D is **derivation** if it satisfies the Leibniz formula $D(\omega \alpha) = D\omega \alpha + (-1)^{d \cdot \deg(\omega)} \omega D\alpha$. a)Show that if D is a derivation, $\omega \in \Omega$, then operator ωD is also a derivation.

b)Show, that if D and F are derivations of degrees d and f, then $[D, F] = DF - (-1)^{df} FD$ is a derivation of degree d + f.

6. Let ξ , η be vector fields on a manifold X, $\tau = [\xi, \eta]$ their commutator. Consider operator of interior multiplication $i_{\xi} : \Omega(X) \to \Omega(X)$ and Lie derivative $L_{\xi} = [d, i_{\xi}]$ (and similarly for η). Compute $[L_{\xi}, i_{\eta}], [L_{\xi}, L_{\eta}], [i_{\xi}, i_{\eta}], [d, i_{\xi}], [d, L_{\xi}]$.

7. Let W be the algebra of differential forms with polynomial coefficients on \mathbb{R}^n . Describe all derivations of this algebra.

8. a) Let V be an n-dimensional space, $f \in V^*$, $f \neq 0$, and $H \subset V$ the corresponding hyperspace. Show that wedge product with f gives an isomorphism of $Alt^{n-1}(H)$ and $Alt^n(V)$.

b) Let f be a smooth function on \mathbb{R}^n , X the set of its zeros. We assume that df does not vanish at points of X. Using a) show, that the volume form $\omega = dx_1 \dots dx_n$ on \mathbb{R}^n defines canonical (n-1)-form η on X.

c) In case n = 3, X unit sphere, write explicitly the form η in some local coordinate system on X.

9. Consider the hypersurface $M \subset \mathbf{R}^3$ given by equation f = 0 where $f = x^2 + y^2 - z^2 + 1$.

(i) Compute the form $\eta = dx dy dz/df$ on M in some coordinate system.

(ii) Show the relation of the volume form η to the area form on M induced by standard Euclidean metric on \mathbb{R}^3 .

10. Consider differential (n-1)-form $\omega = x_1 dx_2 y dx_3 y \dots y dx_n$ on \mathbf{R}^n . Show that $\int_{S^n} \omega \neq 0$. How to compute its value?