Problem assignment 6.

Introduction to Differential Geometry.

Joseph Bernstein
December 15, 2005.

1. Let U be a domain and M a closed submanifold of U. Show that the restriction morphism $r: \Omega(U) \rightarrow \Omega(M)$ is onto.
2. Let M be a manifold of dimension n with orientation μ. Show that there exists a differential n-form ω on M such that at every point of $M \omega$ is not 0 and is compatible with μ.
3. Calculate the exterior derivative of the following forms in \mathbf{R}^{3} :
$z^{2} \cdot d x d y+\left(z^{2}+x y\right) d x d z$
$13 x d x+y^{3} d y+x z \cdot d z$
$f \cdot d g$ where f, g are functions
$\left(x+2 y^{3}\right)(d z d x+1 / 2 d y d x)$
4. Consider differential 1-form $\alpha=d z+x d y$ on \mathbf{R}^{3}
a) Compute $\eta=d \alpha$ and $\omega=\alpha d \alpha$.
b) Show that for any 2-dimensional submanifold $Y \subset \mathbf{R}^{3}$ the restriction of α to Y is not identically 0.
5. Let $D: \Omega(X) \rightarrow \Omega(X)$ be a linear operator of degree d (i.e. $\left.D\left(\Omega^{i}\right) \subset \Omega^{i+d}\right)$.

We say that D is derivation if it satisfies the Leibniz formula $\quad D(\omega \alpha)=D \omega \alpha+(-1)^{d \cdot \operatorname{deg}(\omega)} \omega D \alpha$.
a)Show that if D is a derivation, $\omega \in \Omega$, then operator ωD is also a derivation.
b)Show, that if D and F are derivations of degrees d and f, then $[D, F]=D F-(-1)^{d f} F D$ is a derivation of degree $d+f$.
6. Let ξ, η be vector fields on a manifold $X, \tau=[\xi, \eta]$ their commutator. Consider operator of interior multiplication $i_{\xi}: \Omega(X) \rightarrow \Omega(X)$ and Lie derivative $L_{\xi}=\left[d, i_{\xi}\right]$ (and similarly for η).
Compute $\left[L_{\xi}, i_{\eta}\right],\left[L_{\xi}, L_{\eta}\right],\left[i_{\xi}, i_{\eta}\right],\left[d, i_{\xi}\right],\left[d, L_{\xi}\right]$.
7. Let W be the algebra of differential forms with polynomial coefficients on \mathbf{R}^{n}. Describe all derivations of this algebra.
8. a) Let V be an n-dimensional space, $f \in V^{*}, f \neq 0$, and $H \subset V$ the corresponding hyperspace. Show that wedge product with f gives an isomorphism of $A l t^{n-1}\left(H^{)}\right.$and $A l t^{n}(V)$.
b) Let f be a smooth function on \mathbf{R}^{n}, X the set of its zeros. We assume that $d f$ does not vanish at points of X. Using a) show, that the volume form $\omega=d x_{1} \ldots d x_{n}$ on \mathbf{R}^{n} defines canonical ($n-1$)-form η on X.
c) In case $n=3, X$ unit sphere, write explicitly the form η in some local coordinate system on X.
9. Consider the hypersurface $M \subset \mathbf{R}^{3}$ given by equation $f=0$ where $f=x^{2}+y^{2}-z^{2}+1$.
(i) Compute the form $\eta=d x d y d z / d f$ on M in some coordinate system.
(ii) Show the relation of the volume form η to the area form on M induced by standard Euclidean metric on \mathbf{R}^{3}.
10. Consider differential $(n-1)$-form $\omega=x_{1} d x_{2} y d x_{3} y \ldots y d x_{n}$ on \mathbf{R}^{n}. Show that $\int_{S^{n}} \omega \neq 0$. How to compute its value?

