## Problem assignment 1

## Analysis on Manifolds

Joseph Bernstein
March 16, 2006
Let $M$ denote a manifold of dimension $m$ (for example $\mathbf{R}^{m}$ ).

1. Let $f_{1}, \ldots, f_{k}$ be a collection of smooth functions on $M$. Denote by $Z=Z\left(f_{1}, \ldots f_{k}\right)$ the set of common zeroes of functions $f_{i}$.

Suppose that at some point $a \in Z$ differentials $d f_{i}$ of functions $f_{i}$ are linearly independent. Show that then $Z$ near the point $a$ is a manifold. Describe the tangent space $T_{a}(Z)$.
2. Cut off functions. Show that for every $\delta>0$ there exists a smooth function $p$ on $\mathbf{R}^{n}$ such that
$0 \leq p \leq 1, p \equiv 0$ outside the ball $B_{1}$ of radius 1 around 0 and $p \equiv 1$ inside the ball $B_{1-\delta}$ of radius $1-\delta$ around 0 .
(Hints. First check that the function $u(t)$ in one variable given by $u(t)=$ 0 for $t \leq 0$ and $u(t)=\exp \left(-1 / t^{2}\right)$ for $t>0$ is smooth.

Then construct a monotone smooth function $h(t)$ in one variable such that $h(t) \equiv 0$ for $t \leq-\delta$ and $h(t) \equiv 1$ for $t>0$.)
3. Hadamard's lemma. Consider the Euclidean space $V \cong \mathbf{R}^{n}$ with coordinates $x_{i}$.

Show that any smooth function $f \in C^{\infty}(V)$ can be written in the form $f=f(0)+\sum x_{i} h_{i}$, where $h_{i}$ are smooth functions on $V$.

Hint. In case of one variable $x$ we can define $h(x)=\int_{0}^{1} u(t x) d t$, where $u=\frac{d f}{d x}$.
4. Suppose that a morphism $\phi: X \rightarrow Y$ is transversal to a submanifold $Z \subset Y$. Then $W=\phi^{-1}(Z)$ is a submanifold of $X$. Consider also another morphism $\phi^{\prime}: X \rightarrow Y^{\prime}$ and assume that it is transversal to a submanifold $Z^{\prime} \subset Y^{\prime}$, so that $W^{\prime}=\phi^{\prime-1}\left(Z^{\prime}\right)$ is a submanifold of $X$.

Show that the restriction of the morphism $\phi$ to $W^{\prime} \subset X$ is transversal to $Z$ iff the restriction of the morphism $\phi^{\prime}$ to $W \subset X$ is transversal to $Z^{\prime}$.
5. Let $M$ be a manifold of dimension $m$ and $\phi: K \rightarrow M$ a morphism of manifolds with $\operatorname{dimK}<m$.

Show directly that the image $\phi(K) \subset M$ has measure 0 .
(Remark. The example of Peano curve shows that this is not true for continuous maps.)
6. Construct an example of a smooth morphism $f: \mathbf{R} \rightarrow \mathbf{R}$ for which the set of the critical values is dense.
7. Using Sard's lemma show that for a manifold $K$ of dimension $<n$ any morphism $\phi: K \rightarrow S^{n}$ can be contracted to a point.
(We will soon see that this implies that $S^{n}$ is not diffeomorphic to $S^{k} \times$ $S^{n-k}$ for $0<k<n$.)

