Problem assignment 2

Analysis on Manifolds

Joseph Bernstein
March 23, 2006

1. (i) Let $Z \subset X \subset Y$ be a system of manifolds. Show that locally it is diffeomorphic to a system of linear spaces.
(ii) Let Z, W be a system of two submanifolds in a manifold X. Show that if they are transversal then locally this system is diffeomorphic to a system of linear spaces.
2. Let $\nu: X \rightarrow Y$ be a morphism of manifolds. Suppose that at all points $x \in X$ the rank of the (linear) tangent map $d \nu$ equals k.

Show that morphism ν is locally diffeomorphic to a linear morphism of linear spaces.
3. Let V be the space of matrices $\operatorname{Mat}(m, n)$ of size $m \times n$. For every r consider the subset $M_{r} \subset V$ of matrices of rank r.
(i) Show that this is a submanifold. Compute its dimension.
(ii) For every point $m \in M_{r}$ describe the tangent space $T_{m}\left(M_{r}\right) \subset V$
4. Let $\nu(t): X \rightarrow Y(0 \leq t \leq 1)$ be a smooth homotopy. Show that there exists a smooth homotopy $\mu(t): X \rightarrow Y(0 \leq t \leq 1)$ such that $\mu(t)=\nu(0)$ for $t<1 / 4$ and $\mu(t)=\nu(1)$ for $t>3 / 4$.

Using this show that smooth homotopy is an equivalence relation on the set of morphisms $\operatorname{Mor}(X, Y)$.
5. Let X be a smooth compact manifold of dimension k.
(i) Show that there exists an immersion $\nu: X \rightarrow \mathbf{R}^{2 k}$
(ii) Show that the exists a morphism $\nu: X \rightarrow \mathbf{R}^{2 k-1}$ which is an immersion everywhere except finite number of points.
6. Let $\alpha: M \rightarrow S, \beta: N \rightarrow S$ be morphisms of manifolds. We say that they are transversal if for any pair of points $x \in M$ and $y \in N$ either $\alpha(x) \neq \beta(y)$ or these points are equal to some point $b \in S$ and we have $D \alpha\left(T_{x} M\right)+D \beta\left(T_{y} N\right)=T_{b} S$.
(i) Show that this is equivalent to the condition that the product morphism $\alpha \times \beta: M \times N \rightarrow S \times S$ is transversal to the diagonal submanifold $\Delta S \subset S \times S$.
(ii) Show that in this case the fibered product $W=\{(x, y) \in M \times$ $N \mid \alpha(x)=\beta(y)\}$ is a submanifold; compute its dimension and describe its tangent space.
7. Let $\nu: X \rightarrow Y$ be a morphism of manifolds. Let $N \subset X$ be a compact submanifold such that the restriction of ν to N is an imbedding and for every point $x \in N$ the differential $D \nu: T_{x} X \rightarrow T_{\nu(x)} Y$ is an isomorphism.
(i) Show that the morphism ν defines a diffeomorphism of some neighborhood U of N in X with some neighborhood V of $\nu(N)$ in Y.
(ii) Show that the same statement holds if we do not assume that N is compact, only that N is closed submanifold in X and $\nu: N \rightarrow Y$ is a closed imbedding.

