Problem assignment 3

Analysis on Manifolds

Joseph Bernstein
March 30, 2006

1. Consider a morphism of manifolds $\nu: X \rightarrow Y$ and a submanifold $Z \subset Y$.

Let us fix a morphism $p: Y \rightarrow S$ where S is some manifold (which we would like to consider as a base of some families of manifolds and morphisms). Then over every point $s \in S$ we can consider fibers X_{s}, Y_{s}, Z_{s} and the morphism $\nu_{s}: X_{s} \rightarrow Y_{s}$.

Suppose we know that the morphism ν is transversal to the submanifold Z.

Show that for almost every point $s \in S$ the fibers are manifolds and the morphism ν_{s} is transversal to the submanifold Z_{s}.
2. Show that any morphism $\nu: S^{8} \rightarrow S^{3} \times S^{5}$ has degree 0 .
3.. Let $\nu: X \rightarrow Y$ be a morphism of oriented manifolds of the same dimension n. Suppose we know that X is compact and Y is connected but not compact.

Show that ν has degree 0 .
4. Let $(c, M),(e, T)$ be two cycles in a manifold X of complementary dimension with intersection index $\operatorname{int}(c, e)=i$. Let us assume that the manifold M is connected and consider a morphism of manifolds of the same dimension $\nu: N \rightarrow M$ (all manifolds are assumed to be compact and oriented). Then we have a new cycle $\left(c^{\prime}=c \circ \nu, N\right)$ in X.

Compute the intersection index $\operatorname{int}\left(c^{\prime}, e\right)$ if $\operatorname{deg} \nu=d$.
5. Let $(c, M),(e, T)$ be two continuous cycles of complementary dimension in a manifold X. Suppose we know that near the set $W=M \times{ }_{X} T$ both morphisms c, e are smooth and transversal.

How to compute the intersection index $\operatorname{int}(c, e)$?
6. Let $(c, M),(e, T)$ be two cycles in a manifold X of complementary dimension.

Show that the intersection index $\operatorname{int}(c, e)$ will not change if we replace the cycle (c, M) by a cobordant cycle $\left(c^{\prime}, N\right)$.

This means that there exists a manifold with boundary R and a morphism $\nu: R \rightarrow X$ such that the boundary ∂R is isomorphic to $M \coprod N$, orientation on μ_{R} induces orientations μ_{M} and $-\mu_{N}$ on the boundary and the restriction of ν to the boundary coincides with $c \coprod c^{\prime}$.
7. (i) Let M be a non-empty compact closed manifold of dimension $n>0$. Show that M is not contractable.
(ii) Suppose M is a boundary of some manifold W. Show that then there is no continuous retraction $p: W \rightarrow M$.

