Problem assignment 3 Analysis on Manifolds

Joseph Bernstein

March 30, 2006

1. Consider a morphism of manifolds $\nu : X \to Y$ and a submanifold $Z \subset Y$.

Let us fix a morphism $p: Y \to S$ where S is some manifold (which we would like to consider as a base of some families of manifolds and morphisms). Then over every point $s \in S$ we can consider fibers X_s, Y_s, Z_s and the morphism $\nu_s: X_s \to Y_s$.

Suppose we know that the morphism ν is transversal to the submanifold Z.

Show that for almost every point $s \in S$ the fibers are manifolds and the morphism ν_s is transversal to the submanifold Z_s .

2. Show that any morphism $\nu: S^8 \to S^3 \times S^5$ has degree 0.

3. Let $\nu : X \to Y$ be a morphism of oriented manifolds of the same dimension *n*. Suppose we know that *X* is compact and *Y* is connected but not compact.

Show that ν has degree 0.

4. Let (c, M), (e, T) be two cycles in a manifold X of complementary dimension with intersection index int(c, e) = i. Let us assume that the manifold M is connected and consider a morphism of manifolds of the same dimension $\nu : N \to M$ (all manifolds are assumed to be compact and oriented). Then we have a new cycle $(c' = c \circ \nu, N)$ in X.

Compute the intersection index int(c', e) if deg $\nu = d$.

5. Let (c, M), (e, T) be two continuous cycles of complementary dimension in a manifold X. Suppose we know that near the set $W = M \times_X T$ both morphisms c, e are smooth and transversal.

How to compute the intersection index int(c, e)?

6. Let (c, M), (e, T) be two cycles in a manifold X of complementary dimension.

Show that the intersection index int(c, e) will not change if we replace the cycle (c, M) by a cobordant cycle (c', N).

This means that there exists a manifold with boundary R and a morphism $\nu : R \to X$ such that the boundary ∂R is isomorphic to $M \coprod N$, orientation on μ_R induces orientations μ_M and $-\mu_N$ on the boundary and the restriction of ν to the boundary coincides with $c \coprod c'$.

7. (i) Let M be a non-empty compact closed manifold of dimension n > 0. Show that M is not contractable.

(ii) Suppose M is a boundary of some manifold W. Show that then there is no continuous retraction $p: W \to M$.