Problem assignment 1

Introduction to Differential Geometry

Joseph Bernstein

30.10.2006.

Problems in linear algebra.

1. Let $A: V \to L$ be a morphism of vector spaces, $K = \ker(A)$ its kernel and I = Im(A) its image. Show that $K \subset V$ and $I \subset L$ are linear subspaces.

Show that A is mono iff K = 0. Show that if K = 0 and I = L then A is an isomorphism, i.e. there exists an inverse morphism $B: L \to V$ such that compositions $A \circ B$ and $B \circ A$ are identity morphisms.

2. Let V be a vector space and $W \subset V$ a subspace. Show that there exists a vector space Q and an epimorphism $p: V \to Q$ such that ker p = W.

Show that the pair (Q, p) is uniquely defined up to **canonical** isomorphism (i.e. any two such pairs are canonically isomorphic).

The space Q is called the **quotient space**; usually it is denoted by V/W.

3. Let $A: V \to L$ be a linear operator, $K = \ker(A)$ and I = Im(A). Show that the space I is canonically isomorphic to V/K.

[P] 4. Let V be a finite dimensional vector space of dimension n and $W \subset V$ be a subspace of dimension l. Show that there exists a basis $e_1, ..., e_n$ of the space V such that the vectors $e_1, ..., e_l$ form a basis of the space W.

Show that in this case the vectors $e_{l+1}, ..., e_n$ (or more precisely their images) form a basis of the quotient space V/W.

Prove that $\dim V/W = \dim V - \dim W$.

[P] 5. Let V be a vector space of dimension $n, L, L' \subset V$ subspaces of V. Show that if dim $L + \dim L' > n$ then L and L' have a non-zero intersection.

[P] 6. Let $A: V \to L$ be a linear operator between vector spaces. Suppose we know that V and L are finite dimensional vector spaces of the same dimension n.

Show that the following conditions are equivalent:

- (i) A is a monomorphism
- (ii) A is an epimorphism
- (iii) A is an isomorphism

7. Let B be a symmetric bilinear form on finite dimensional vector space V. Denote by Q the corresponding quadratic form on V defined by Q(x) = B(x, x).

(i) Show that the form B could be recovered from Q.

(ii) Show that a function Q on V is a quadratic form iff in any coordinate system it could be written as $\sum a_{ij} x^i x^j$.

[P] (iii) Show that Q is a quadratic form iff it is homogeneous function of degree 2 which for any $a, b \in V$ satisfies the condition that the function Q(x+a+b) - Q(x+a) - Q(x+b) + Q(x) is a constant function.

[P] 8. Let V be a vector space of dimension n and $W \subset V$ a subspace. Consider its orthogonal complement $W^{\perp} \subset V^*$ defined by $W^{\perp} := \{f \in V^* | f | W = 0\}.$

(i) What is the dimension of W^{\perp} ?

(ii) Show that $(W \cap U)^{\perp} = W^{\perp} + U^{\perp}$ and $(W + U)^{\perp} = W^{\perp} \cap U^{\perp}$. (iii) Show that $(W^{\perp})^{\perp} = W$.

(iv) Show that W^{\perp} is naturally isomorphic to $(V/W)^*$.