Problem assignment 2

Introduction to Differential Geometry
Joseph Bernstein
November 6, 2006.

Problems about metric spaces.

1. Let $\nu: X \rightarrow Y$ be a map of two metric spaces.
(i) Consider a point $x \in X$ and its image $y=\nu(x) \in B$.

Show that ν is continuous at the point x iff it satisfies
$\left.{ }^{*}\right)$ For any neighborhood $V \subset Y$ of the point y the subset $\nu^{-1}(V) \subset X$ is a neighborhood of x.
(ii) Show that ν is continuous (i.e. continuous at all points) iff it satisfies
(**) For any open subset $V \subset Y$ the subset $\nu^{-1}(V) \subset X$ is open.
2. Let X be a metric space, $Y \subset X$ a subset of X and $F=\operatorname{Closure}(Y)$ its closure (the minimal closed subset containing Y).

Show that a point $a \in X$ belongs to F iff there exists a sequence of points $x_{i} \in Y$ which converges to the point a.
3. Let X be a metric space. Show that a map $\pi: X \rightarrow \mathbf{R}^{n}$ is continuous iff its coordinate functions $f^{i}=\pi^{i}$ are continuous.
4. Let X be a compact metric space.
(i) Show that any closed subset $F \subset X$ is compact (with respect to induced metric).
(ii) Show that for any continuous map $\nu: X \rightarrow Y$ from X to a metric space Y the subset $\nu(X) \subset Y$ is closed and compact.
$[\mathbf{P}]$ 5. Consider a subset $X \subset \mathbf{R}^{n}$. Show that X is compact iff it is bounded and closed subset of \mathbf{R}^{n}.
$[\mathbf{P}]$ 6. Let $A, B \subset X$ be two non-empty subsets of a metric space X. We define the distance $d(A, B)$ by $d(A, B)=\inf (d(a, b) \mid a \in A, b \in B)$.
(i) Show that if A is a set consisting of one point a then $d(A, B)=0$ iff a lies in the closure of the set B.
(ii) Suppose $X=\mathbf{R}^{n}, A$ is closed and B is compact. Show that there exist points $a \in A$ and $b \in B$ such that $d(a, b)=d(A, B)$.
(iii) Construct example of two closed subsets $A, B \subset \mathbf{R}^{n}$ such that A and B do not intersect but $d(A, B)=0$.
$[\mathbf{P}](*)$ 7. This problem gives an equivalent definition of compactness which often is more convenient than the original definition.

Let X be a metric space. Show that it is compact iff it satisfies the following
Finite Covering Property. Any open covering $\left\{U_{\alpha}\right\}$ of the space X contains a finite subcovering $\left\{U_{\alpha_{i}}\right\}$.
[P] 8. Let X be a compact metric space and $\left\{F_{\alpha}\right\}$ a family of closed subsets of X.

Suppose we know that any finite collection of these subsets has non-empty intersection. Show that all these subsets have non-empty intersection.
[P] 9. Let C be a compact subset of a metric space X and $U \subset X$ be an open subset which contains C. Show that there exists $\varepsilon>0$ such that U contains ε-neighborhood of C.
[P] 10. (i) Find the maximal area of a triangle inscribed into a unit circle.
(ii) Can you describe how to evaluate the maximal area of a convex 10-gon inscribed into the unit circle.

