## Problem assignment 3

Introduction to Differential Geometry
Joseph Bernstein
November 13, 2006.

## Extension of smooth functions.

[P] 1. Cut off functions. Fix number $r$ such that $0<r<1$.
(i) Show that there exists a smooth function $u(t)$ in one variable such that $u(t)=0$ for $|t|>1$ and $u(t)=1$ for $|t| \leq r$.
(ii) Fix a point $a \in \mathbf{R}^{n}$. Consider two concentric balls $B(a, r), B(a, R)$ where $r<R$. Show that there exists a smooth non-negative function $v(x)$ on $\mathbf{R}^{n}$ which vanishes outside of the ball $B(a, R)$ and is equal to 1 inside the ball $B(a, r)$.

Such function is called a cut-off function.
Hint. Show that the function $a(t)$ in one variable defined by $a(t)=0$ for $t \leq 0$ and $a(t)=\exp \left(-1 / t^{2}\right)$ for $t>0$ is smooth.

Construct a smooth non-negative function $b(t)$ such that $b(t)=0$ for $|t|>1$ and $b(0)=1$.

Construct a smooth non-negative function $c(t)$ such that $c(t)=0$ for $t \leq 0$ and $c(t)=1$ for $t \geq 1$.
[P] 2. Extension of smooth functions. (i) Let $f$ be a smooth function on the ball $B(a, R)$ of radius $R$ in $\mathbf{R}^{n}$, and let $B(a, r)$ be a smaller ball (i.e. $r<R)$.

Show that one can extend the function $f$ from the smaller ball $B(a, r)$ to the whole space $\mathbf{R}^{n}$ as a smooth function. Note that it is not always possible to extend $f$ from the larger ball $B(a, R)$ as a smooth function.
(*/2) (ii) Consider a domain $U$ and its open subdomain $W$. Suppose we are given a smooth function $f$ defined on $W$. Show that for every compact subset $C \subset W$ we can find a smooth function $h$ on $U$ which coincides with $f$ on some neighborhood of $C$.

## Variations on inverse function Theorem.

Let $\pi: X \rightarrow Y$ be a morphism of smooth domains $X \subset V$ to $Y \subset L$, $a \in X, b=\pi(a) \in Y$. Denote by $A: V \rightarrow L$ the differential $D \pi_{a}$.

Fix coordinate systems $x^{1}, \ldots, x^{m}$ and $y^{1}, \ldots, y^{n}$ on $X$ and $Y$ and denote by $J(x)$ Jacobi matrix of $\pi$ (this is a matrix with values in $S(X)$ ).
3. Suppose $m=n$ and the operator $A$ is invertible (i.e the matrix $J(a)$ is invertible). Show that $\pi$ is an isomorphism (i.e. diffeomorphism) of some neighborhood $U$ of $a \in X$ to some neighborhood $W$ of $b \in Y$.
[ $\mathbf{P}]$ 4. Suppose that the morphism $\pi$ is submersive at the point $a$ which means that the operator $A$ is epimorphism, i.e. Jacobi matrix has rank $n$.

Show that one can choose new coordinate system on $X$ near $a$ so that in new coordinates the morphism $\pi$ takes the standard form $\pi^{*}\left(y^{j}\right)=x^{j}$ for $j=1, \ldots, n$.
[P] 5. Suppose that the morphism $\pi$ is immersion at the point $a$ which means that the operator $A$ is monomorphic, i.e. Jacobi matrix has rank $m$.

Show that in this case one can change coordinate system on $Y$ near point $b$ such that in the new system the morphism $\pi$ takes the standard form $\pi\left(x^{1}, \ldots, x^{m}\right)=$ $\left(x^{1}, \ldots, x^{m}, 0 \ldots 0\right)$.
[P] 6. Consider a smooth function $f(x, y)$ defined in a neighborhood of a point $a=(0,0)$. Suppose that $f_{x}(a)=0$ and $f_{x x}(a)=1$.

Show that if we choose a small neighborhood $U$ of $a$ then for small $y$ the function $u(y)=\min \{f(x, y) \mid(x, y) \in U\}$ is a smooth function.

Can you compute the derivative of $u$ at the point $y=0$ ?
7. Let $u(t)$ be smooth function which vanishes for $t \leq 0$ and is positive for $t>0$. Consider the following functions $h, f$ in two variables
$h(x, y)=u\left(3 x^{2}-y\right) \cdot u\left(y-x^{2}\right)$
$f(x, y)=h(x, y) / h\left(x, 2 x^{2}\right), f(0,0)=0$.
Show that the restriction of the function $f$ to any straight line is smooth but $f$ is not a continuous function on $\mathbf{R}^{2}$.

