Problem assignment 5.

Introduction to Differential Geometry.

Joseph Bernstein

November 27, 2006.

1. Check that the multiplication in the algebra Alt(V) is associative and super commutative.

2. Check that the DeRham differential d given by $d(f dx_{i_1} \dots dx_{i_k}) = df dx_{i_1} \dots dx_{i_k}$ satisfies super Leibnitz rule.

[P] 3. Consider the space of matrices $Y = Mat(n, \mathbf{R})$ as a manifold.

(i) Let $X = Y \times Y$ and $m : X \to Y$ the morphism defined by multiplication, m(A, B) = AB.

Compute differential Dm at the point $a = (A, B) \in X$.

(ii) Consider morphism $\nu : Y \to Y$ defined by $A \mapsto A^5$. Compute the differential $D\nu$ at every point.

[P] 4. Let $X = \mathbb{R}^3$ and $S \subset X$ be the unit sphere.

(i) At every point $a \in S$ describe the tangent space T_aS as a subspace of $T_aX = \mathbf{R}^3$. Describe the Riemannian metric on S induced by the standard Riemannian metric on X.

(ii) Let f be a smooth function on X and h its restriction to S. Then we can construct two vectors $\xi = grad(f) \in T_a X$ and $\eta = grad(h) \in T_a S$.

Show that the vector η is the orthogonal projection of the vector ξ .

Show that the same result holds for any submanifold $S \subset X$.

[P] 5. Let $X = \mathbf{R}^3$. Consider the following subsets of X given by equations

S given by equation $x^2 + y^2 + z^2 = 1$, H given by equation $x^2 + y^2 - z^2 = 1$, R given by equation $x^3 + y^3 + z^3 = 1$ and C given by equation $x^2 + y^2 - z^2 = 0$.

(i) Show that S, H, R are submanifolds. Describe their tangent spaces at all points.

(ii) Show that C is a submanifold at all points except 0.

(iii) Show that the subset $Z = S \bigcap R$ is a submanifold. Describe its tangent spaces at all points.

6. Let *R* be a subset of a topological space *X*. The subset *R* is called **locally closed** if every point $a \in R$ has an open neighborhood *W* in *X* such that $R \cap W$ is closed in *W*.

Show that R is locally closed iff there exists an open neighborhood U of R in X such that R is closed in U.

[P] 7. Let X be a domain and $C \subset X$ be a compact subset.

(i) Show that there exists an open neighborhood U of C in X which lies inside a compact subset $K \subset X$.

(*/2) (ii) Show that there exist sequences of compact subsets C_i and open subsets U_i of X such that $C = C_1 \subset U_1 \subset C_2 \subset U_2, ...$ and $\bigcup U_i = X$.

 (\Box) 8. Prove the following generalization of the inverse function theorem (it is called **constant rank theorem**).

Theorem. Let $\pi : X \to Y$ be a morphism of smooth domains, $a \in X$. Suppose we know that the differential $D\pi_x : T_x X \to T_{\pi(x)} Y$ has constant rank k for every point $x \in X$.

Show that one can find coordinates $(x^1, ..., x^m)$ near point a and $(y^1, ..., y^n)$ near the point $b = \pi(a)$ in which the morphism π takes the standard form $\pi(x^1, ..., x^m) = (x^1, ..., x^k, 0, 0, ..., 0).$

[P] 9. Consider on \mathbb{R}^2 the 1-form $\alpha = xdy$.

(i) Compute the integral of the form α over the unit circle S.

(ii) Consider the integral of the form α over the curve γ given by $x > 0, y > 0, x^3 + y^3 = 1$.

Write down how to evaluate this integral (as an integral in one variable).

10. Let B be a symmetric $n \times n$ matrix of real numbers. Consider its characteristic polynomial $P(t) = \det(t1_n - B)$.

Show that all the roots of the polynomial P are real numbers.