Introduction to Differential Geometry

Sample problems for preparation to the final exam.

Joseph Bernstein
February 2007.

1. Let X be a domain of dimension n, a a point of X. Consider two submanifolds M, N of X containing the point a. We say that M and N intersect transversally at the point a if the tangent spaces $T_{a} M$ and $T_{a} N$ generate the space $T_{a} X$.
(i) Show that in this case the subset $L=M \bigcap N \subset X$ is a submanifold in some neighborhood of the point a. Describe the tangent space $T_{a} L$.
(ii) Give example of two surfaces in \mathbf{R}^{3} which intersect not transversally such that their intersection is not a manifold.
2. Let $C \subset \mathbf{R}^{2}$ be a curve defined by equation $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$ (i.e. C is an ellipse with half axes a, b).

Compute the curvature of C at all points.
3. Let M be a compact manifold; we fix an orientation μ on M. Let ξ be a vector field on M and ω a top degree form on M.

Show that the integral $\int_{M} \operatorname{Lie}_{\xi}(\omega)$ is equal to 0 .
4. Let X be a domain of dimension 3 . Consider differential forms $\alpha \in \Omega^{1}(X)$ and $\rho \in \Omega^{2}(X)$.

Suppose we would like to find a differential 1-form β on X such that $\rho=\alpha \beta$.
Show that for this there is a necessary condition. namely the condition $\left(^{*}\right) \alpha \rho=0$.
Show that if at every point x of the domain X the form α if not 0 then the necessary condition $\left({ }^{*}\right)$ is in fact sufficient for the existence of the form β.
5. Let N be a manifold and $\omega \in \Omega^{k}(N)$ a closed differential form on N. Let M be another manifold and $\nu_{i}: M \rightarrow N, i=1,2$, two morphisms of manifolds. Consider the inverse images $\rho_{i}=\nu_{i}^{*}(\omega) \in \Omega^{k}(M)$.

Show that if morphisms ν_{1}, ν_{2} are homotopic then the forms ρ_{1}, ρ_{2} are cohomologues, i.e. their difference is a differntial of some form $\eta \in \Omega^{k-1}(M)$.
6. Let M be a Riemannian manifold. For any smooth function f on M we denote by grad_{f} its gradient vector field on M.

Show that if f, h are two smooth functions on M then $\operatorname{grad}_{f}(h)=\operatorname{grad}_{h}(f)$.
7. Consider the curve $c(t)=\left(t, t^{2}, t^{3}\right)$ in \mathbf{R}^{3}. Compute the curvature of this curve.
8. Let M be a compact Riemannian manifold and ω a k-form on M. We would like to investigate the form ω by considering its integrals $\int_{\nu} \omega$ over cycles $\nu: S \rightarrow M$, where $S=S^{k}$ is the standard k-dimensional sphere considered with the standard orientation.

Let us say that the size of the cycle ν is $\leq r$ if the differential $D \nu$ has norm $\leq r$ at all points of the sphere S. This allows us to define the norm $d(\nu)$ of the cycle ν to be the minimum of all such numbers r.
(i) Show that $\int_{\nu} \omega$ is $O\left(d(\nu)^{k+1}\right)$ when $d(\nu)$ tends to 0 .
(ii) Suppose we know that the stronger estimate holds $\int_{\nu} \omega=o\left(d(\nu)^{k+1}\right)$.

What can you tell about the form ω ?
What can you tell about the integrals $\int_{\nu} \omega$ when $d(\nu)$ is very small?
9. Let M be a Riemannian manifold with Riemann metric $B, L \subset M$ a submanifold of M and C the induced Riemann metric on L.

Fix a smooth function f on M and denote by h its restriction to the submanifold L.
Show that for any point $a \in L$ we have inequality

$$
\left\|\operatorname{grad}_{B} f\right\| \geq\left\|\operatorname{grad}_{C} h\right\|
$$

10. Consider the plane curve C which in polar coordinates (r, ϕ) is given by equation $r=5 \phi$ (it is called a spiral).

Compute the curvature of the curve C at all points.
11. Prove Green's theorem. Let M be the Euclidean space \mathbf{R}^{n} with the standard metric, $D \subset M$ a domain with smooth boundary ∂D and f a smooth function on D.

Then the flow of the vector field $\xi=\operatorname{gradf}$ through the hypersurface ∂D equals to the integral over D of the function $h=\Delta f$, where $\Delta=\sum\left(\partial_{i}\right)^{2}$ is the Laplace operator.
12. Let $M \in \mathbf{R}^{3}$ be the paraboloid given by the equation $z=x^{2}+y^{2}$. We consider the Riemannian metric B on M induced from the standard Riemannian metric on \mathbf{R}^{3}.

Fix the system of coordinates (x, y) on M.
(i) Write the metric B in this coordinate system.
(ii) For any smooth function f on M write its gradient vector field (with respect to the metric B).
(iii) Write explicitly first and second fundamental forms on M. Compute the Gaussian curvature of M.
13. Let X be a manifold and f, h two smooth functions on X. We would like to find a vector field ξ on X such that $\xi(f)=h$.

Show that if we can do this locally on X then we can do this globally on X.
14. Consider a curve $C \subset \mathbf{R}^{2}$ defined by equation $f(x, y)=0$. Fix a point $a \in C$ and denote by L the tangent space $T_{a}\left(\mathbf{R}^{2}\right)$ canonically isomorphic to \mathbf{R}^{2}.

Consider the following quadratic forms on the space L :
form H equal to the Hessian of the function f at the point a
standard Euclidean form B
form $D=\left(d_{a} f\right)^{2}$.
Show that when a parameter t tends to ∞ the ratio $\operatorname{det}(H+t D) / \operatorname{det}(B+t D)$ converges to the curvature of the curve C at the point a.
15. Similarly to the problem 14 consider a surface $\Sigma \subset \mathbf{R}^{3}$ defined by equation $f(x, y, z)=0$.

Construct quadratic forms H, B, D as before and show that when t tends to ∞ the ratio $\operatorname{det}(H+t D) / \operatorname{det}(B+t D)$ converges to the Gauss curvature of Σ.

