Problem assignment 4.

Algebraic Theory of *D*-modules.

Joseph Bernstein

In this assignment we fix an algebra A and let $\mathcal{M}(A)$ denote the category of left A-modules.

Definition. (i) Let M be an A-module. We say that M is **finitely generated** if it has a finite system of generators as an A-module. We say that M is **Noetherian** if any submodule of M is finitely generated.

(ii) We say that the algebra A is (left) Noetherian if the category $\mathcal{M}(A)$ is Noetherian, which means that every finitely generated object in this category is Noetherian.

1. (i) Show that an A-module M is finitely generated iff it satisfies

(*) For any system of submodules $M_{\kappa} \subset M$ which is exhaustive (i.e. $\sum M_{\kappa} = M$) there exists a finite exhaustive subsystem.

(ii) Show that any A-module M can be obtained as a directed direct limit of finitely generated submodules (see definition below).

Show that the algebra A is left Noetherian iff it is Noetherian as a left A-module.

Definition. Let *I* be a partially ordered set. We will consider it as a category with one morphism $i \to j$ for every pair of objects $i, j \in I$ such that $i \leq j$.

We define an *I*-system *F* of objects in \mathcal{M} as a functor $F: I \to \mathcal{M}$

2. (i) Define the notion of a direct limit $\lim_{d \to \infty} (F)$ for an *I*-system *F*.

(ii) Show that if the system I is **directed** then the functor $F \mapsto \lim_{d} (F)$ is exact (the system I is called directed if for any pair of elements $i, j \in I$ there exists an element k such that $i \leq k, j \leq k$.)

3. Show that an object $T \in \mathcal{M}(A)$ is finitely generated iff the functor $H_T : \mathcal{M}(A) \to Ab$ given by $H_T(N) = Hom(T, N)$ commutes with arbitrary directed direct limits. Show that in this case it commutes with any direct limits.

4. (i) Fix some map $D: A \to A$ and consider the algebra B generated by A and an element t subject to relations ta - at = D(a) for $a \in A$.

Show that if the algebra A is Noetherian then the algebra B is also Noetherian.

(ii) More generally, fix an automorphism $Q: A \to A$ and a map $D: A \to A$ and define the algebra B via relations ta = Q(a)t + D(a).

Prove that the same conclusion holds.

5. Consider an Abelian category \mathcal{M} (for example a category $\mathcal{M}(A)$ of A-modules for some algebra A). Let K, L be two objects in \mathcal{M} . Suppose P^{\cdot} is

a projective resolution of K and Q^{\cdot} is a projective resolution of L. Consider P^{\cdot}, Q^{\cdot} as objects in the homotopy category $Homt(\mathcal{M})$.

Consider the canonical homomorphism $\alpha : Hom_{Homt}(P^{\cdot}, Q^{\cdot}) - > Hom_{\mathcal{M}}(k, L)$. Show that α is an isomorphism.

In fact show that the same is true even if we do not assume that the resolution Q^{\cdot} is projective.

6. Consider a short exact sequence 0 - > N' - > N - > N'' - > 0 in \mathcal{M} . Fix an object $K \in \mathcal{M}$.

 $\begin{array}{ll} (i) \mbox{ Prove the long exact sequence} \\ 0 \rightarrow Ext^0(K,N') \rightarrow Ext^0(K,N) \rightarrow Ext^0(K,N'') \rightarrow \\ \rightarrow Ext^1(K,N') \rightarrow Ext^1(K,N) \rightarrow Ext^1(K,N'') \rightarrow \\ \rightarrow Ext^2(K,N') \rightarrow Ext^2(K,N) \rightarrow \dots \end{array} \\ (ii) \mbox{ Prove the long exact sequence} \\ 0 \rightarrow Hom(N'',K) \rightarrow Hom(N,K) \rightarrow Hom(N',K) \rightarrow \\ \rightarrow Ext^1(N'',K) \rightarrow Ext^1(N,K) \rightarrow Ext^1(N',K) \rightarrow \\ \rightarrow Ext^2(N'',K) \rightarrow Ext^2(N,K) \rightarrow \dots \end{array}$

7. Let A be a Noetherian algebra and M a Noetherian A-module. Show that the functor $N \mapsto Ext^i(M, N)$ commutes with directed direct limits. How do you think, does it commute with arbitrary direct limits ?

8. Let \mathfrak{g} be a finite dimensional Lie algebra and $U = U(\mathfrak{g})$ its universal enveloping algebra. Show that U has finite cohomological dimension $\leq \dim \mathfrak{g}$.