On the notion of Hilbert polynomial.

Algebraic Geometry and Commutative Algebra
Joseph Bernstein
December 3, 2008.
I. Preparation about sequences. Consider the group F consisting of sequences of rational numbers $f=\{f(i), i \in \mathbf{Z}\}$. Let us introduce an equivalence relation on F by $f \sim h$ if $f(i)=h(i)$ for $i \gg 0$.

We say that a sequence f is eventually polynomial if there exists a polynomial $P \in$ $\mathbf{Q}[t]$ such that f is equivalent to the sequence $P(i)$. It is clear that such polynomial P is uniquely defined.

Consider the difference operator $\triangle: F \rightarrow F$ defined by $\triangle(f)(i)=f(i+1)-f(i)$

1. Let d be a natural number. Show that a sequence $f \in F$ is eventually polynomial of degree $\leq d$ iff $\triangle^{d+1}(f) \sim 0$; this is also equivalent to the condition that $\triangle(f)$ is eventually polynomial of degree $\leq d-1$.
II. Hilbert polynomial. Fix an arbitrary field K. Consider an algebra $A=K\left[x_{1}, \ldots, x_{n}\right]$ and introduce on it algebra filtration $\left\{A_{k}\right\}$, where $A_{k}=\{P \in A \mid \operatorname{deg} P \leq k\}$.

Let M be a finitely generated A-module. Fix a system of generators m_{1}, \ldots, m_{r} and consider a filtration of M defined by $M_{k}=A_{k} m_{1}+A_{k} m_{2}+\ldots+A_{k} m_{r}$.

Our goal is to prove the following fundamental result due to Hilbert.
Theorem A. The sequence $f_{M}(i)=\operatorname{dim} M_{i}$ is eventually polynomial (here dimension is over the field K).

It is convenient to formulate and prove slightly more general result.
Definition. (i) A filtration of M is a collection of finite dimensional subspaces $M_{k} \subset M$ defined for all $k \in \mathbf{Z}$ that satisfies the following conditions.
(a) $M_{k} \subset M_{l}$ for $k \leq l, M_{k}=0$ for $k \ll 0$ and $\bigcup M_{k}=M$.
(b) $A_{k} M_{l} \subset M_{k+l}$
(ii) Filtration $\left\{M_{k}\right\}$ is called good filtration if it satisfies
(c) For large k we have $A_{1} M_{k}=M_{k+1}$.

Clearly the filtrations considered in Theorem A are good. So we will prove more general result

Theorem B. Suppose $\left\{M_{k}\right\}$ is a good filtration of an A-module M.
(i) For any A-submodule $L \subset M$ consider the induced filtration on L defined by $L_{k}=$ $L \bigcap M_{k}$. Then it is a good filtration.
(ii) The sequence $f(i):=\operatorname{dim} M_{i}$ is eventually polynomial.

Consider the graded algebra $C=K\left[t_{0} \cdot t_{1}, \ldots, t_{n}\right]$. Using the filtration $\left\{M_{k}\right\}$ on M construct a graded C-module $N=\hat{M} \subset M\left[t, t^{-1}\right]$ by $\hat{M}^{k}=M_{k} t^{k}$, where t_{0} acts as multiplication by t and t_{i} acts as a multiplication by $t x_{i}$ for $i=1, \ldots, n$.
2. Check that a filtration $\left\{M_{k}\right\}$ is good iff the C-module \hat{M} is finitely generated.

For an A-submodule $L \subset M$ consider the induced filtration $\left\{L_{k}\right\}$. Then \hat{L} is a D submodule of D-module \hat{M}. Hence Hilbert basis theorem implies (i).

It is clear that the theorem B follows from the following
Theorem C. Consider the algebra $C=K\left[t_{0}, t_{1}, \ldots, t_{n}\right]$ and define the grading $C=\bigoplus C^{k}$ on it by condition $\operatorname{deg}\left(t_{i}\right)=1$. Fix a graded C-module $N=\bigoplus N^{k}$.

Suppose we know that C-module N is finitely generated. Then the sequence $f_{N}(i):=$ $\operatorname{dim} N^{i}$ is eventually polynomial of degree $\leq n$.

Proof. Consider the operator $T: N \rightarrow N$ of degree 1 given by multiplication by t_{n}. Let us denote by K and C its kernel and cokernel.
3. Check that $f_{N}(i+1)-f_{N}(i) \equiv f_{C}(i+1)-f_{K}(i)$

Now note that on the modules K and C the operator t_{n} is zero, so they are finitely generated modules over the algebra $C^{\prime}=K\left[t_{0}, t_{1}, \ldots, t_{n-1}\right]$.

Using induction in n we can assume that the sequences f_{K} and f_{C} are eventually polynomial of degree $\leq n-1$. But then it means that the sequence $\triangle(f)$ is eventually polynomial of degree $\leq n-1$ and hence f is eventually polynomial of degree $\leq n$.

Remarks. (i) Note that in fact we start our induction from the case $n=-1$, i.e. $C=K$.
(ii) The most non-trivial step in this proof is the fact that the C-module K is finitely generated - this is Hilbert's basis theorem.

III. Some problems about Hilbert polynomials.

4. Let \mathcal{O} be a finitely generated K-algebra and M a finitely generated \mathcal{O}-module.

Let us fix a system of generators $x_{1}, \ldots, x_{n} \in \mathcal{O}$. Then M becomes a module over the polynomial algebra $A=K\left[x_{1}, . ., x_{n}\right]$.

Let us choose a good filtration on M and consider the corresponding Hilbert polynomial $f_{M}(i)$.
(i) Show that the degree $d(M)$ of the polynomial f_{M} and its first coefficient $e(M)$ do not depend on the choice of a good filtration on M.
(ii) Show that the degree $d(M)$ does not depend on the choice of generators of the algebra \mathcal{O}.

We call this invariant $d(M)$ the "the functional dimension" of M.
5. (i) Show that if L is an \mathcal{O}-submodule of M then $d(M)=\max (d(L), d(M / L))$.
(ii) Let A be an endomorphism of an \mathcal{O}-module M. Show that if A is injective then $d(M / A M)$ is strictly less then $d(M)$ (we assume $M \neq 0$).
(iii) Suppose that we have a vector space M that is a module over two commutative finitely generated algebras A and B. Let us assume that it is finitely generated over A and also over B, so we can define two invariants $d_{A}(M)$ and $d_{B}(M)$.

Show that if the actions of A and B on the module M commute, then $d_{A}(M)=d_{B}(M)$.
6. Let X be an affine algebraic variety, M a finitely generated $\mathcal{O}(X)$-module. We define the support of M to be the subset $\sup (M) \subset X$ defined by the ideal $I=A n n(M) \subset \mathcal{O}(X)$.

Show that $d(M)$ equals $\operatorname{dim} \sup (M)$.
7. Prove that the dimension function $\operatorname{dim}_{H}(X)$ defined using Hilbert polynomial definition has the following properties. Let $\pi: X \rightarrow Y$ be a morphism of affine algebraic varieties
(i) Suppose that π is a finite morphism (e.g. a closed embedding). Then $\operatorname{dim}_{H} X \leq$ $\operatorname{dim}_{H} Y$.
(ii) Suppose that π is a finite epimorphism. Then $\operatorname{dim}_{H} X=\operatorname{dim}_{H} Y$.
(iii) Suppose π is an imbedding of a basic open subset (i.e. $X=Y_{f}$). Then $\operatorname{dim}_{H} X \leq$ $\operatorname{dim}_{H} Y$
8. Show that Hilbert polynomial definition of dimension for algebraic varieties is equivalent to Krull's definition.
(*) 9. Using Hilbert polynomial definition of dimension prove directly the Principle ideal theorem.

Let X be an irreducible affine algebraic variety, $f \in \mathcal{O}(X), Z=Z(f)$ the zero set of the function f. Suppose that $\operatorname{dim} Z \leq \operatorname{dim} X-2$. Then Z is empty.

