Problem assignment 3.

Algebraic Geometry and Commutative Algebra
 Joseph Bernstein
 November 19, 2008.

1. (LA) Let V be a vector space over an algebraically closed field $k, a: V \rightarrow$ V a linear operator.
(i) Suppose a is locally nilpotent, i.e. for any vector $v \in V$ we have $a^{n} v=0$ for large n. Show that then $\operatorname{Spec}(a)=\{0\}$ (i.e. for every $\lambda \neq 0 \in k$ operator $a-\lambda$ is invertible)
(ii) Show that if the space V is countable dimensional and the field k is algebraically closed and uncountable, then conversely the condition $\operatorname{Spec}(a)=$ $\{0\}$ implies that a is locally nilpotent.
2. (CA). Let A be a ring and M an A-module.
(i) Show that M is finitely generated iff it satisfies the following condition:
$\left(^{*}\right)$ Let $M_{\alpha} \subset M$ be a directed system of submodules such that the union $\bigcup M_{\alpha}$ equals M. Then it contains M.
(ii) Show that M is Noetherian iff it satisfies the following condition:
$\left.{ }^{* *}\right)$ Any directed system of submodules $M_{\alpha} \subset M$ has a maximal element.
[P] 3. (i) Let $A=k\left[t_{1}, t_{2}, \ldots\right]$ be the algebra of polynomials in infinite number of generators. Show that A is not Noetherian
(ii) Let $A=k\left[t_{1}, t_{2}\right]$. Find an example of a k-subalgebra $B \subset A$ which contains 1 such that B is not Noetherian (and hence not finitely generated as k-algebra).
3. (i) Consider homomorphisms of algebras $C \rightarrow B \rightarrow A$. Show that if A is finite over B and B is finite over C then A is finite over C.
(ii) Choose a monic polynomial $P \in B[t]$ and consider the B-algebra $A=$ $B[t] / P B[t]$. Show that A is finite over B.
4. Here is an elementary proof of Nakayama lemma.

Jet J be an ideal in a commutative ring A. We set $R=1+J \subset A$. Clearly $R \cdot R \subset R$ and $R+J \subset R$.

Lemma (Nakayama). Let M be a finitely generated A-module such that $J M=M$. Then there exists an element $r \in R$ such that $r M=0$.

In particular, for any submodule $L \subset M$ we have $J L=L$.
Induction in number n of generators. Let x be one of generators of M and $N=A x \subset M$ the submodule generated by x.

Using the induction assumption for the module M / N we can find an element $r_{1} \in R$ such that $r_{1} M \subset N$.

This implies that $r_{1} x \in r_{1} J M=J r_{1} M \subset J N=J x$.
But this shows that there exists an element $r_{2} \in R$ such that $r_{2} x=0$ and hence $r_{2} N=0$.

Thus for $r=r_{1} r_{2}$ we have $r M=0$.
6. Proof of Hamilton - Cayley identity.

Lemma Let $R \in \operatorname{Mat}(n, C)$ be a $n \times n$ matrix over a commutative ring C. Then there exists an adjoint matrix $Q \in \operatorname{Mat}(n, C)$ such that $Q R=\operatorname{det}(R) \cdot 1_{n}$.

Now let A be a commutative ring, $S \in \operatorname{Mat}(n, A)$. Set $C=A[t]$ and define the characteristic polynomial $P \in C$ of the matrix S to be $\operatorname{det}(R)$, where $R=t 1_{n}-S \in \operatorname{Mat}(n, C)$.

Theorem (Hamilton-Cayley) $P(S)=0$.
For the proof consider the action of the algebra $\operatorname{Mat}(n, C) \simeq \operatorname{Mat}(n, A)[t]$ on the group $H=\operatorname{Mat}(n, A)$ where the subalgebra $\operatorname{Mat}(n, A) \subset \operatorname{Mat}(n, C)$ acts on H by left multiplication and the element t acts as right multiplication by the matrix S.

Let $h \in H$ be the identity matrix. It is clear that $R(h)=0$. This implies that for adjoint matrix Q of R we have $Q R(h)=0$, i. e. $P(t)(h)=0$. But it is clear that $P(t)(h)=P(S)$ and thus $P(S)=0$.
$[\mathbf{P}]$ 7. Let M be a finitely generated module over a commutative ring C.
(i) Let X be an endomorphism of M. Show that there exists a monic polynomial $P \in C[t]$ such that $P(X)=0$.
(ii) Let A be a commutative finitely generated C-subalgebra of $E n d_{C}(M)$. Show that it is finite over C.
(iii) Let J be an ideal of C. Suppose that the operator X in question (i) satisfies $X M \subset J M$.

Show that then we can choose the monic polynomial $P \in C[t]$ in question (i) of the form $P=\sum a_{i} t^{n-i} \mid i=0,1, \ldots, n$ in such a way that $a_{0}=1$ and $a_{i} \in J^{i}$ for all i.
$[\mathbf{P}]$ 8. Let A be any ring. Consider full subcategory $N o(A) \subset \mathcal{M}(A)$ of Noetherian A-modules
(i) Show that this subcategory is closed with respect to subquotients and extensions.
(ii) Consider the algebra $D=A[t]$; for every A-module M define D-module $M[t]$.

Show that if M is a Noetherian A-module then $M[t]$ is a Noetherian D module.
[P] 9. (LA) Let L be a finite dimensional vector space over an algebraically closed field k. Let A be a commutative subalgebra in $\operatorname{End}(L)$.
(i) Show that if $L \neq 0$ then there exists a non-zero common eigenvector $v \in L$ such that $a v=\chi(a) v$ for some character χ; we call the vector v eigenvector and the character χ the corresponding eigencharacter.
(ii) Let v_{1}, v_{m} be eigenvectors corresponding to characters χ_{i}. Assume that the characters χ_{i} are pairwise distinct. Show that then the vectors v_{i} are linearly independent. In particular, if they are non-zero, we have $m \leq \operatorname{dim} L$.

