Problem assignment 5.

Algebraic Geometry and Commutative Algebra	
Joseph Bernstein	December 3, 2008.

Some problems about finite algebras (CA).

Rings that we consider are commutative with 1 ; morphisms of rings are assumed to preserve 1.

Let C be a ring. By definition a C-algebra is a ring A together with a specified morphism of rings $\nu: C \rightarrow A$. In particular, A is a C-module.

Definition. We say that a C-algebra A is finite over C if it is finitely generated as C-module. Note that this is equivalent to the condition that A is finite over the subalgebra $C^{\prime}=\nu(C) \subset A$.

1. Consider morphisms of rings $C \rightarrow B \rightarrow A$. Show that if A is finite over B and B is finite over C then A is finite over C.

Definition. Let A be a C-algebra. An element $a \in A$ is called integral over C if there exists a monic polynomial $P \in C[t]$ such that $P(a)=0$.
[P] 2. Show that the following conditions on an element $a \in A$ are equivalent
(a) a is integral over C.
(b) The subalgebra $C<a>\subset A$ is finite over C.
(c) There exists a subalgebra $B \subset A$ that contains $C<a>$ and is finite over C.
$[\mathbf{P}]$ 3. Let A be a finitely generated C-algebra. Show that the following conditions are equivalent
(a) A is finite over C,
(b) Every element $a \in A$ is integral over C.
(c) There exists a finite system of generators x_{1}, \ldots, x_{m} of A over C which are all integral over C.
[P] 4. Let X be an algebraic variety and $Z \subset X$ its closed subset. Suppose we know that one of irreducible components T of the variety Z has dimension m. Sow that there exists an open affine subset $U \subset X$ such that $Z \bigcap U$ is an irreducible closed subset of U of dimension m.

Some problems about UFD (unique factorization domains).

$\nabla 5$. Let A be a unique factorization domain, L its field of fractions. Consider subring $B=A[t] \subset L[t]$.
(i) Prove Gauss lemma. Let $P, Q \in L[t]$ be monic polynomials. Suppose that $R=P Q$ lies in B. Show that then P and Q also lie in B.
(ii) Using (i) show that for any field K the algebra $K\left[x_{1}, \ldots x_{n}\right]$ is a unique factorization domain.
$[\mathbf{P}]$ 6. Let X be an irreducible algebraic variety of dimension n. Let us denote by H the set of all closed irreducible subvarieties $H \subset X$ of dimension $n-1$. We define the group of divisors $\operatorname{Div}(X)$ as a free abelian group generated by H (this group consists of linear combinations $\sum_{H} a_{H} H$ where $a_{H} \in \mathbf{Z}$ and all a_{H} except finite number are 0).

Suppose X is affine and the algebra $A=\mathcal{P}(X)$ is UFD. Denote by L the field of fractions of A.

Show that we have a natural isomorphism $\operatorname{Div}(X)=L^{*} / A^{*}$.
$[\mathbf{P}]$ 7. Consider subvariety $X=V\left(x y-z^{2}\right) \subset \mathbf{A}^{3}$.
(i) Prove that the y-axis L is a subvariety of X of codimension 1 , but the ideal $J(L) \subset \mathcal{O}(X)$ is not principal. Show that some power of this ideal is principal.
(ii) Show that $\mathcal{O}(X)$ is not a unique factorization domain.

Definition. Let Y be an irreducible algebraic variety, P a property which holds for some points $y \in Y$. We say that the property P holds for generic point of Y if the set of points for which P holds contains an open dense subset of Y.
[P] 8. Let $\pi: X \rightarrow Y$ be a dominant morphism of irreducible algebraic varieties of relative dimension k (i.e. $k=\operatorname{dim} X-\operatorname{dim} Y$). For every point $y \in Y$ consider the fiber $F_{y}=\pi^{-1}(y)$.
(i) Show that for generic point $y \in Y \operatorname{dim} F_{y}=k$.
(ii) Show that for every point $y \in Y$ dimension of every irreducible component of the fiber F_{y} is $\geq k$.
9. Let V be a finite dimensional vector space over k and \mathbf{V} the corresponding affine variety.
(i) Fix a number l. Define the structure of an algebraic variety on the set G_{l} of all affine (i.e not necessarily passing through 0) linear subspaces $L \subset V$ of codimension l.
(ii) Prove the following

Proposition. Let Y be an algebraic subvariety of V. Show that the following conditions are equivalent:
(a) $\operatorname{dim} Y \leq k$
(b) For generic point $L \in G_{l}$ with $l>k$ the space L does not intersect Y.
(c) For generic point $L \in G_{k}$ the intersection of L with Y is finite.
(Hint. Consider the incidence variety $Z \subset Y \times G_{l}$ consisting of points (y, L) such that $y \in L$ and compute its dimension using projections to Y and to G_{l}).

This proposition can be used as a definition of dimension, and as a powerful tool for computing dimension of different varieties.

