Problem assignment 3.

Algebraic Geometry and Commutative Algebra

Joseph Bernstein

March 7, 2011.
[P] 1. (LA) Let V be a vector space over an algebraically closed field $k, T: V \rightarrow V$ a linear operator. By definition the spectrum $\operatorname{Spectr}(T)$ of the operator T is a subset of numbers $\lambda \in k$ such that the operator $T-\lambda$ is not invertible.
(i) Suppose T is locally nilpotent, i.e. for any vector $v \in V$ we have $T^{n} v=0$ for large n. Show that then $\operatorname{Spectr}(T)=\{0\}$.
(ii) Show that if the space $V \neq 0$ is countable dimensional and the field k is algebraically closed and uncountable, then conversely the condition $\operatorname{Spectr}(T)=\{0\}$ implies that T is locally nilpotent.

The following definition will play an important role in what follows.
(CA) Definition. Let B be commutative ring. A (commutative) B-algebra is a commutative ring A equipped with a homomorphism of rings $\nu: B \rightarrow A$. This naturally defines on A a structure of a B-module. B-algebra A is called finite if A is finitely generated as B-module (equivalent terminology - " A is finite over B " or "morphism $\nu: B \rightarrow A$ is finite").
(CA) 2. (i) Consider homomorphisms of rings $C \rightarrow B \rightarrow A$. Show that if A is finite over B and B is finite over C then A is finite over C.
(ii) Choose a monic polynomial $P \in B[t]$ and consider the B-algebra $A=B[t] / P B[t]$. Show that A is finite over B.

We fix an infinite field K and consider the polynomial algebra $\mathcal{P}_{n}=K\left[x_{1}, \ldots, x_{n}\right]$.
[P] 3. Prove Noether's Normalization Lemma. Let M be a non-zero finitely generated \mathcal{P}_{n}-module. Then there exist a number d and a system of linear forms $y_{i}=\sum a_{i j} x_{j}, 1 \leq i \leq d$ such that
(α) module M is finitely generated over the algebra $B=K\left[y_{1}, \ldots, y_{d}\right]$
(β) Annihilator of M in B is 0 .
In fact given one such system show that almost every system of forms y_{i} has these properties.
∇ Remark. Try to formulate and prove the analogue of Noether's Normalization Lemma for the case of finite field K.
[P] 4. Fix an infinite field K and consider the algebra $\mathcal{P}_{n}=K\left[x_{1}, \ldots, x_{n}\right]$. Let M be a non-zero finitely generated \mathcal{P}_{n}-module. Prove the following Nullstellensatz property.
(i) If $n>0$ then there exists a non-zero linear form $y=\sum a_{j} x_{j}$ that satisfies the following condition:
(*) There exists a monic polynomial $P \in K[t]$ such that $P(y) M \neq M$.
(ii) There exists an ideal $J \subset \mathcal{P}_{n}$ such that the quotient $N=M / J M$ is a non-zero module that has finite dimension over the field K.
(iii) Prove that any non-zero linear form y satisfies the property $\left(^{*}\right)$ above.
(iv) Show that if $\mathfrak{m} \subset \mathcal{P}_{n}$ is a maximal ideal then the quotient field $L=\mathcal{P}_{n} / \mathfrak{m}$ is a finite extension of the field K.
5. Here we present an elementary proof of Nakayama lemma.

Let J be an ideal in a commutative ring A. We set $R=1+J \subset A$. Clearly $R \cdot R \subset R$ and $R+J \subset R$.

Lemma (Nakayama). Let M be a finitely generated A-module such that $J M=M$. Then there exists an element $r \in R$ such that $r M=0$.

Remark. Informally it means that if there exists a procedure to write every element $m \in M$ as a sum $\sum j_{i} m_{i}$ then there exists an element $j \in J$ that gives a universal such procedure, namely $m \equiv j m$.

In particular this implies that for any A-submodule $L \subset M$ we have $J L=L$.
Proof. We use induction in number n of generators. Let x be one of generators of M and denote by $L=A x \subset M$ the submodule generated by x. Using the induction assumption for the module M / L we can find an element $r^{\prime} \in R$ such that $r^{\prime} M \subset L$.

This implies that $r^{\prime} x \in r^{\prime} J M=J r^{\prime} M \subset J L=J x$. Thus we can find an element $j \in J$ such that $r^{\prime} x=j x$.

This shows that the element $r^{\prime \prime}=r^{\prime}-j$ annihilates x (and hence L). Since $r^{\prime} M$ lies in L we see that the element $r=r^{\prime \prime} \cdot r^{\prime}$ annihilates M.
$[\mathbf{P}]$ 6. Let T be an endomorphism of a finitely generated A-module M. Suppose we know that T is epimorphic. Show that T is invertible. Moreover show that it is invertible on any T-invariant A-submodule $L \subset M$.
7. Let $\nu: B \rightarrow A$ be a finite morphism of k-algebras. Show that the corresponding map of sets $\nu^{*}: M(A) \rightarrow M(B)$ is closed and has finite fibers.
(CA) Let us introduce some notions in the theory of schemes that we will discuss later in more detail. For any finitely generated k-algebra A we defined a set $M(A):=\operatorname{Mor}_{k-a l g}(A, k)$. As follows from Nullstellensatz this set also can be interpreted as the set of all maximal ideals of A. Grothendieck generalized this notion as follows.

Definition. Let A be an arbitrary commutative ring with 1 . We define the set $\operatorname{Spec} A$ to be the set of prime ideals $\mathfrak{p} \in A$. Let us remind that prime ideal is an ideal $\mathfrak{p} \subset A$ such that A / \mathfrak{p} is a non-zero algebra without zero divisors.
∇ (CA) 8. (i) Show that if $A \neq 0$ then $\operatorname{Spec} A$ is non-empty.
(ii) Show that the intersection of all prime ideals of A is the nillradical of A (i.e. the set of all nilpotent elements in A).
(iii) Define Zariski topology on $\operatorname{Spec} A$. Show that every morphism of algebras $\nu: B \rightarrow A$ induces a continuous map $\nu^{*}: \operatorname{Spec} A \rightarrow \operatorname{Spec} B$.
(iv) Show that if the morphism ν is finite then the map ν^{*} is closed.

Remark. If we assign to every ring A the set $\operatorname{Specm}(A)$ of its maximal ideals then in some cases we will not be able to construct a map $\nu^{*}: \operatorname{Specm} A \rightarrow \operatorname{SpecmB}$. Give an example.
9. Prove Hamilton - Cayley Identity (HC).

Let A be a commutative algebra. Consider an $n \times n$ matrix X with entries in $A, X=$ $\left(a_{i j}\right) \in \operatorname{Mat}(n, A)$. Define the characteristic polynomial $P_{X} \in A[t]$ of the matrix X by formula $P_{X}=\operatorname{det}(t-X)$. Prove the identity
$(\mathbf{H C})$ The matrix $P_{X}(X)$ equals 0 .
Sketch. This is an identity of some polynomials in coefficients $a_{i j}$ of matrix X. Show that it is enough to prove (HC) for the ring $B=\mathbf{Z}\left[x_{i j}\right]$ and a specific matrix X with entries $a_{i j}=x_{i j}$. Show that we can imbed the ring B into the field \mathbf{C} of complex numbers, so it is enough to prove (HC) for the case $A=\mathbf{C}$. Show that (HC) holds on the subset $\operatorname{Mat}_{n}^{r e g}(\mathbf{C}) \subset \operatorname{Mat}_{n}(\mathbf{C})$ of matrices with distinct eigenvalues. Show that this subset is given by inequality $\operatorname{Disc}(X) \neq 0$ for some non-zero polynomial function Disc on $\operatorname{Mat}(n, \mathbf{C})$.
[P] 10. Show that (HC) implies Nakayama lemma. Namely show that
(i) Given a finitely generated A-module M and its endomorphism X one can find a monic polynomial $P \in A[t]$ such that $P(X)=0$.
(ii) Moreover, if we know that the image $X(M)$ lies in the subset $J M$ for some ideal $J \subset A$ then we can choose the polynomial P to be of the form $P=t^{n}+a_{1} t^{n-1}+\ldots+a_{n}$, where all coefficients a_{i} lie in $J . \quad$ (Hint. First prove this for endomorphisms of a free module F and then lift the endomorphism X to an endomorphism of a free module F covering M).

