Problem assignment 8.

Algebraic Geometry and Commutative Algebra
Joseph Bernstein
June 5, 2011

I. Action of groups on \mathcal{O}-modules.

Let us call \mathcal{O}-pair a pair (X, F) where X is an algebraic variety and F an \mathcal{O}_{X}-module. An isomorphism $\nu:(X, F) \rightarrow(Y, H)$ is a pair consisting from an isomorphism $\nu_{X}: X \rightarrow Y$ of algebraic varieties and an isomorphism $\nu^{\prime}: F \rightarrow \nu^{*}(H)$.

1. Check that these morphisms can be composed and that there exist inverse morphisms. In particular, to any \mathcal{O}-pair (X, F) we can assign its group of automorphisms $\operatorname{Aut}(X, F)$.

Let G be a group. By definition an action of G on an \mathcal{O} pair (X, F) is a homomorphism $\rho: G \rightarrow \operatorname{Aut}(X, F)$.

In principle we are interested mostly in cases when G is an algebraic group and the action ρ is algebraic. We will discuss these notions later in more detail.

Definition. A variety X with a distinguished action ρ_{X} of G we will call a G-space.
2. Fix a a G space X (defined by an action ρ_{X}). We define a \mathcal{O}-module on X to be a \mathcal{O}-pair (X, F) equipped with an action ρ of G which defines the action ρ_{X} on the variety X.

Describe the notion of a morphism between \mathcal{O}-modules on a G-space X.
The category of \mathcal{O}-modules on a G-space X we denote $\mathcal{M}_{G}\left(\mathcal{O}_{X}\right)$. Usually objects of this category are called G-equivariant \mathcal{O}-modules on X.

Remark. A special case of this is an action when the action of the group G on the space X is trivial. In this case we say that G acts on \mathcal{O}_{X}-module F. For example, when $X=p t$ we see that F is a vector space and ρ is just a representation of G.
3. Let $\pi: X \rightarrow Y$ be a G-equivariant morphism of algebraic varieties. Define functors π_{*} : $\mathcal{M}_{G}\left(\mathcal{O}_{X}\right) \rightarrow \mathcal{M}_{G}\left(\mathcal{O}_{Y}\right)$ and $\pi^{*}: \mathcal{M}_{G}\left(\mathcal{O}_{Y}\right) \rightarrow \mathcal{M}_{G}\left(\mathcal{O}_{X}\right)$.
II. Invertible \mathcal{O}-modules.

Definition. An \mathcal{O}-module L on an algebraic variety X is called invertible if it is locally isomorphic to \mathcal{O}_{X} as \mathcal{O}_{X}-module.
4. Denote by $\operatorname{Pic}(X)$ the set of isomorphism classes of invertible \mathcal{O}-modules on X. Show that this set has a natural structure of an abelian group. Show that any morphism $\pi: X \rightarrow Y$ induces a homomorphism of groups $\pi^{*}: \operatorname{Pic}(Y) \rightarrow \operatorname{Pic}(X)$.
III. Representations of the multiplicative group G_{m} and gradings.

We will be mostly interested in the case when $G=k^{*}$. In fact this is an algebraic group; the standard notation for this group is G_{m}.

Definition. Fix an algebraic group G (for example $G=G_{m}$). Let ρ be a representation of the group G_{M} in a vector space V. It is called algebraic in the following cases
(a) If V is finite dimensional we require that all matrix coefficients of ρ are regular functions on G.
(b) In general ρ is called algebraic if V is a union of finite dimensional G-invariant subspaces on each of them the representation is algebraic.
$[\mathbf{P}]$ 5. Show that to define an algebraic action of the group G_{m} on a vector space V is exactly the same as to define a Z-grading on V. Namely, to a grading $V=\bigoplus V^{k}$ corresponds the action ρ of G_{m} given by $\rho(a) v=a^{k} v$ for $a \in k^{*}, v \in V^{k}$

IV. G_{m}-bundles and invertible \mathcal{O}-modules.

Definition. Fix a group G and an algebraic variety S. Consider S as a G-space with the trivial action ρ_{S}.

A G-pre-bundle on S is a pair (X, p) where X is a G-space and $p: X \rightarrow S$ a morphism of G-spaces such that the action of G on X is free and $S=X / G$ as a set. A G-pre-bundle is called a G-bundle if the projection p is locally trivial. The last condition means that X can be covered by open affine subsets U such that the pre-bundle $p: p^{-1}(U) \rightarrow U$ is isomorphic to a trivial pre-bundle $p r: G \times X \rightarrow U$.
[P] 6. Let $p: X \rightarrow S$ be a G_{m}-bundle on S. Consider an \mathcal{O}-module F on S and set $R=p_{*}\left(p^{*}(F)\right)$
Show that R is a G_{m}-equivariant \mathcal{O}-module on S. Show that it has natural grading defined by the action of the group G_{m}, namely $R=\bigoplus_{k} R^{k}$. Deduce from this that the action of the group G_{m} on the space of global sections $\Gamma\left(X, p^{*}(F)\right)$ is algebraic.

Remark. Here R^{k} is locally isomorphic to F but might be not isomorphic globally.
$[\mathbf{P}]$ 7. Let $p: X \rightarrow S$ be a G_{m}-bundle on S. We can assign to it an invertible \mathcal{O}_{S}-module $\mathcal{O}_{S}(1)$. Show that this construction gives an equivalence between the category of G_{m}-bundles on S and the category of invertible \mathcal{O}_{S}-modules (with morphisms being isomorphisms).

V. Invertible \mathcal{O}-modules and projective morphisms.

Frequently used case of this construction is the following. Let us fix a finite-dimensional vector space V and set $S=\mathbf{P}(V)$. In this case we have a canonical G_{m}-bundle (X, p) on S, where $X=\mathbf{V}^{\times}:=\mathbf{V} \backslash 0$ and $p: X \rightarrow S$ is the canonical projection.

In this case \mathcal{O}-modules R^{k} on S produced from an \mathcal{O}_{S}-module F are called twists of F (standard notation for this \mathcal{O}-module is $F(k)$).
[P] 8. Show that $F(k)=\mathcal{O}(k) \otimes_{\mathcal{O}_{S}} F$.
Let $\pi: X \rightarrow \mathbf{P}(V)$ be a morphism of algebraic varieties. Then on the variety X we get the following algebraic structure
(Ξ) (i) Invertible \mathcal{O}-module L
(ii) Morphism $p: V^{*} \rightarrow \Gamma(X, L)$

This structure satisfies the following condition:
${ }^{(*)}$ The space V^{*} generates the \mathcal{O}-module L, i.e. for every point $x \in X$ the induced morphism of vector spaces $\left.V^{*} \rightarrow L\right|_{x}$ is onto.

Namely we take $L=\pi^{*}(\mathcal{O}(1)$.
[P] 9. (i) Explain how to construct the structure Ξ from morphism π.
(ii) Show that any algebraic structure Ξ satisfying axiom $\left(^{*}\right)$ corresponds to a morphism $\pi: X \rightarrow$ $\mathbf{P}(V)$. Show that this gives a bijective correspondence between morphisms and structures Ξ.

This is a deep result since it allows to describe a geometric object - a morphism π - in more or less algebraic terms. It gives a way to produce many non-trivial morphisms of the variety X into projective spaces.

