Problem assignment 8.

Algebraic Geometry and Commutative Algebra

Joseph Bernstein

June 5, 2011

I. Action of groups on \mathcal{O} -modules.

Let us call \mathcal{O} -pair a pair (X, F) where X is an algebraic variety and F an \mathcal{O}_X -module. An isomorphism $\nu: (X, F) \to (Y, H)$ is a pair consisting from an isomorphism $\nu_X: X \to Y$ of algebraic varieties and an isomorphism $\nu': F \to \nu^*(H)$.

1. Check that these morphisms can be composed and that there exist inverse morphisms. In particular, to any \mathcal{O} -pair (X,F) we can assign its group of automorphisms Aut(X,F).

Let G be a group. By definition an **action** of G on an \mathcal{O} pair (X,F) is a homomorphism $\rho: G \to Aut(X,F)$.

In principle we are interested mostly in cases when G is an algebraic group and the action ρ is algebraic. We will discuss these notions later in more detail.

Definition. A variety X with a distinguished action ρ_X of G we will call a G-space.

2. Fix a a G space X (defined by an action ρ_X). We define a \mathcal{O} -module on X to be a \mathcal{O} -pair (X,F) equipped with an action ρ of G which defines the action ρ_X on the variety X.

Describe the notion of a morphism between \mathcal{O} -modules on a G-space X.

The category of \mathcal{O} -modules on a G-space X we denote $\mathcal{M}_G(\mathcal{O}_X)$. Usually objects of this category are called G-equivariant \mathcal{O} -modules on X.

Remark. A special case of this is an action when the action of the group G on the space X is trivial. In this case we say that G acts on \mathcal{O}_X -module F. For example, when X = pt we see that F is a vector space and ρ is just a representation of G.

3. Let $\pi: X \to Y$ be a G-equivariant morphism of algebraic varieties. Define functors $\pi_*: \mathcal{M}_G(\mathcal{O}_X) \to \mathcal{M}_G(\mathcal{O}_Y)$ and $\pi^*: \mathcal{M}_G(\mathcal{O}_Y) \to \mathcal{M}_G(\mathcal{O}_X)$.

II. Invertible \mathcal{O} -modules.

Definition. An \mathcal{O} -module L on an algebraic variety X is called **invertible** if it is locally isomorphic to \mathcal{O}_X as \mathcal{O}_X -module.

4. Denote by Pic(X) the set of isomorphism classes of invertible \mathcal{O} -modules on X. Show that this set has a natural structure of an abelian group. Show that any morphism $\pi: X \to Y$ induces a homomorphism of groups $\pi^*: Pic(Y) \to Pic(X)$.

III. Representations of the multiplicative group G_m and gradings.

We will be mostly interested in the case when $G = k^*$. In fact this is an algebraic group; the standard notation for this group is G_m .

Definition. Fix an algebraic group G (for example $G = G_m$). Let ρ be a representation of the group G_M in a vector space V. It is called **algebraic** in the following cases

- (a) If V is finite dimensional we require that all matrix coefficients of ρ are regular functions on G.
- (b) In general ρ is called algebraic if V is a union of finite dimensional G-invariant subspaces on each of them the representation is algebraic.

[P] 5. Show that to define an algebraic action of the group G_m on a vector space V is exactly the same as to define a **Z**-grading on V. Namely, to a grading $V = \bigoplus V^k$ corresponds the action ρ of G_m given by $\rho(a)v = a^kv$ for $a \in k^*$, $v \in V^k$.

IV. G_m -bundles and invertible \mathcal{O} -modules.

Definition. Fix a group G and an algebraic variety S. Consider S as a G-space with the trivial action ρ_S .

A G-pre-bundle on S is a pair (X,p) where X is a G-space and $p:X\to S$ a morphism of G-spaces such that the action of G on X is free and S=X/G as a set. A G-pre-bundle is called a G-bundle if the projection p is locally trivial. The last condition means that X can be covered by open affine subsets U such that the pre-bundle $p:p^{-1}(U)\to U$ is isomorphic to a trivial pre-bundle $pr:G\times X\to U$.

[P] 6. Let $p: X \to S$ be a G_m -bundle on S. Consider an \mathcal{O} -module F on S and set $R = p_*(p^*(F))$ Show that R is a G_m -equivariant \mathcal{O} -module on S. Show that it has natural grading defined by the action of the group G_m , namely $R = \bigoplus_k R^k$. Deduce from this that the action of the group G_m on the space of global sections $\Gamma(X, p^*(F))$ is algebraic.

Remark. Here \mathbb{R}^k is locally isomorphic to F but might be not isomorphic globally.

[P] 7. Let $p: X \to S$ be a G_m -bundle on S. We can assign to it an invertible \mathcal{O}_S -module $\mathcal{O}_S(1)$. Show that this construction gives an equivalence between the category of G_m -bundles on S and the category of invertible \mathcal{O}_S -modules (with morphisms being isomorphisms).

V. Invertible \mathcal{O} -modules and projective morphisms.

Frequently used case of this construction is the following. Let us fix a finite-dimensional vector space V and set $S = \mathbf{P}(V)$. In this case we have a canonical G_m -bundle (X, p) on S, where $X = \mathbf{V}^{\times} := \mathbf{V} \setminus 0$ and $p: X \to S$ is the canonical projection.

In this case \mathcal{O} -modules R^k on S produced from an \mathcal{O}_S -module F are called **twists** of F (standard notation for this \mathcal{O} -module is F(k)).

[P] 8. Show that $F(k) = \mathcal{O}(k) \otimes_{\mathcal{O}_S} F$.

Let $\pi:X\to \mathbf{P}(V)$ be a morphism of algebraic varieties. Then on the variety X we get the following algebraic structure

- (Ξ) (i) Invertible \mathcal{O} -module L
- (ii) Morphism $p: V^* \to \Gamma(X, L)$

This structure satisfies the following condition:

(*) The space V^* generates the \mathcal{O} -module L, i.e. for every point $x \in X$ the induced morphism of vector spaces $V^* \to L|_x$ is onto.

Namely we take $L = \pi^*(\mathcal{O}(1))$.

- [P] 9. (i) Explain how to construct the structure Ξ from morphism π .
- (ii) Show that any algebraic structure Ξ satisfying axiom (*) corresponds to a morphism $\pi: X \to \mathbf{P}(V)$. Show that this gives a bijective correspondence between morphisms and structures Ξ .

This is a deep result since it allows to describe a geometric object - a morphism π - in more or less algebraic terms. It gives a way to produce many non-trivial morphisms of the variety X into projective spaces.