Problem assignment 3.

Functions of Complex variables, II

Joseph Bernstein

Let U be an open subset in \mathbf{R}^{2}. We denote by $S(U)$ the algebra of smooth (i.e. C^{∞}) complex valued functions on U. We sometimes write a function $f \in S(X)$ as $f=u+i v$, where u, v are real valued functions. We denote by \bar{f} the complex conjugate function $u-i v$.

Choose coordinate system (x, y) on \mathbf{R}^{2} and denote by $\partial_{x}, \partial_{y}: S(U) \rightarrow S(U)$ the operators of partial derivatives.

For every function $f \in S(U)$ we denote by the same symbol f the operator $f: S(U) \rightarrow S(U)$ given by multiplication with f.

Definition. (i) The algebra of differential operators on U is the algebra of endomorphisms of the space $S(U)$ generated by multiplication operators f for $f \in S(U)$ and operators $\partial_{x}, \partial_{y}$. We denote this algebra by $D(U)$.
(ii) The space of derivations $\operatorname{Der}(S(U)) \subset D(U)$ of the algebra $S(U)$ is defined as $\operatorname{Der}(S(U)):=$ $S(U) \partial_{x} \oplus S(U) \partial_{y}$

1. (i) Check the following formulas
$\left[\partial_{x}, f\right]=\partial_{x}(f),\left[\partial_{y}, f\right]=\partial_{y}(f),\left[\partial_{x}, \partial_{y}\right]=0$
(ii) Show that every differential operator D can be uniquely written as $D=\sum_{m, n} f_{m n} \partial_{x}^{m} \partial_{y}^{n}$.

Remark. The space $\operatorname{Der}(S(U))$ has a structure of a Lie algebra with respect to operation [,]. Any derivation d satisfies the Leibnitz rule $d(f h)=d f h+f d h$; in fact this property characterizes all derivations and hence gives the coordinate free definition of the space $\operatorname{Der}(S(U))$. One can also define the algebra $D(U)$ directly, without using any coordinate system.

Now consider a complex function $z=x+i y$ and its conjugate function \bar{z}. It turns out that in some formal algebraic sense one can consider the pair of functions $z, \bar{z} \in S(U)$ as a kind of "coordinate system" on U. As we will see this gives a very convenient formalism for studying functions on complex plane.

Define the operator ∂_{z} as a unique derivation of the algebra $S(U)$ that sends z to 1 and \bar{z} to 0 . Similarly define the operator $\partial_{\bar{z}}$.
[P] 2. Show that $\partial_{z}=1 / 2\left(\partial_{x}-i \partial_{y}\right), \partial_{\bar{z}}=1 / 2\left(\partial_{x}+i \partial_{y}\right)$. In particular $\partial_{\bar{z}} \bar{f}=\overline{\partial_{z} f}$.
Show that these operators commute. Show that any differential operator D can be uniquely written as $D=\sum_{m, n} f_{m n} \partial_{z}^{m} \partial_{\bar{z}}^{n}$.

This shows that in algebraic manipulations these operators behave in exactly the same way as partial derivatives of a coordinate system.
3. (Cauchy - Riemann equation). Let $f \in C^{1}(U)$. Show that f is holomorphic iff $\partial_{\bar{z}}(f)=0$. In this case $\partial_{z} f$ coincides with the derivative f^{\prime} of the holomorphic function f.

Definition. We define the Laplace operator Δ by formula $\Delta=\partial_{x}^{2}+\partial_{y}^{2}=4 \partial_{z} \cdot \partial_{\bar{z}}$.
A function $h \in C^{2}(U)$ is called harmonic if $\Delta h=0$.
[P] 4. (i) Let $f=u+i v$ be a holomorphic function. Show that its real and imaginary parts u, v are harmonic. Show that $\partial_{z} u=1 / 2 \partial_{z} f=1 / 2 f^{\prime}$.
(ii) Show that if the domain U is connected and simply connected then for any real harmonic function h on U there exists a holomorphic function f on U such that h is the real part of f. Such function f is defined uniquely up to addition of an imaginary constant function.
[P] 5. (ii) Let f be a holomorphic function on U and H be a harmonic function on the plane. Show that the function $H(f(z))$ is harmonic.
(ii) Let $f(z)$ be a holomorphic function without zeroes. Show that the function $h(z)=\ln (|f(z)|)$ is harmonic.
$[\mathbf{P}]$ 6. (i) Let $f=\sum a_{n} z^{n}$ be a holomorphic function on the unit disc D continuous on the boundary $S^{1}=\partial D$. Show that we can compute the Taylor coefficients of f in terms of their boundary values on S^{1}.
$a_{n}=\frac{1}{2 \pi} \int_{S^{1}} f(\xi) \xi^{-n} d \theta=A v_{S^{1}} f(\xi) \xi^{-n}$ (Av is the notation for the average of a function)
(ii) Show that the last formula holds for disc of any radius and deduce that an entire function f that is bounded by some polynomial $Q(x, y)$ is a polynomial function in z.

Schwartz reflection principle. Let U, V be domains and $\tau: U \rightarrow V$ an anti-holomorphic diffeomorphism. For a holomorphic function f on V we define a function f^{τ} on U by formula $f^{\tau}(z)=\overline{f(\tau(z))}$. Show that the function f^{τ} is holomorphic.

In interesting cases the map τ^{2} is the identity map and then the set γ of fixed points of τ is some curve γ. In this case on curve γ we have the identity $f^{\tau}(z)=\overline{f(z)}$. Two important examples of such maps τ are:
(i) $\tau(z)=\bar{z}$; in this case $\gamma=\mathbf{R} \subset \mathbf{C}$
(ii) $\tau(z)=\overline{z^{-1}}$: in this case $\gamma=S^{1}$ - unit circle.
$[\mathbf{P}]$ 7. (i) Let $f=u+i v$ be a holomorphic function on the unit disc D continuous on the boundary $S^{1}=\partial D$. Let us assume that $f(0)=0$.

Show that $f(z)=\frac{1}{2 \pi i} \int_{S^{1}}(f(\xi)+\bar{f}(\xi)) \frac{d \xi}{\xi-z}=\frac{1}{\pi i} \int_{S^{1}} u(\xi) \frac{d \xi}{\xi-z}=\frac{1}{2 \pi} \int_{S^{1}} u(\theta) \frac{\xi+z}{\xi-z} d \theta$
(ii) Deduce from this Poisson formula that computes the values of any harmonic function h on the unit disc D in terms of its boundary values on $S^{1}=\partial D$.
8. (Borel - Carathéodory Theorem).
(i) In problem 7 assume that $f(0)=0$ and $u(z) \leq 1$ for all z. Show that then we have a bound $|f(z)| \leq \frac{2|z|}{1-|z|}$.

Hint. Consider holomorphic function $h(z)=f(z) /(2-f(z))$. Using Schwarz lemma show that $|h(z)| \leq|z|$.
(ii) Using this inequality show that if for an entire function f its real part u is bounded by a polynomial function $Q(x, y)$ then f is a polynomial function in z.

Remark. If we do not assume in (i) that $f(0)=0$ we still can get an estimate
$|f(z)| \leq \frac{2|z|}{1-|z|}+\frac{1+|z|}{1-|z|}|f(0)|$

