Problem assignment 12.

Algebraic Geometry and Commutative Algebra

Joseph Bernstein
December 5, 2011.

1. Let X be a topological space and $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ a s.e.s (short exact sequence) of sheaves on X. Let us fix a section $\xi \in N(X)$; we would like to find its lifting to M, i.e. a section $\delta \in M(X)$ such that $p(\delta)=\xi$ (here p denotes the morphism $p: M \rightarrow N$ above).

Suppose X is a union of two open subsets U and W. Suppose we found sections δ_{U} and δ_{W} over these subsets.
(i) Show that if L is flabby then there exists a section $\delta \in M(X)$ such that $p(\delta)=\xi$ and $\left.\delta\right|_{U}=\delta_{U}$
(ii) Show that in general if the sheaf L is flabby then the morphism $p: M(X) \rightarrow N(X)$ is onto.

Hint. Use Zorn's lemma.
Let \mathcal{A}, \mathcal{B} be abelian categories and $F: \mathcal{A} \rightarrow \mathcal{B}$ an additive functor (you may always assume that these categories are some categories of modules).
2. (i) Show that the functor F is exact iff it maps s.e.s into s.e.s.
(ii) We say that the functor F is left exact if it maps any left short exact sequence $0 \rightarrow L \rightarrow M \rightarrow$ N into a left exact sequence.

Show that F is left exact iff it maps any s.e.s into left exact sequence.

Some cohomological constructions.

Consider the category of complexes $\operatorname{Com}(\mathcal{A})$. Usually we denote complex as C meaning $\ldots \rightarrow$ $C^{i} \rightarrow C^{i+1} \rightarrow \ldots$

For every complex C^{\cdot} we denote by $H^{i}\left(C^{\cdot}\right)$ its cohomology groups. We say the C^{\cdot} is acyclic ($=$ exact) at place i if $H^{i}\left(C^{\cdot}\right)=0$. Similarly for any collection of places i.

Check that $\operatorname{Com}(\mathcal{A})$ is an abelian category. We usually identify an object $F \in \mathcal{A}$ with the complex F that has F in place 0 and 0 at all other places.
3. (i) Show that a morphism of complexes $\nu: C \rightarrow D^{*}$ induces morphisms of cohomology groups $\nu_{*}: H^{i}(C) \rightarrow H^{i}(D)$.
(ii) Let $0 \rightarrow A \rightarrow B$.
$c d o t \rightarrow C^{\cdot} \rightarrow 0$ be a short exact sequence of complexes.
Construct connecting morphisms $\delta^{i}: H^{i}(C) \rightarrow H^{i+1}(A)$ and show that the long sequence of cohomologies is exact.

Show that the construction of the connecting morphisms is functorial.
Definition. A morphism of complexes $\nu: C^{\cdot} \rightarrow D^{\cdot}$ is called quasiisomorphism if it induces an isomorphism on cohomologies.
4. Prove Five lemma. Let $L \cdot M^{\cdot}$ be two complexes and $\nu: L \cdot M \cdot$ be a morphism of complexes.

Let us assume that the complexes are exact, morphisms ν_{1} and ν_{-1} are isomorphisms, ν_{-2} is epimorphic and ν_{2} is mono.

Sow that in this case the morphism ν_{0} is an isomorphism.
Definition. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a left exact functor. A collection of objects $Q \subset I S O(\mathcal{A})$ we call adapted to F if it satisfies the following conditions
(ad1) for any s.e.s $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ we have
(i) If $L, M \in Q$ then $N \in Q$
(ii) If $L \in Q$ then $0 \rightarrow F(L) \rightarrow F(M) \rightarrow F(N) \rightarrow 0$ is a s.e.s.
(ad2) The family Q is rich, i.e. every object can be imbedded into an object $D \in Q$.
$[\mathbf{P}]$ 5. Show that using the family Q adapted to F we can construct the right derived cohomological functor $R F=\left\{R^{i} F\right\}$.

Hint. Show that any object M has a right Q-resolution R. Show that for any two Q resolutions R, R^{\prime} of M there exists a Q resolution $R^{\prime \prime}$ that contains R and R^{\prime}. Show that in this case the imbedding $R \rightarrow R^{\prime \prime}$ induces a quasiisomorphism $F(R) \rightarrow F\left(R^{\prime \prime}\right)$ (and similarly for R^{\prime}).

Show that for any morphism $\nu: M \rightarrow N$ and any Q resolution R of M we can find a Q resolution P of N and extend ν to a morphism of resolutions $\nu^{\prime}: R \rightarrow P$.

Definition. Cone and cocone constructions. Let $\nu: L \rightarrow M$ be a morphism of complexes.
(i) We construct a new complex $C(\nu)$ - it is called the cone of the morphism $\nu-$ as follows. We extend ν to a complex of complexes placing $L \cdot$ and $M \cdot$ in places -1 and 0 , consider the corresponding bicomplex B and set $\operatorname{Cone}(\nu):=\operatorname{Tot}(B)$.

We define cocone $C C(\nu)$ of the morphism ν by $C C(\nu)=C(\nu)[-1]$.
$[\mathbf{P}]$ 6. (i) Write explicit formulas for the complexes $C(\nu)$ and $C C(\nu)$. Show that there exist short exact sequences of complexes $0 \rightarrow M \rightarrow C(\nu) \rightarrow L[1] \rightarrow 0$ and $0 \rightarrow M[-1] \rightarrow C C(\nu) \rightarrow L \rightarrow 0$

Deduce from this a long exact sequence connecting cohomologies of L, M and $C(\nu)$.
(ii) Show that the morphism of complexes ν is a quasiisomorphism if an only if the complex $C(\nu)$ is acyclic.
(ii) Show that if ν is injective then $C(\nu)$ is quasiisomorphic to the quotient complex M / L, and if ν is surjective then $C C(\nu)$ is quasiisomorphic to the complex $K=\operatorname{Ker}(\nu)$.

Let X be a topological space and $j: U \rightarrow X$ an imbedding of an open subset. We define a functor $R_{U}: \operatorname{Com}(S H(X)) \rightarrow \operatorname{Com}(S h(X))$ as follows:

For every sheaf F on X we consider the sheaf $F_{U}:=j_{*}\left(\left.F\right|_{U}\right)$ and the natural morphism $\nu_{U}: F \rightarrow$ F_{U}. Then we ex tend this construction to complexes of sheaves and set $R_{U}\left(F^{\cdot}\right):=C C\left(\nu_{U}\right)$. We denote by p the natural epimorphism of complexes morphism $R_{U}\left(F^{\cdot}\right) \rightarrow F^{\cdot}$.
7. (i) Show that the complex $R_{U}\left(F^{\cdot}\right)$ is acyclic on U.
(ii) Show that if $U, V \subset X$ are open subsets then $R_{U} R_{V}\left(F^{\cdot}\right) \approx R_{V} R_{U}\left(\mathbf{F}^{c} d o t\right)$.
8. Given a finite collection of open subsets $\mathcal{U}=\left(U_{1}, \ldots, U_{l}\right)$ we define for any sheaf F a complex of sheaves $R_{\mathcal{U}}(F):=R_{U_{1}} R_{U_{2}} \ldots R_{U_{l}}(F)$ and a natural surjective morphism $p: R_{\mathcal{U}}(F) \rightarrow F$ (here we consider F as a complex of sheaves concentrated in degree 0).
(i) Write down this explicitly. Show that p is an epimorphism of complexes. Show that $R_{\mathcal{U}}$ is acyclic on the union of sets U_{i}.

Definition. Suppose \mathcal{U} is a covering. Define a C̆ech resolution $\mathcal{C}(F)$ of the sheaf F by formula $\operatorname{Cech}_{\mathcal{U}}(F):=\operatorname{Kerp}: R_{\mathcal{U}}(F) \rightarrow F[1]$. Define the C Cech complex of the sheaf F as a complex of abelian groups $C^{\cdot}(F):=\Gamma(\mathcal{C} \cdot(F)$.
8. Write down explicit formulas for the Cech resolution and the Cech complex of F. Show that the Cech complex is a resolution of the sheaf F.
9. Let X be a quasicompact topological space, \mathcal{B} a basis of topology on X closed under finite intersection. Let F be a sheaf on X that satisfies the following acyclicity condition:
$\left(^{*}\right)$ Let $B \in \mathcal{B}$ be a basic open subset. Then the restriction $H=\left.F\right|_{B}$ is Cech acyclic. This means that for every finite open covering \mathcal{U} of B by basic open subsets $B_{i} \in \mathcal{B}$ the complex $\Gamma\left(R_{\mathcal{U}}(H)\right)$ is acyclic.

Show that then the restriction H of the sheaf F to any basic subset $B \in \mathcal{B}$ is Γ acyclic.
Hint. Consider s.e.s of sheaves on $\mathcal{P}=0 \rightarrow F \rightarrow I \rightarrow G \rightarrow 0$ on X where I is flabby. Show that for every basic B the corresponding sequence of sections $\Gamma(B, \mathcal{P})$ is exact. Deduce from this that the sheaf G is Cech acyclic. Then use induction.

