Automorphic Forms - Home Assignment 1

Joseph Bernstein

November 12, 2002

Question 1

In this question we consider the Eisenstein series and its Fourier coefficients.
(a) Compute the Fourier transform

$$
\int_{-\infty}^{\infty} \frac{1}{z^{k}} \exp (-2 \pi i z \xi) \mathrm{d} z
$$

of the function $\frac{1}{z^{k}}$.
(b) Use this to compute the Fourier expansion

$$
\begin{aligned}
E_{k} & =\sum_{(m, n)=1, m \geq 0} \frac{1}{(m \tau+n)^{k}}=\frac{1}{2 \zeta(k)} \sum_{(m, n) \neq(0,0)} \frac{1}{(m \tau+n)^{k}} \\
& =1+\frac{-2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) \exp (2 \pi i n \tau),
\end{aligned}
$$

where k is an even integer. You may use the identity $\zeta(k)=(-1)^{k / 2+1} B_{k} \frac{(2 \pi)^{k}}{2 \cdot k!}$ for even k, where B_{k} are Bernoulli's numbers. Also recall that $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$.
(c) Using the first few values of $B_{k}, B_{2}=\frac{1}{6}, B_{4}=\frac{-1}{30}, B_{6}=\frac{1}{42}, B_{8}=\frac{-1}{30}, B_{10}=\frac{5}{66}$ and $B_{12}=\frac{-691}{2730}$, deduce the number theoretic identities:

$$
\begin{aligned}
\sigma_{7}(n) & =\sigma_{3}(n)+120 \sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{3}(n-m), \\
11 \sigma_{9}(n) & =-10 \sigma_{3}(n)+21 \sigma_{5}(n)+5040 \sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{5}(n-m),
\end{aligned}
$$

and show that

$$
\Delta=\frac{1}{1728}\left(E_{4}^{3}-E_{6}^{2}\right),
$$

where $\Delta=\sum \tau(n) q^{n}$ is the modular discriminant, normalized so that $\tau(1)=1$.

Question 2

In this question we consider Hecke operators and Euler products. Recall that the Hecke operators are defined to act on periodic functions by:

$$
T_{m} f(z)=\sum_{a d=m} \sum_{b=0}^{d-1} f\left(\frac{a z+b}{d}\right) \frac{m^{k-1}}{d^{k}} .
$$

(a) Prove the identities:

$$
\begin{aligned}
T_{m n} & =T_{m} T_{n} \quad \text { for }(m, n)=1, \\
T_{p^{\nu+1}} & =T_{p} T_{p^{\nu}}-p^{k-1} T_{p^{\nu-1}},
\end{aligned}
$$

and use them to conclude that

$$
T_{m} T_{n}=\sum_{r \mid(m, n)} r^{k-1} T_{\frac{m n}{r^{2}}} .
$$

(b) Let $f=\sum a_{n} q^{n}$ be a Hecke cusp form (meaning that $a_{0}=0$ and there are numbers λ_{m} such that $T_{m} f=\lambda_{m} f$). Assume that f is normalized so that $a_{1}=1$. Show that $a_{m}=\lambda_{m}$, and prove that if $L_{f}(s)=\sum a_{n} n^{-s}$ is the associated L-function, then

$$
L_{f}(s)=\prod_{p}\left(1-\lambda_{p} p^{-s}+p^{k-1} p^{-2 s}\right)^{-1}
$$

(c) Using the fact that Hecke operators preserve cusp forms, prove that the modular discriminant is a Hecke cusp form and show that if $|\tau(n)| \leq O\left(n^{\frac{11}{2}+\epsilon}\right)$ then $|\tau(p)| \leq$ $2 p^{\frac{11}{2}}$. Note that this implies that

$$
\left(1-\tau(p) p^{-s}+p^{k-1} p^{-2 s}\right)=\left(1-\alpha_{p} p^{\frac{k-1}{2}-s}\right)\left(1-\alpha_{p}^{-1} p^{\frac{k-1}{2}-s}\right)
$$

for some imaginary α_{p}.
(d) What about Eisenstein series? Show that for k an even integer,

$$
\begin{equation*}
L_{E_{k}}(s)=\frac{-2 k}{B_{k}} \zeta(s) \zeta(s-(k-1)) \tag{1}
\end{equation*}
$$

meaning that the L-function factorizes into two Dirichlet L-functions. Note that this L-function ignores the first coefficient a_{0} of the Fourier transform of the Eisenstein series, and in particular is not exactly the Mellin transform of E_{k} (which diverges badly).

Question 3

In this question we consider the Fourier coefficients of the modular discriminant. Define the Eisenstein series E_{2} by:

$$
E_{2}(\tau)=1-\frac{4}{B_{2}} \sum_{n=1}^{\infty} \sigma_{1}(n) \exp (2 \pi i n \tau)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) \exp (2 \pi i n \tau) .
$$

We claim that E_{2} has almost modular transformation properties:

$$
\begin{equation*}
E_{2}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2} E_{2}(\tau)-\frac{6 i}{\pi} c(c \tau+d), \tag{2}
\end{equation*}
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$. This can be proven using the properties of the associated Lfunction (see equation (1))

$$
L_{E_{2}}(s)=-24 \zeta(s) \zeta(s-1)
$$

as follows.
(a) We first need the auxiliary identity $\Gamma(s) \Gamma(1-s) \sin (\pi s)=\pi$. You should try to prove it (but it is not very related to modular forms).
(b) Begin by showing that the completed L-function

$$
M_{E_{2}}(s)=(2 \pi)^{-s} \Gamma(s) L_{E_{2}}(s)
$$

satisfies the functional equation:

$$
M_{E_{2}}(2-s)=-M_{E_{2}}(s) .
$$

(You may use the functional equation $\zeta(s)=2^{s} \pi^{s-1} \Gamma(1-s) \sin \left(\frac{\pi s}{2}\right) \zeta(1-s)$.)
(c) Let g be the auxiliary function

$$
g(y)=E_{2}(i y)-1
$$

Show that for $\Re(s)>2$,

$$
M_{E_{2}}(s)=\int_{0}^{\infty} g(y) y^{s} \frac{d y}{y} .
$$

Now, use the Mellin inversion formula, which means that

$$
g(y)=\frac{1}{2 \pi i} \int_{2+\varepsilon-i \infty}^{2+\varepsilon+i \infty} M_{E_{2}}(s) y^{-s} d s
$$

(the path of integration needs to pass within the domain of absolute convergence) to show that

$$
g(y)+\frac{1}{y^{2}} g(1 / y)=\frac{1}{y^{2}} \sum_{-\varepsilon \leq \Re(s) \leq 2+\varepsilon} \operatorname{Res}_{s}\left(y^{s} M_{E_{2}}\right)
$$

(d) Use the Taylor expansions $\zeta(s)=\frac{1}{s-1}+\gamma+\ldots$ and $\Gamma(s)=\frac{1}{s}-\gamma+\ldots$, together with known values of Γ and ζ to show that:

$$
\sum_{-\varepsilon \leq \Re(s) \leq 2+\varepsilon} \operatorname{Res}_{s}\left(y^{s} M_{E_{2}}\right)=-1-y^{2}+\frac{6 y}{\pi},
$$

and deduce equation (2) for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $\Re(\tau)=0$, and hence for all of $S L_{2}(\mathbb{Z})$ and all τ.
(e) Now, consider the modular eta function $\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$. Show that:

$$
\frac{1}{2 \pi i} \frac{\eta^{\prime}(\tau)}{\eta(\tau)}=\frac{1}{24} E_{2}
$$

and deduce that η^{24} is a modular cusp form of weight 12. Conclude that $\Delta=\eta^{24}$. In particular, using Euler's pentagonal number theorem,

$$
\prod_{n=1}^{\infty}\left(1-x^{n}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} x^{k(3 k-1) / 2}
$$

show that $\tau(n-1)$ is the number of ways to represent n as a sum of 24 pentagonal numbers, counted with signs.

Question 4

In this question we consider theta functions. Recall that $\theta(\tau)=\sum q^{n^{2}}$.
(a) Use the Poisson summation formula $\sum_{n \in \mathbb{Z}} \phi(n)=\sum_{n \in \mathbb{Z}} \hat{\phi}(n)$, where ϕ is a Schwartz function and $\hat{\phi}$ is its Fourier transform, to show that:

$$
\theta\left(-\frac{1}{4 \tau}\right)=\sqrt{\frac{2 \tau}{i}} \theta(\tau) .
$$

(b) Conclude that

$$
\theta\left(\frac{\tau}{-4 \tau+1}\right)=(-4 \tau+1)^{1 / 2} \theta(\tau)
$$

Finally, use these results and the periodicity of θ to show that

$$
\theta\left(\frac{a \tau+b}{c \tau+d}\right)^{2}=\chi(d)(c \tau+d) \theta(\tau)^{2}
$$

whenever $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ and $c \equiv 0(\bmod 4)$, and where $\chi(d)$ is the Dirichlet character

$$
\chi(d)=\left\{\begin{array}{lll}
1 & \text { if } d \equiv 1 & (\bmod 4) \\
-1 & \text { if } d \equiv-1 & (\bmod 4)
\end{array} .\right.
$$

