Automorphic Forms - Home Assignment 3

Joseph Bernstein

November 29, 2012

Question 1

In this question we will investigate the structures of various congruence groups:

$$
\begin{aligned}
& \Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad(\bmod N)\right.\right\} \\
& \Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \quad(\bmod N)\right.\right\} \\
& \Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \quad(\bmod N)\right.\right\}
\end{aligned}
$$

A subgroup $\Gamma \subseteq \Gamma(1)=S L_{2}(\mathbb{Z})$ will be called a congruence subgroup if it contains one of the subgroups $\Gamma(N) \subseteq \Gamma(1)$. Our goal is to compute the indices of the above congruence groups in $\Gamma(1)=S L_{2}(\mathbb{Z})$.
(a) Consider the morphism:

$$
S L_{2}(\mathbb{Z}) \rightarrow S L_{2}(\mathbb{Z} / N \mathbb{Z}) .
$$

Show that it is an epimorphism and that its kernel is $\Gamma(N)$.
(b) Show that there is an isomorphism $S L_{2}(\mathbb{Z} / N \mathbb{Z}) \cong S L_{2}\left(\mathbb{Z} / p_{1}^{k_{1}} \mathbb{Z}\right) \times \cdots \times S L_{2}\left(\mathbb{Z} / p_{m}^{k_{m}} \mathbb{Z}\right)$, where $N=p_{1}^{k_{1}} \cdots p_{m}^{k_{m}}$ is the prime decomposition of N.
(c) Prove that the kernel of the projection $S L_{2}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right) \rightarrow S L_{2}(\mathbb{Z} / p \mathbb{Z})$ has size $p^{3(k-1)}$ for all $k \geq 1$.
(d) Compute that $\left|S L_{2}(\mathbb{Z} / p \mathbb{Z})\right|=p\left(p^{2}-1\right)$. Conclude that

$$
\left[S L_{2}(\mathbb{Z}): \Gamma(N)\right]=N^{3} \prod_{p \mid N} \frac{p^{2}-1}{p^{2}}
$$

(e) Similarly, let $A_{0}(\mathbb{Z} / N \mathbb{Z})=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in S L_{2}(\mathbb{Z} / N \mathbb{Z})\right\}$. Prove that the kernel of the projection $A_{0}\left(\mathbb{Z} / p^{k} \mathbb{Z}\right) \rightarrow A_{0}(\mathbb{Z} / p \mathbb{Z})$ has size $p^{2(k-1)}$. Compute that $\left|A_{0}(\mathbb{Z} / p \mathbb{Z})\right|=$ $p(p-1)$. Conclude that

$$
\begin{aligned}
{\left[\Gamma_{0}(N): \Gamma(N)\right] } & =N^{2} \prod_{p \mid N} \frac{p-1}{p} \\
{\left[S L_{2}(\mathbb{Z}): \Gamma_{0}(N)\right] } & =N \prod_{p \mid N} \frac{p+1}{p} .
\end{aligned}
$$

(f) Similarly, let $A_{1}(\mathbb{Z} / N \mathbb{Z})=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \in S L_{2}(\mathbb{Z} / N \mathbb{Z})\right\}$. Prove that $\left|A_{1}(\mathbb{Z} / N \mathbb{Z})\right|=N$. Conclude that

$$
\begin{aligned}
{\left[\Gamma_{1}(N): \Gamma(N)\right] } & =N \\
{\left[S L_{2}(\mathbb{Z}): \Gamma_{1}(N)\right] } & =N^{2} \prod_{p \mid N} \frac{p^{2}-1}{p^{2}} .
\end{aligned}
$$

Question 2

In this question we will investigate the cusp structures of various congruence groups: we denote the upper half plane with infinity and rational points by $\bar{H}=H \cup \mathbb{Q} \cup\{\infty\}$. Note that \bar{H} is closed under the action of $\Gamma(1)=S L_{2}(\mathbb{Z})$, and that the points of $\mathbb{Q} \cup\{\infty\}$ all lie in a single orbit of $\Gamma(1)$.
(a) Show that the compactification \hat{Y}_{1} of $Y_{1}=\Gamma(1) \backslash H$ is isomorphic to $\Gamma(1) \backslash \bar{H}$. Use this to show that for any subgroup $\Gamma \subseteq \Gamma(1)$ of finite index, $\hat{Y}=\Gamma \backslash \bar{H}$ is the compactification of $Y=\Gamma \backslash H$ defined in class. Because of this, we will refer to points of $\mathbb{Q} \cup\{\infty\}$ as cusps, and we will say that two of them are equivalent for Γ if they lie in the same Γ-orbit. Our goal is now to classify inequivalent cusps.
(b) Let $a \in \mathbb{Q} \cup\{\infty\}$ be a cusp and Γ be a congruence subgroup. Let $\Gamma_{a}=\{\gamma \in \Gamma \mid \gamma a=a\}$, and let $\Gamma(1)_{\infty}=\left\{\gamma \in S L_{2}(\mathbb{Z}) \mid \gamma \infty=\infty\right\} \cong\{ \pm 1\} \times \mathbb{Z}$. Finally, let $\gamma_{a} \in S L_{2}(\mathbb{Z})$ be some element such that $\gamma_{a} \infty=a$. Show that $\gamma_{a}^{-1} \Gamma_{a} \gamma_{a} \subseteq \Gamma(1)_{\infty}$ is a subgroup of finite index, generated by an element of the form $\left(\begin{array}{cc}1 & m_{a} \\ 0 & 1\end{array}\right)$ for some m_{a}, and possibly ± 1. Show that $m_{a} \mid N$, where $\Gamma(N) \subseteq \Gamma$, i.e. N is the level of Γ. We refer to m_{a} as the multiplicity of the cusp a.
(c) Use the fact that a complete list of coset representatives for $\Gamma(N) \backslash S L_{2}(\mathbb{Z})$ is given by matrices in $S L_{2}(\mathbb{Z} / N \mathbb{Z})$, to show that two cusps $\frac{a}{c}$ and $\frac{a^{\prime}}{c^{\prime}}\left(\right.$ where $\left.(a, c)=\left(a^{\prime}, c^{\prime}\right)=1\right)$ are equivalent for $\Gamma(N)$ iff $(a, c) \equiv \pm\left(a^{\prime}, c^{\prime}\right)(\bmod (N \mathbb{Z}, N \mathbb{Z}))$.
Furthermore, show that the multiplicites of each of these cusps are equal to N. Note that we let $\frac{1}{0}=\infty$ in the above list.
(d) Find an example for a cusp with multiplicity $m_{a}>1$ for the group $\Gamma_{0}(N)$. What is the multiplicity m_{∞} of the cusp at ∞ for this group?

Question 3

In this question we will represent the various families of congruence subgroups as moduli spaces of lattices with level structure.
(a) Show that:

$$
\Gamma(N) \backslash H=\left\{\text { lattices } \Lambda \text { with ismorphism } \alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \xrightarrow{\sim} \Lambda / N \Lambda\right\} / \mathbb{C}^{\times}
$$

(b) Show that:

$$
\Gamma_{0}(N) \backslash H=\{\text { lattices } \Lambda \text { with distinguished line } L \subseteq \Lambda / N \Lambda\} / \mathbb{C}^{\times}
$$

(c) Show that:

$$
\Gamma_{1}(N) \backslash H=\{\text { lattices } \Lambda \text { with monomorphism } \alpha: \mathbb{Z} / N \mathbb{Z} \rightarrow \Lambda / N \Lambda\} / \mathbb{C}^{\times}
$$

Question 4

In this question we will prove the multiplication relations for Hecke operators for congruence subgroups. Recall that if $f: \tilde{M}(N) \rightarrow \mathbb{C}$ is a homogenous function of degree k form the set of lattices Λ with level structures $\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \xrightarrow{\sim} \Lambda / N \Lambda$, then (for $\left.(m, N)=1\right)$:

$$
T_{m}(f)(\Lambda)=m^{k-1} \sum_{\substack{\Lambda^{\prime} \subseteq \Lambda \\\left|\Lambda / \Lambda^{\prime}\right|=m, \alpha^{\prime}=\alpha}} f\left(\Lambda^{\prime}\right)
$$

Also recall that homogenous of degree k means that $f(\lambda \Lambda)=\lambda^{-k} f(\Lambda)$.
(a) Use the fact that if $(m, n)=1$, then any Abelian group $\Lambda / \Lambda^{\prime \prime}$ of size $m n$ has a unique exact sequence

$$
0 \rightarrow \Lambda^{\prime} / \Lambda^{\prime \prime} \rightarrow \Lambda / \Lambda^{\prime \prime} \rightarrow \Lambda / \Lambda^{\prime} \rightarrow 0
$$

where $\Lambda^{\prime} / \Lambda^{\prime \prime}$ is of size m and $\Lambda / \Lambda^{\prime}$ is of size n to show that

$$
T_{m} T_{n}=T_{m n}
$$

(b) Show that if $\Lambda / \Lambda^{\prime \prime}$ is a finite quotient of two lattices, then it is isomorphic to $(\mathbb{Z} / a \mathbb{Z}) \times$ $(\mathbb{Z} / b \mathbb{Z})$ for some a, b, and further that if a, b have a common denominator c, then $\Lambda^{\prime \prime}$ is of the form $c \hat{\Lambda}^{\prime \prime}$ for some sublattice $\hat{\Lambda}^{\prime \prime}$ of Λ.
You may use the Cartan decomposition, which means that for any 2×2 matrix g with integer coefficients,

$$
g=k_{1}\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) k_{2}
$$

where $k_{1}, k_{2} \in S L_{2}(\mathbb{Z})$.
(c) Suppose that $\Lambda / \Lambda^{\prime \prime}$ is a finite quotient of two lattices, of size $p^{\nu+1}$. Then show that either it is of the form $\mathbb{Z} / p^{\nu+1} \mathbb{Z}$, or $\Lambda^{\prime \prime}=p \hat{\Lambda}^{\prime \prime}$ for some $\hat{\Lambda}^{\prime \prime}$. In the first case, prove that there is a unique lattice $\Lambda^{\prime \prime} \subseteq \Lambda^{\prime} \subseteq \Lambda$ such that $\Lambda^{\prime} / \Lambda^{\prime \prime}$ is of size p. In the second case, show that there are $p+1$ such Λ^{\prime}. Conclude that

$$
\sum_{\substack{\Lambda^{\prime \prime} \subseteq \Lambda \\\left|\Lambda / \Lambda^{\prime \prime}\right|=p^{\nu+1}}} f\left(\Lambda^{\prime \prime}\right)=\sum_{\substack{\Lambda^{\prime \prime} \subseteq \Lambda^{\prime} \subseteq \Lambda \\\left|\Lambda / \Lambda^{\prime}\right|=p^{\nu}, \Lambda^{\prime} / \Lambda^{\prime \prime} \mid=p}} f\left(\Lambda^{\prime \prime}\right)-p \sum_{\substack{\hat{\Lambda}^{\prime \prime} \subseteq \Lambda \\\left|\Lambda / \hat{\Lambda}^{\prime \prime}\right|=p^{\nu-1}}} f\left(p \hat{\Lambda}^{\prime \prime}\right)
$$

(d) Prove that for any $(p, N)=1$,

$$
T_{p^{\nu+1}}=T_{p} T_{p^{\nu}}-p^{k-1} T_{p^{\nu-1}}
$$

and conclude that for any $(m, N)=1,(n, N)=1$,

$$
T_{m} T_{n}=\sum_{r \mid(m, n)} r^{k-1} T_{\frac{m n}{r^{2}}}
$$

(e) Prove the above relations for Hecke operators for modular forms of $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$ as well.

