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ABSTRACT
Arrangements of planar curves are fundamental structures
in computational geometry. Recently, the arrangement pack-
age of Cgal, the Computational Geometry Algorithms Li-
brary, has been redesigned and re-implemented exploiting
several advanced programming techniques. The resulting
software package, which constructs and maintains planar
arrangements, is easier to use, to extend, and to adapt to
a variety of applications, is more efficient space- and time-
wise, and is more robust. The implementation is complete in
the sense that it handles degenerate input, and it produces
exact results. In this paper we describe how various pro-
gramming techniques were used to accomplish specific tasks
within the context of Computational Geometry in general
and Arrangements in particular. A large set of benchmarks
assured the successful applications of the adverted program-
ming techniques. The results of a small sample are reported
at the end of this article.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns; D.1.5 [Object-
oriented Programming]

General Terms
Computational geometry, Cgal, arrangements, generic pro-
gramming, design patterns

1. INTRODUCTION
Given a set C of planar curves, the arrangement A(C) is
the subdivision of the plane induced by the curves in C into
maximally connected cells. The cells can be 0-dimensional
(vertices), 1-dimensional (edges), or 2-dimensional (faces).

∗Work reported in this paper has been supported in part
by IST Programme of the EU as a Shared-corst RTD (FET
Open) Project under Contract No IST-006413 (ACS - Algo-
rithms for Complex Shapes) and by the Hermann Minkowski
– Minerva Center for Geometry at Tel Aviv University.

The planar map of A(C) is the embedding of the arrange-
ment as a planar graph, such that each arrangement vertex
corresponds to a planar point, and each edge corresponds to
a planar subcurve of one of the curves in C. Arrangements
and planar maps are ubiquitous in computational geometry,
and have numerous applications (e.g., [13, 22]), so many po-
tential users in the academia and in the industry may benefit
from a generic implementation of a complete software pack-
age that constructs and maintains planar arrangements.

Cgal [1], the Computational Geometry Algorithms Library,
is the product of a collaborative effort of several sites in Eu-
rope and Israel, aiming to provide a generic and robust,
yet efficient, implementation of widely used geometric data
structures and algorithms. The library consists of a geomet-
ric kernel [17, 24], which in turn consists of constant-size
non-modifiable geometric primitive objects (such as points,
line segments, triangles, etc.) and predicates and operations
on these objects. On top of the kernel layer, the library con-
sists of a collection of modules, which provide implementa-
tions of many fundamental geometric data structures and
algorithms. The arrangement package is a part of this layer.

The software described in this paper rigorously adapts, as
does Cgal in general, the generic programming paradigm [6],
making extensive use of C++ class-templates and function-
templates. The generic-programming paradigm uses a for-
mal hierarchy of abstract requirements on data types re-
ferred to as concepts, and a set of components that conform
precisely to the specified requirements, referred to as models.

In software engineering, design patterns are frequently used
to supply standard solutions to common problems recurring
in software design. Design patterns supply a systematic
high-level approach that focuses on the relations between
classes and objects, rather than the specification of individ-
ual components. See the book by Gamma et al. [20] for a
catalog of the most common design patterns.

While relations between objects in a design pattern are usu-
ally realized in terms of abstract data types and polymor-
phism, design patterns can successfully be applied in generic
programming as well, as we show in this paper. A good
example are the point-location algorithms supplied by the
arrangement package. One of the most important opera-
tions on arrangements is answering the point-location query:
Given a query point q, find the arrangement cell that con-
tains q. We supply several point-location algorithms, and



enable package users to employ the algorithm best suited for
their application. To this end, we use the strategy design-
pattern, which defines a family of algorithms, each imple-
mented by a separate class, and we make them interchange-
able. The four point-location classes are: Arr naive point

location, which locates the query point näıvely, by exhaus-
tively scanning all arrangement cells; Arr walk along a line

point location, which simulates a traversal along an imag-
inary vertical ray emanating from infinity and directed to-
ward the query point; Arr landmarks point location, which
uses a set of “landmark” points, whose locations in the
arrangement are known. Given a query point, it uses a
nearest-neighbor search structure (e.g., Kd-tree) to find the
nearest landmark and then it traverses the straight line seg-
ment connecting this landmark to the query point. Fi-
nally, the Arr trapezoidal ric point location implements
Mulmuley’s point-location algorithm [29], which is based on
the vertical decomposition of the arrangement into pseudo-
trapezoids. The last two strategies are more efficient. How-
ever, they require preprocessing and consume more space,
as they maintain auxiliary data-structures. The first two
strategies do not require any extra data and operate directly
on their associated arrangements.

In classic object-oriented programming, the point-location
process can be realized with an abstract base class that
provides a pure virtual function, locate(q), which accepts
a point q and results with the arrangement cell contain-
ing it. All concrete point-location classes inherit from the
base class, and all arrangement algorithms that issue point-
location queries use a pointer to an abstract base object,
which actually refers to one of the concrete point-location
classes. When using generic programming, we rely less on
inheritance or virtual functions. Instead, we define a concept
named ArrangementPointLocation 2, such that all models of
this concept must supply a locate() function. All the vari-
ous point-location classes model this concept. Note that the
concept definition has no trace in the actual C++ code, so
from a syntactical point of view, these classes are completely
unrelated. Any generic algorithm that issues point-location
queries is implemented as a template parameterized by a
point-location class, which is a model of the Arrangement-

PointLocation 2 concept.

In the rest of the paper we show how additional design pat-
terns are exploited in the Cgal arrangement package in con-
junction with generic programming techniques. The appli-
cation of combinations of advanced programming techniques
is argued to be synergistic. Not only does it make the im-
plementation more generic, it also improves the quality of
the software in all measured aspects.

1.1 Related Work
In the classic computational geometry literature two as-
sumptions are usually made to simplify the design and anal-
ysis of geometric algorithms: First, inputs are in “general
position”. That is, degenerate cases (e.g., three curves in-
tersecting at a common point) in the input are precluded.
Secondly, operations on real numbers yield accurate results
(the “real Ram” model, which also assumes that each basic
operation takes constant time). Unfortunately, these as-
sumptions do not hold in practice. Thus, an algorithm im-
plemented from a textbook may yield incorrect results, get

into an infinite loop, or just crash, while running on a degen-
erate, or nearly degenerate, input (see [26, 32] for examples).
This is one of the problems addressed successfully by Cgal

in general and by the Cgal arrangement package described
here in particular.

The need for robust software implementation of computa-
tional geometry algorithms has driven many researchers to
develop variants of the classic algorithms that are less sus-
ceptible to degenerate inputs over the last decade. At the
same time, advances in computer algebra enabled the devel-
opment of efficient software libraries that offer exact arith-
metic manipulations on unbounded integers, rational num-
bers (e.g., Gmp — Gnu’s multi-precision library [4]) and
even algebraic numbers (the Core [2] library and the nu-
merical facilities of Leda [5]). These exact number types

serve as fundamental building-blocks in the robust imple-
mentation of many geometric algorithms [37].

Keyser et al. [12, 27] implemented an arrangement-construction
module for algebraic curves as part of the Mapc and Esolid

libraries. However, their implementations make some gen-
eral position assumptions. The Leda library [5, 28] includes
geometric facilities that allow the construction and mainte-
nance of arrangements of line segments.

Cgal’s arrangement package was the first complete software-
implementation, designed for constructing arrangements of
arbitrary planar curves and supporting operations and queries
on such arrangements. More details on the design and im-
plementation of the previous versions of the package can be
found in [18, 23]. Many users (e.g., [11, 14, 21, 25, 31]) have
employed the arrangement package to develop a variety of
applications.

In this paper we show how concurrent applications of ad-
vanced programming techniques improve the quality of the
Cgal arrangement software-package, achieving a software
design according to the generic-programming paradigm that
is more modular and easy to use, and an implementation,
which is more extensible, adaptable, and efficient.

1.2 Outline
The rest of this paper is organized as follows: Section 2
provides the required background on Cgal’s arrangement
package, introducing key terms and presenting its architec-
ture. The four succeeding sections describe the applications
of four different design patterns within the generic program-
ming paradigm, namely adapter, decorator, observer, and
visitor. These sections detail the pattern intent, their im-
pact, and implementation in the context of the arrangement
package. In Section 7 we highlight the performance of our
methods on various benchmarks. Finally, concluding re-
marks and future-research suggestions are given in Section 8.

2. THE ARCHITECTURE
The Arrangement 2<Traits,Dcel>

1 class-template represents
the planar embedding of a set of (weakly) x-monotone2 pla-
nar curves that are pairwise disjoint in their interiors. It
1
Cgal prescribes the suffix 2 for all data structures of pla-

nar objects as a convention.
2A continuous planar curve C is weakly x-monotone, if every
vertical line intersects it at most once, or it is a vertical
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Figure 1: A portion of an arrangement of circles
with some of the Dcel records that represent it. f̃

is the unbounded face. The halfedge e (and its twin
e′) correspond to a circular arc that connects the
vertices v1 and v2 and separates the face f1 from f2.
The predecessors and successors of e and e′ are also
shown. Note that e together with its predecessor
and successor halfedges form a closed chain repre-
senting the inner boundary of f1 (lightly shaded).
Also note that the face f3 (darkly shaded) has a
more complicated structure, as it contains a hole.

provides the necessary capabilities for maintaining the pla-
nar graph, while associating geometric data with the ver-
tices, edges and faces of the graph. The arrangement is
represented using a doubly-connected edge list (Dcel) —
a data structure that enables efficient maintenance of two-
dimensional subdivisions.

The Dcel data-structure represents each curve using a pair
of directed halfedges, one directed from the left endpoint
of the curve to its right endpoint, and the other (its twin

halfedge) going in the opposite direction. The Dcel con-
sists of containers of vertices (associated with planar points),
halfedges and faces, where halfedges are used to separate
faces and to connect vertices. We store a pointer from each
halfedge to the face lying to its left. Moreover, halfedges
are connected in circular lists and form chains, such that all
edges of a chain are incident to the same face and wind in
a counterclockwise direction along its inner boundary (see
Figure 1 for an illustration). A non simply-connected face
stores a container of holes, where each hole is represented by
an arbitrary halfedge on the clockwise-oriented chain that
forms its outer boundary. The full details concerning the
Dcel are omitted here; see [13, Section 2.2] for further de-
tails and examples.

The Arrangement 2 class-template should be instantiated with
two objects as follows. (i) A traits class, which provides the
geometric functionality, and is tailored to handle a specific
family of curves. It encapsulates implementation details,
such as the number type used, the coordinate representa-
tion, and the geometric or algebraic computation methods.
(ii) A Dcel class, which represents the underlying topolog-
ical data structure, and defaults to Arr default dcel. Users
may extend this default Dcel implementation, as explained
in Section 3.1, or even supply their own Dcel class, written
from scratch.

segment.

The two template parameters enable the separation between
the topological and geometric aspects of the planar subdi-
vision. This separation is advantageous as it allows users
to employ the package with their own representation of any
special family of curves, without having any expertise in
computational geometry. They should only be capable of
supplying the traits methods, which mainly involves alge-
braic computations. Indeed, several of the package users
are not familiar with computational-geometry techniques
and algorithms. The separation is enabled by the modu-
lar design and conveniently implemented within the generic-
programming paradigm. It is a key aspect of the package,
has been forced since its early stages, and heightened by the
new design.

The interface of Arrangement 2 consists of various methods
that enable the traversal of the arrangement. For example,
the class supplies iterators for its vertices, halfedges and
faces. The value types of these iterators are Vertex handle,
Halfedge handle and Face handle, respectively. The handle
classes themselves supply methods for local traversals. For
example, it is possible to visit all halfedges incident to a
specific vertex using its Vertex handle, or to iterate over all
halfedges along the boundary of a face using its Face handle.

Alongside with the traversal methods, the arrangement class
also supports several methods that modify the arrangement,
the most important ones being the specialized insertion func-
tions. The functions insert at face interior(C,f), insert

from left vertex(C,u). (the symmetric function insert from

right vertex(C,u),) and insert at vertices(C,u1,u2) can be
used to create an edge that correspond to an x-monotone
curve C whose interior is disjoint from existing edges and
vertices, depending on whether the curve endpoints are as-
sociated with existing arrangement vertices; see Figure 2 for
an illustration of the various cases. Note that these inser-
tion functions hardly involve any geometric operations, if at
all. They accept topologically related parameters, and use
them to operate directly on the Dcel records, thus saving
algebraic operations, which are especially expensive when
higher-degree curves are involved. Other modification meth-
ods enable users to split an edge into two, to merge two ad-
jacent edges, and to remove an edge from the arrangement.

An important guideline in the design is to decouple the ar-
rangement representation from the various algorithms that
operate on it. Thus, non-trivial algorithms that involve geo-
metric operations are implemented as free (global) functions.
For example, we offer a free insert() function for the in-

cremental insertion of general curves3 computing their zone

(see Section 6.2), and another free insert() function for the
aggregated insertion of sets of general curves, using a sweep-
line algorithm. Another important operation implemented
as a free function is the computation of the overlay of two
arrangements (see [13, Chapter 2] and Section 6.1 below).

2.1 The Traits Class
As mentioned in the previous subsection, the Arrangement 2

class-template is parameterized with a traits class that de-
fines the abstract interface between the arrangement data

3A general curve may not necessarily be x-monotone, can
intersect the existing arrangement curves, and its insertion
location is unknown a priori.
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Figure 2: The various insertion procedures. The inserted x-monotone curve is drawn with a light dashed line,
surrounded by two solid arrows that represent the pair of twin halfedges added to the Dcel. Existing vertices
are shown as black dots while new vertices are shown as light dots. Existing halfedges that are affected by
the insertion operations are drawn as dashed arrows. (a) Inserting a subcurve inside the face f . (b) Inserting
a subcurve whose one endpoint corresponds to the existing vertex u. (c) Inserting a subcurve whose both
endpoints correspond to the existing vertices u1 and u2.

structure and the geometric primitives they use. The name
“traits class” was given by Myers [30] for a concept of a class
that should support certain predefined methods, passed as
a parameter to another class template. In our case, the
geometric traits-class defines the family of curves handled.
Moreover, details such as the number type used to represent
coordinate values, the type of coordinate system used (i.e.,
Cartesian or homogeneous), the algebraic methods used,
and extraneous data stored with the geometric objects, if
present, are all determined by the traits class and encapsu-
lated within it.

The traits-class concept is factored into a hierarchy of re-
fined concepts listed in the next paragraph. The refinement
hierarchy is generated according to the identified minimal re-
quirements from the traits imposed by different algorithms
that operate on arrangements, thus alleviating the produc-
tion of traits classes, and increasing the usability of the al-
gorithms.

Every model of the traits-class concept must define two
types of objects, namely X monotone curve 2 and Point 2. The
former represents an x-monotone curve, and the latter is
the type of the endpoints of the curves, representing a point
in the plane. The basic ArrangementBasicTraits 2 concept
lists the minimal set of predicates on objects of these two
types sufficient to enable the operations provided by the
Arrangement 2 class-template itself, and the insertion of x-
monotone curves that are also non-intersecting in their in-
teriors. Among these predicate are the point-status predi-
cate: given an x-monotone curve C and a point p, determine
whether p is above, below, or lies on C; and the compare-to-

right predicate: given two x-monotone curves C1, C2 that
share a common left endpoint p, determine the relative posi-
tion of the two curves immediately to the right of p. The set
of predicates defined by the ArrangementBasicTraits 2 con-
cept is also sufficient for answering point-location queries by
various strategies, as detailed in the previous section.4

The construction of an arrangement of general curves re-
quires the refined ArrangementTraits 2 concept. In addition

4The only exception is the “landmarks” strategy, which re-
quires a traits class that models the refined Arrangement-
LandmarkTraits 2 concept. For lack of space, we omit the
details here.

to the point and x-monotone curve types, a model of the
refined concept must define a third type that represents a
general (not necessarily x-monotone) curve in the plane,
named Curve 2. An intersection point of the curves is of
type Point 2. In addition, it has to support geometric con-
structions, such as subdividing a given curve into simple
x-monotone subcurves, computing the intersections between
two given x-monotone curves, splitting an x-monotone curve
into two subcurves at a given point in its interior, and merg-
ing two contiguous x-monotone portions of the same curve
into a single x-monotone curve.

All traits-class operations are implemented as function ob-
jects (functors) according to Cgal’s guidelines. This allows
for the extension of the primitive types above without the
need to redefine the methods that operate on them (see [24]
for details on the extensible kernel). For a detailed specifi-
cation of the various concept requirements see [36].

We include several traits classes with the public distribu-
tion of Cgal (see Figure 3) as follows. Traits classes for line
segments5, a traits class that operates on continuous piece-
wise linear curves, namely polylines [23], and a traits class
that handles segments of planar algebraic curves of degree
2, namely conic arcs (e.g., ellipses, hyperbolas, or parabo-
las) [35].

Exacus [3] is an ongoing project that aims to provide a
set of libraries for efficient and exact algorithms for curves
and surfaces. In particular, it includes Cgal-compatible
traits-classes for computing arrangements of planar alge-
braic curves of degree 2 (conics) [10], 3 (cubics) [15] and
4 (quartics) [9]. Another traits class for conics was devel-
oped as part of an initial attempt to provide a Cgal kernel
that supports curved objects [16].

5The “non-caching” classes shown in Figure 3, which model
the ArrangementBasicTraits 2 and ArrangementTraits 2 con-
cepts respectively, directly operate on the kernel segments.
Their implementation is simple, yet may lead to a cas-
caded representation of intersection points with exponen-
tially long bit-length, which in turn may drastically increase
the time consumption of arithmetic operations. The class
Arr segment traits 2 avoids this cascading problem by stor-
ing extra data with each segment. It achieves faster running
times when arrangements with relatively many intersection
points are constructed. However, it uses more space.



Arrangement_2<Traits,Dcel>

Arr_default_dcel

Arr_non_caching_segment_traits_2

Arr_segment_traits_2

Arr_polyline_traits_2

Arr_conic_traits_2

Arr_non_caching_segment_basic_traits_2

ArrangementDcel

ArrangementBasicTraits 2

ArrangementTraits 2

Figure 3: The main Arrangement 2 class and its tem-
plate parameters. Arrows designate pointers, solid
lines directed through a triangle mark an inheri-
tance or a refinement relation, and directed dot-
ted lines directed through a triangle designate “is
a model of” relation.

3. ADAPTERS
The adapter design-pattern “converts the interface of a

class into another interface clients expect. Adapters let

classes work together that could not otherwise, because of

incompatible interfaces” (Gamma et al. [20]).

Adapters manifest themselves in a few places in the ar-
rangement module, the first being a mediator between the
arrangement class operations and the traits-class primitive
operations. This traits adapter add geometric predicates to
the traits class, based on the primitive operations provided
by a model of the ArrangementBasicTraits 2 concept. For
lack of space we omit the technical details, which can be
found in [19].

3.1 The DCEL Face Extender
Another application of an adapter is exhibited in the mech-
anism to conveniently extend the topological face-feature of
the Dcel. While it is possible to store extra (non-geometric)
data with the curves or points by extending their types re-
spectively (see more details in Section 4.1), it is also pos-
sible to extend the vertex, halfedge, or face types of the
Dcel through inheritance. Many times it is desired to as-
sociate extra data just with the arrangement faces. For
example, when an arrangement represents the subdivision
of a country into regions associated with their population
density. In this case, there is no alternative other than to
extend the Dcel face. As this technique is might be diffi-
cult for inexperienced users, we provide the class-template
Face extended dcel<FaceData>, which extends each face in the
Arr default dcel class with a FaceData object.

3.2 Boost Graph Adapters
The Boost graph library (Bgl; see [33]) is a generic li-
brary of graph algorithms and data structures designed in
the same spirit as Stl. It supports graph algorithms, and
as our arrangements are embedded as planar graphs, it is
only natural to extend the Dcel with the interface that the
Bgl expects, and gain the ability to perform the operations

that the Bgl supports, such as shortest-path computation.
We adapt an Arrangement 2 instance to a Boost graph by
providing a set of free functions that operate on the arrange-
ment features and conform with the relevant Bgl concepts.

We mention that besides the straightforward adaptation,
which associates a vertex with each Dcel vertex and an
edge with each Dcel edge, we also offer a dual adapter,
which associates a graph vertex with each Dcel face, such
that two vertices are connected, iff there is a Dcel halfedge
that separates the two corresponding faces. These represen-
tations are useful for many applications, such as answering
motion-planning queries (see e.g., [25]).

4. DECORATORS
The decorator design-pattern “attaches additional respon-

sibilities to an object dynamically. Decorators provide a

flexible alternative to sub-classing for extending functional-

ity”(Gamma et al. [20]).

In traditional object-oriented programming, attaching ad-
ditional functionality to an entire hierarchy of classes, all
inheriting from a common (perhaps virtual) base class, re-
ferred to as the component class, requires the introduction
of a decorator class that inherits from the base class and
stores a pointer to a virtual component object. When ap-
plying one of the methods to the decorator, it first calls the
component method, and then performs the supplementary
operations. In the arrangement package we apply the dec-
orator design-pattern when we attach auxiliary data to the
geometric entities defined by a specific traits class.6

4.1 Meta-Traits Classes
We offer several traits-class decorators, which we refer to
as meta-traits classes. Recall that the traits classes do not
have a common base class, but they all model the Arrange-

mentTraits 2 concept. The meta-traits decorators are pa-
rameterized by such a traits class. They inherit some of the
base-traits class functors, while overriding others exploiting
the auxiliary data maintained with the geometric objects.

The Arr consolidated curve data traits 2<BaseTraits,Data>

class inherits its Curve 2 and X monotone curve 2 types from
the respective types of the base-traits class, while extending
the curve with an additional data field, and the x-monotone
curve with a container of data fields. It relies on the geomet-
ric operations supplied by the base-traits, and only needs to
maintain the extra data fields. When subdividing a curve
into x-monotone subcurves, its data field is copied to the re-
sulting subcurves. Similarly, when splitting an x-monotone
curve, its data container is duplicated and stored with the
two resulting subcurves. When two x-monotone curves over-
lap, the union of their data containers is computed and
stored at the resulting overlapping subcurve.

The Arr merged curve data traits 2<BaseTraits,Data,Merge>

class operates similarly, except that it extends the X monotone

curve 2 type with just a single data field. When an over-
lap occurs, it uses the Merge functor, given as a template
parameter, to merge the data fields of the two overlapping

6This is a straightforward alternative to extending the Dcel

vertices and halfedges (see Section 3.1).



x-monotone curves, and stores the result with the resulting
overlapping subcurve.

4.2 Arrangements with History

Arrangement_with_history_2
         <BaseTraits,Dcel>

Arrangement_2
         <BaseTraits,Dcel>

BaseTraits

Curve_2

Arr_consolidated_curve_data_traits_2

<BaseTraits, BaseTraits::Curve_2*>

Curve_edges_observer

ArrangementTraits 2

Figure 4: The Arrangement with history 2 decorator.
An arrow with a rhombus-shaped tail mean that
a class stores a container of objects of the pointed
type.

Another major component of the Cgal arrangement pack-
age is the Arrangement with history 2<BaseTraits,Dcel> class-
template, which maintains a planar arrangement of general
curves, while maintaining its construction history. The in-
put curves that induce the arrangement are split into x-
monotone subcurves that are pairwise disjoint in their inte-
rior. These subcurves are associated with the arrangement
halfedges. In particular, each edge stores a pointer to the
input curve associated with it, (or a container of pointers
in case the edge is associated with an overlapping section of
several curves), while each subcurve stores the set of edges
it induces. Users can traverse through the origin curves of
each arrangement edge, or iterate on all edges induced by a
given input curve.

The Arrangement with history 2 class is not more than a sim-
ple decorator for the Arrangement 2, as shown in Figure 4. It
inherits from an arrangement class that is parameterized by
the consolidated curve-data traits (see Section 4.1), where
the extra data type is a pointer to a BaseTraits::Curve 2 ob-
ject. Thus, the pointers from each edge to its origin curve(s)
are automatically maintained. The cross-pointers between
input curves and arrangement edges are maintained using
an observer (see the next section) that keeps track of each
change that involves an arrangement edge.

Tracing back the curve (or curves) that induced an arrange-
ment edge is essential in a variety of applications that use
arrangements, such as robot motion planning (see e.g., [25]).

5. OBSERVERS
The observer design-pattern “defines a one-to-many depen-

dency between objects, so that when one object changes

state, all its dependents are notified and updated automat-

ically” (Gamma et al. [20]).

Observers play a significant role in the new design of the ar-
rangement package. They serve many different needs with
a single unified approach, as multiple observers can be at-
tached to the same arrangement instance. An important set
of observer classes is the one employed by some of the point-

location strategies that maintain auxiliary data-structures
(see Section 1). Another important reason for supporting
observers of arrangements is to allow users to introduce their
own observer classes. This is not just a convenience, but

crucial to the usability of the package, as it might be the
only way for providing certain output — data that should
be bound with the topological features of the arrangement
and is available only during construction. This is explained
in Subsection 5.3. In the following subsections we give a
detailed description of the notification mechanism imple-
mented via the observer design-pattern.

5.1 The Notification Mechanism
The Arr observer<Arrangement> class-template is parameter-
ized with an arrangement class. It stores a pointer to an ar-
rangement object, and is capable of receiving notifications
just before a structural change occurs in the arrangement
and immediately after such a change takes place. Hence,
each notification is comprised of a pair of “before” and “af-
ter” functions. The Arr observer<Arrangement> class-template
serves as a base class for other observer classes and defines a
set of virtual notification functions, giving them all a default
empty implementation. Naturally, one of the objectives is to
minimize the observer interface, that is, identifying the min-
imal set of event points, while capturing all possible changes
that arrangements can undergo.

The set of notification functions can be divided into three
categories as follows (see [36] for a detailed specification):
(i) Notifiers of changes that affect the entire topological
structure. Such changes occur when the arrangement is
cleared or when it is assigned with the contents of another
arrangement. (ii) Notifiers of a local change to the topolog-
ical structure. Among these changes are the creation of a
new vertex, the splitting of an edge, and the formation of
a new hole inside a face. (iii) Notifiers of a global change
initiated by a free function, and called by the free function
(e.g., incremental and aggregate insert; see Section 2). It is
required that no point-location queries (or any other queries
for that matter) are issued between the calls to the “before”
and “after” functions of this pair.7

Each arrangement object stores a list of pointers to Arr

observer objects, and whenever one of the structural changes
listed in the first two categories above is about to take place,
the arrangement object performs a forward traversal of this
list and invokes the appropriate function of each observer.
After the change has taken place the observer list is tra-
versed in a backward manner (from tail to head) and the ap-
propriate notification function is invoked for each observer.
This allows for the nesting of observer objects. The ob-
server list is not made public, and can only be accessed by
the Arr observer class. A free function may choose to trigger
a similar notification, which falls under the third category
above.

A pointer to a valid arrangement object must be supplied to
the constructor of an Arr observer object. The newly created
observer object adds itself to the observer list of the arrange-
ment. From that moment on, it starts receiving notifications
whenever the associated arrangement object changes. In
case the new observer is attached to a non-empty arrange-
ment, its constructor may extract the relevant data from the

7This constraint can improve the efficiency of the mainte-
nance of auxiliary data-structures for the relevant point-
location strategies, as explained in the next subsection.



non-empty arrangement using various traversal methods of-
fered by the public interface of the Arrangement 2 class, and
update any internal data stored in the observer.

Arrangement_2<Traits,Dcel> Arr_observer<Arrangement>

Arr_naive_point_location

Arr_walk_along_line_point_location

Arr_trapezoidal_ric_point_location

Arr_landmarks_point_location

Arr_trapezoidal_ric_observer

Arr_landmarks_observer

ArrangementPointLocation 2

Figure 5: The point-location classes and the notifi-
cation mechanism.

5.2 Point-Location Observers
As mentioned in Section 1, the landmarks and the trape-

zoidal point-location classes maintain auxiliary data struc-
tures. These strategies are characterized by very efficient
query time but less efficient preprocessing time and space.
Naturally, these strategies exhibit better overall performance
when the number of updates to the arrangement is relatively
small compared to the number of issued queries. Never-
theless, when the arrangement is modified the classes that
implement these point-location strategies must keep their
auxiliary data structure synchronized with their attached
arrangement-instance.

To this end, the landmarks point-location class and the
trapezoidal point-location class define the nested observer
classes that inherit from Arr observer, and are used to re-
ceive notifications whenever the arrangement is modified
(see Figure 3). For example, a variant of the landmarks
strategy uses the arrangement vertices as landmarks, so when-
ever a new vertex is created (by the insertion of a new edge
or by the splitting of an existing edge), it should be inserted
to the nearest-neighbor search structure maintained by the
landmarks class. The usage of the notification mechanism
makes it possible to associate several point-location objects
with the same arrangement simultaneously.

5.3 User-defined Observers
In addition to the point-location observer classes, users can
inherit their own observer classes from Arr observer and use
the notification mechanism for a variety of purposes, such as
dynamically maintaining the extra data they store with the
arrangement features. Assume, for example, users associate
some additional data records with the arrangement faces
(see Section 3.1). In this case their application needs to be
notified whenever a new face is created (split from another
face) or deleted (merged with another face), and receive a
handle to the edge whose insertion (or deletion, respectively)
causes this change. An appropriately written observer is
ideal for this purpose.

6. VISITORS
The visitor design-pattern “represents an operation to be

performed on an object or on the elements of an object struc-

ture. Visitors allow the definition of new operations without

changing the classes of the elements on which they operate”
(Gamma et al. [20]).

Arrangements have numerous applications, and different ap-
plications may require distinct and unrelated operations to
be performed on arrangements. Each of these operations
may treat different elements of the arrangement data-structure
differently using a subset of related operations. Implement-
ing all these operations within the arrangement class and
distributing all the operation subsets across the various el-
ements of the arrangement data structure leads to a “pol-
luted” system that is hard to understand, use, and main-
tain. The Bgl, for example, uses visitors [33, Section 12.3]
to overcome this problem when extending its graph algo-
rithms.

In the arrangement package we use visitors to implement
geometric algorithms that are based on a common algorith-
mic infrastructure. We have identified two main sets of al-
gorithms: Algorithms based on the sweep-line framework
and algorithms based on the zone-computation framework.
Thus, we provide two class-templates, namely Sweep line 2

and Arrangement zone 2, which implement these two funda-
mental algorithmic procedures common to the two families
of algorithms. Specific algorithms are implemented as vis-
itor classes that receive notifications of the events handled
by the basic procedure and can construct their output struc-
tures accordingly. The main benefit we gain from this design
is a centralized, reusable and easy to maintain code. More-
over, users may add their own sweep-based (or zone-based)
algorithms, as the implementation of such an algorithm re-
duces to implementing an appropriate visitor class.

6.1 The Generic Sweep-Line Algorithm
Sweeping the plane with a line is one of the most funda-
mental paradigms in Computational Geometry. The famous
sweep-line algorithm of Bentley and Ottmann [8] was origi-
nally formulated for sets of non-vertical line segments, with
the “general position” assumptions that no three segments
intersect at a common point and no two segments overlap.
An imaginary vertical line is swept over the input set from
left to right, transforming the static two-dimensional prob-
lem into a dynamic one-dimensional one. At each time dur-
ing the sweep a subset of the input segments intersect this
vertical line in a certain order. The order of the segments
may change as the line moves along the x-axis, implying a
change in the topology of the arrangement, only at a finite
number of event points, namely intersection points of two
segments and left endpoints or right endpoints of segments.
The event points, namely segment endpoints and all inter-
section points that have already been discovered, are stored
in a dynamic event queue, named the X-structure, in an
xy-lexicographic order, while the ordered sequence of seg-
ments intersecting the imaginary vertical line is stored in a
dynamic structure called the Y -structure. Both structures
are maintained as balanced binary trees.

The Sweep line 2<Traits,Event,Subcurve,Visitor> class-
template implements a generic sweep-line algorithm that can
handle any set of arbitrary x-monotone curves [34], contain-
ing all possible kinds of degeneracies [13, Section 2.1], [28,
Section 10.7], using a small set of geometric predicates and
constructions involving the curves. The Traits parameter
should be instantiated with a model of the Arrangement-

Traits 2 concept (see Section 2.1). The Visitor parameter
should be a model of the SweepLineVisitor 2 concept, whose



functionality is explained in details next.

The Sweep line 2 class uses two auxiliary data types: Event

base, which stores a Point 2 object representing the coordi-
nates of an event point, and Subcurve base, associated with a
portion of an x-monotone curve (represented as an X monotone

curve 2 object) whose interior is disjoint from all other sub-
curves at the current location of the sweep line (it may in-
tersect undiscovered subcurves as the sweep line advances).
These two auxiliary types also store additional data mem-
bers, needed internally by the sweep-line algorithm, and are
not exposed to external users. However, the visitor class
may extend these types by inheriting an Event class and a
Subcurve class from the respective base classes and using the
extended types to initialize the sweep-line template.

During the sweep-line process the event objects in the X-
structure are sorted lexicographically and the subcurve ob-
jects are stored in the Y -structure. The Sweep line 2 class
performs only the very basic operations of maintaining the
X-structure and the Y -structure, while the visitor class is
responsible for producing the actual output of the algorithm.
Whenever the sweep-line class handles an event, it sends a
notification to its visitor, with the relevant Event object and
the Subcurve objects incident to it.8 This way the sweep-line
visitor is capable of attaching auxiliary data members and
adding functionality to the event and subcurve objects. It
can also construct the output accordingly.

It should be mentioned that Bartuschka et al. [7] made an
initial attempt to provide a generic sweep-line algorithm in
the Leda library. They offer a class that couples a sweep-
traits class with a visitor. However, in their implementation
the traits class is responsible for performing the entire sweep-
line algorithm, whereas our class performs the sweep-line
process by itself, and only requires a traits class that supplies
a small set of geometric primitives.

A simple sweep-line visitor class is used for reporting all
intersection points induced by a set of input curves.9 This
visitor does not require storing any auxiliary data structures
with events or with subcurves. The default Event base and
Subcurve base types are used to instantiate the sweep-line
template. The visitor simply reports an event point p, if it
has more than a single incident subcurve.

As mentioned above, a key operation implemented with the
aid of a sweep-line visitor is the construction of a Dcel that
corresponds to the arrangement of a set of input curves. The
visitor class in this case is more complicated, as it needs to
store extra data with the subcurves and the events as fol-
lows. The event class is extended by a handle of a Dcel

vertex that corresponds to the event point. As long as the
vertex has not been created yet, the handle is invalid. The
subcurve class is extended by a pointer to an event-object
point that corresponds to the left endpoint of the subcurve.
When processing an event point p, it is possible to go over
all subcurves such that p is their right endpoint (so they

8The visitor accepts two iterators defining the range of inci-
dent subcurves in the Y -structure, so it may also access the
neighboring subcurves from above and below.
9This operation is indirectly related to arrangements, as it
is implemented using the sweep-line framework.

lie to the left of p) and use this auxiliary data to insert the
subcurves into the arrangement using one of the specialized
insertion methods (see Section 2). In fact, additional in-
formation, stored with each subcurve, helps performing the
insertion in the most efficient manner, utilizing all available
geometric and topological information. For lack of space,
we omit the related technical details here.

Another operation closely related to the construction of a
Dcel structure from scratch is the aggregated insertion of
new curves into an existing arrangement and efficiently up-
dating an existing Dcel structure. In this case we have to
sweep over a consolidated set of curves comprised of all sub-
curves associated with existing Dcel edges, and the set of
new curves C. Our goal is to discover the intersections in-
volving the new curves and to update the existing Dcel

accordingly. We first define a meta-traits class that ex-
tends the x-monotone curve type (see [19] for details) with a
pointer to a corresponding Dcel halfedge (this pointer will
be null for the newly inserted curves).10 This way we can
easily identify events that involve only existing subcurves,
which can be ignored, and handle only those events involv-
ing the newly inserted curves. When handling such events,
we should insert new edge pairs into the Dcel, representing
the subcurves of C. In addition, if we locate an intersec-
tion between a new curve and an existing subcurve in the
Dcel, we should split the corresponding edges at the inter-
section point to form two halfedge pairs. This operation is
elementary and takes constant time.

A fundamental operation that is straightforwardly imple-
mented using a sweep-line visitor is the overlay of two ar-
rangements, given as a “blue” Dcel and a “red” Dcel. The
major added difficulty over the previously mentioned visitors
is the need to update face structure and face information.
Let us assume that each of the input-arrangement faces is
associated with some data object (see Section 3.1). If we
put our arrangements one on top of the other, we get an
arrangement, whose faces correspond to overlapping regions
of the blue and red faces. We would like to construct an out-
put Dcel whose faces are associated with the corresponding
pairs of blue and red data objects. We do so by sweeping
through a consolidated set of “blue” and “red” subcurves.
As explained above, it is convenient to use a meta-traits class
that extends the x-monotone curves with a color identifier
(BLUE or RED in our case) and a halfedge pointer. This way we
can ignore “monochromatic” intersections and compute only
the red–blue intersection points (or overlaps). The overlay
visitor is parameterized by an overlay-traits class, which de-
fines the merge operations between “red” and “blue” Dcel

features.

6.2 Zone-Computation Visitors
Many applications can make use of the following operation:
Given an arrangement A and an x-monotone curve C, com-
pute the zone of C in A. That is, identify all arrangement
cells that the curve crosses. The zone can be computed by
locating the left endpoint of C in the arrangement and then

10It is also possible for the visitor to extend the Subcurve type,
but if we attach the auxiliary data at the traits-class level
we can benefit from giving more efficient implementations of
some traits-class functions. For example, we do not have to
compute intersections between two existing Dcel subcurves.



(aggregated insertion)

insert (arr, begin, end);

overlay (arr1, arr2,
res_arr);Arr_overlay_visitor

Subcurve,Visitor>
Sweep_line_2<Traits,Event,

Arr_insertion_visitor

<Arrangement,Visitor>
Arrangement_zone_2

Arrangement_2<Traits,Dcel>

Arr_inc_insert_zone_visitor (incremental insertion)

insert (arr, cv);

SweepLineVisitor 2

ArrangementZoneVisitor 2

Figure 6: The free functions that are implemented
with the aid of visitor classes.

“walking” along the curve to the right endpoint, keeping
track of the vertices, edges and faces crossed on the way
(see for example [13, Section 8.3] for the computation of the
zone of a line in an arrangement of lines).

The primary usage for the zone-computation algorithm is
the incremental insertion of an x-monotone curve into the
arrangement. However, it is sometimes necessary to com-
pute the zone of a curve in an arrangement without ac-
tually inserting it. In other cases, the entire zone is not
required: Suppose we wish to check whether a given curve
passes through an existing arrangement vertex. If such a
vertex exists, the process can be terminated as soon as the
vertex is located.

While the sweep-line algorithm operates on a set of input
x-monotone curves, and its visitors can use the notifications
they receive to construct their output structures, the zone-
computation algorithm operates on an arrangement object,
and its visitors may modify the same arrangement instance
as the computation progresses. This makes the interaction
of the main class with its visitors slightly more intricate.

The Arrangement zone 2<Arrangement,Visitor> class-template
implements a generic zone-computation algorithm. It is pa-
rameterized by an arrangement class and by a visitor class.
Given a curve C, the zone visitor is notified whenever a
maximal subcurve Ĉ of C is found. The interior of every
reported subcurve does not coincide with any arrangement
vertex or edge and lies within a face f . The arrangement fea-
tures that define the subcurve endpoints are also reported.
A similar notification is issued whenever a subcurve Ĉ that
overlaps an arrangement edge is detected. In both cases, the
visitor returns a pair comprised of a halfedge handle and a
Boolean flag as a result. In case the visitor inserts the sub-
curve Ĉ into the arrangement, it returns a handle to the
newly created edge. Otherwise, it returns an invalid handle.
The Boolean value indicates whether the zone-computation
process should terminate — this is convenient for gaining
efficiency in some applications.

The visitor class Arr inc insert zone visitor 2 performs the
incremental insertion of an x-monotone curve. It imple-
ments the two functions described above to insert the gener-
ated subcurves by splitting the halfedges intersected by the
curve and using the specialized insertion functions. Other

zone visitors are even easier to implement.

7. EXPERIMENTS
A user of the package has to select the appropriate com-
ponent in many categories (e.g., number type, geometric
kernel, traits class, end point-location strategy). For each
selection the user is offered many options. The use of generic
programming enables this flexibility. However, it induces a
vast number of configurations that must be tested, verified,
and tuned. We have developed a benchmarking toolkit that
automatically generates all the required configurations and
measures the performance of each configuration on a set of
inputs. Naturally, we had to restrict ourselves and publish
just the most efficient configurations for each traits class.
Table 7 indicates the time (in seconds) it took to construct
arrangements of various curve types using exact computa-

tions. For each traits class we have an input file containing
many degeneracies (denoted Degn.) and a randomly gener-
ated input file (denoted Rand.). The results, produced by
experiments conducted on a Pentium 1.8 GHz, clearly show
the major improvement in performance that the package has
undergone from the last public release of Cgal (version 3.1)
to the current internal release (version 3.2).

Table 1: Time consumption in seconds of the con-
struction of arrangements of various curve types.
The number of input curves and the dimensions of
the resulting arrangements are also shown.

Name C V E F 3.1 3.2

Segments

Degn. 104 1504 2704 1202 0.170 0.083
Rand. 100 1129 1958 831 0.160 0.041

Polylines

Degn. 10 112 204 94 0.081 0.020
Rand. 10 1508 2923 1417 0.769 0.223

Conics

Degn. 41 507 1042 537 2.970 0.647
Rand. 30 677 1303 628 118.0 18.2

The reimplemented package is at least twice as efficient as
the old version (Cgal 3.1) in all cases, and as much as six
times more efficient in some cases. The main contribution
to the improvement is due to the reduction in the number of
calls to geometric operations (provided by the traits class).
The effect of this reduction increases with the increase in
time consumption of the geometric operation. Thus, con-
struction of arrangements of conic arcs exhibits the largest
improvement. Figure 7 shows the arrangement of the Cgal

logo. It consists of 34 circles and 425 line segments. It took
1.14 seconds to construct the arrangement on the 1.8 GHz
Pentium PC using the aggregate insertion method.

Figure 7: The arrangement of the Cgal logo.



8. CONCLUSIONS
We show how our arrangement package can be used with
various components and different underlying algorithms that
can be plugged in using the appropriate traits classes. Users
may select the configuration that is most suitable for their
application from the variety offered in Cgal or in its ac-
companying software libraries, or implement their own traits
class. Switching between different traits classes typically in-
volves just a minor change of a few lines of code.

We have shown how careful software design based on the
generic-programming paradigm makes it easier to adapt ex-
isting traits classes or even to develop new ones. We believe
that similar techniques can be employed in other software
packages from other disciplines as well.
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