Encoding Meshes in Differential Coordinates

Daniel Cohen-Or

Olga Sorkine

School of Computer Science
Tel Aviv University

Abstract

Representing surfaces in local, rather than global, coordinate sys-
tems proves to be useful for various geometry processing applica-
tions. In particular, we have been investigating surface representa-
tions based on differential coordinates, constructed using the Lapla-
cian operator and discrete forms. Unlike global Cartesian coordi-
nates, that only represent the spatial locations of points on the sur-
face, differential coordinates capture the local surface details which
greatly affect the shading of the surface and thus its visual appear-
ance. On polygonal meshes, differential coordinates and the dis-
crete mesh Laplacian operator provide an efficient linear surface re-
construction framework suitable for various mesh processing tasks.
In this paper we discuss the important properties of differential co-
ordinates and show their applications for surface reconstruction. In
particular, we discuss quantization of the differential coordinates,
Least-squares meshes and mesh editing.

CR Categories:  1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: differential coordinates, Laplacian, least-squares
meshes, mesh editing

1 Introduction

Differential encoding for mesh deformation has been an active re-
search area in recent years. Early forms of differential encoding
of meshes have been used for mesh compression. Using predictive
schemes for encoding mesh geometry, such as the parallelogram
rule, a vertex is encoded as the difference between the predicted
position and its actual position. Better schemes are multi-way, that
is, the prediction is based on an average of several predictions from
different directions. The prediction based on the Laplacian opera-
tor takes into account all possible directions and thus yields better
prediction than schemes based on a single way or just a few (see
Table 2 in [Sorkine et al. 2003]).

The Laplacian operator will be described below. As we shall see, it
has been proved to be more than a prediction scheme per se. The
Laplacian operator has a nice, well studied mathematical formula-
tion, for which we can apply spectral analysis and understand its be-
havior. With certain extension, the Laplacian operator allows to de-
fine discrete bases for surface geometry that are tailored to represent

specific geometric features [Sorkine et al. 2005]. The Laplacian op-
erator has lead to various developments in several applications, like
mesh encoding, mesh deformation and mesh manipulation.

2 Mesh encoding

Polygonal meshes and triangular meshes in particular are common-
place and the de-facto standard for representing surfaces in com-
puter graphics. The representation of a mesh M consists of its
geometry and its topology. The geometry is a list of n Cartesian
coordinates encoding the position of n vertices. The topology en-
codes the connectivity among the vertices, which defines the topol-
ogy of the surface. The mesh represents a 2-manifold in 3D space,
typically a closed, watertight model, with possibly a small number
of boundaries b and/or handles g. From the Euler equation:

V—E+F=2(1-g)—b=x(M),
it can be deduced that when g and b are small,
2V =3E =F.

Furthermore, the average degree (or valence) of a vertex is 6. These
special properties of the graph connectivity lead to very efficient
connectivity encoding techniques [Touma and Gotsman 1998; Al-
liez and Desbrun 2001; Alliez and Gotsman 2005].

Encoding the geometry remains a challenge [Alliez and Gotsman
2005]. The Cartesian coordinates are typically represented by high-
precision floating-point numbers and as such they cannot be com-
pressed by standard methods like LZ or arithmetic coding. Thus,
some quantization is always necessary, and quantization necessar-
ily introduces errors and some loss of data.

2.1 Quantization errors

Since quantization errors are inevitable, the question is how to vi-
sually or perceptually suppress them. Let us first understand the
visual effect of quantizing the Cartesian coordinates of a mesh. Fig-
ure 1(a) shows a sphere coarsely tessellated with floating-points co-
ordinates, and (b) shows the same sphere with its coordinates quan-
tized. The two look the same; however, when we apply the same
quantization over a finely tessellated sphere (Figure 1(c)), the visual
degradation is clearly apparent (see Figure 1(d)). The quantization
produces high-frequency errors across the surface, which alters the
surface normals, and the finer the tessellation, the greater the rela-
tive quantization error.

Since our perception is highly sensitive to shading, the “jaggies”
effect is irritating. Thus, only mild quantization of Cartesian coor-
dinates is possible without causing visible artifacts. We claim that
the fact that the quantization error is more severe on fine meshes
is somewhat disappointing, since the investment in encoding fine
meshes is counter-productive. Before we move on, we would like
to make a disclaimer: the spheres in Figure 1 are rendered with flat
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Figure 1: The counter-intuitive effect of Cartesian quantization. Fine-sampled surfaces suffer more than coarse ones. (a) A coarse mesh
representation of a sphere with high-precision coordinates. (b) The same mesh with Cartesian coordinates quantized to 8 bits/coordinate. (c)
A fine mesh representation of the sphere. (d) Quantization of the fine mesh to 8 bits/coordinate yields a jaggy surface.

Figure 2: The Laplacian coordinates quantization to
5 bits/coordinate (left) introduces low-frequency errors, whereas
Cartesian quantization to 11 bits/coordinate (right) introduces
noticeable errors. The upper row shows the quantized model,
and the bottom figures use color to visualize the corresponding
quantization errors.

shading to emphasize the effect. Smooth shading can alleviate the
jaggy appearance to some degree.

As will be discussed below, rather than encoding the geometry with
Cartesian coordinates, one can encode the mesh with differential
coordinates. Quantizing such differential coordinates can lead to
a different visual effect, which we claim to be less visually irritat-
ing. Basically, the quantization introduces low frequencies, instead
of high ones. The effect is shown in Figure 2. To explain this ef-
fect, we first need to introduce the particular differential coordinates
used, namely the Laplacian coordinates, and apply some spectral
analysis to understand their behavior under quantization.

2.2 The Laplacian operator

Let us define the relative or -coordinates of a vertex v; to be the
difference between the absolute coordinates of v; and the center of

mass of its immediate neighbors in the mesh,

d;

& = (5.():)’5.()’),5;1)) —v— i Z Vi,
di (=

where d; is the number of immediate neighbors of v; (the degree
or valence of v;) and v;, is v;’s kth neighbor. The transformation
of the vector of absolute Cartesian coordinates to the vector of rel-
ative coordinates can be represented in matrix form. Let A be the
adjacency (connectivity) matrix of the mesh:

A — 1 iand jare adjacent
Y71 0 otherwise,

and let D be the diagonal matrix such that D;; = d;. Then the ma-
trix transforming the absolute coordinates to relative coordinates
(scaled by D)is L=D —A,

d; i=j
Lij= —1 iand j are adjacent
0 otherwise

That is, Lx = D8W, Ly = D6, and Lz = D8, where x is a
column n-vector containing the x absolute coordinates of all the
vertices, and similarly for y and z. Without loss of generality, we
now focus on the vectors x and 8 = D&W.

The matrix L is called the Laplacian of the mesh. The Laplacian
is symmetric, singular and positive semi-definite. The rank of L is
n—c, where c is the number of connected components of the mesh.
Since we are dealing with single component meshes, the rank is
n— 1, which means that we can actually recover x from & if we
know, in addition to 8, the Cartesian coordinate x; of one vertex v;.
In the following we call the known vertex an anchor. Let us define
L~ as the operator that recovers x from 8. That is, L~!(§) = x.

Before moving on, note that the matrix L is defined based on the
connectivity information alone, and in that sense it is geometry-
oblivious.

2.3 Spectral analysis

Now, the interesting question is what happens if we quantize the
S-coordinates. Can we still go back to x? Intuitively, the answer
is yes, but with some small errors. But then, another interesting
question is how the reconstruction error behaves. To understand the
error behavior we need to apply spectral analysis. However, before
that let us take a look at the visual effect. Figure 3(a) shows the
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Figure 3: High-pass quantization in action. In (a) the original Horse model is displayed, while (b) shows the same model reconstructed
from &-coordinates quantized to 7 bit/coordinate. Evidently, high-pass quantization preserves the local surface details, which makes the
quantized Horse almost undistinguishable from the original. In (c) we visualize the quantization error using pseudocolor; the error has
mainly low-frequency components, which can be observed in the smooth error coloring.

original Horse model and 3(b) the Horse recovered from quantized
d-coordinates. That is:

X =178,

where &’ is the quantized version of §. Since quantization intro-
duces a small error, we can write

§=8+¢.

Thus,
X = L71(5+8) :X+L71(£).

So the difference between the two horses in Figure 3 is L™ (g).
The error is not visually noticeable. However, if one were to flip
back and forth between the two images, some low-frequency error
would be observed. The high frequencies, or the surface details,
look the same, but at large, some global, low-frequency distortion
is introduced. This suggests that the error vector L™!(g) is of low
frequency. Let us analyze L and L~1. Note that L is a high-pass
filter, that is, it attenuates low frequencies and amplifies high ones.
This can also be observed at its eigenvectors. The eigenvectors of
L associated with small eigenvalues are smooth (low-frequency),
while the eigenvectors associated with high eigenvalues are oscillat-
ing (high-frequency). Now let us look at the spectrum of L~!. The
eigenvalues of L1 associated with low-frequency eigenvectors are
now large and amplify the low frequencies. The eigenvalues of L™!
associated with high-frequency eigenvectors are now small and at-
tenuate or actually preserve the high frequencies. In particular, L ™!
has amplified the low frequencies of €, and consequently the low
frequencies in the reconstruction error of the recovered vector x’.

3 High-pass quantization

The above suggests different means for encoding meshes. Rather
than quantizing the global Cartesian coordinates, which leads to
high-frequency errors, one can quantize the §-coordinates and in-
troduce low-frequency errors. Such quantization has been termed
High-Pass Quantization [Sorkine et al. 2003] since it preserves the
high frequencies. As shown in [Sorkine et al. 2003], the gain in
the compression ratio compared to conventional quantization is not
necessarily significant, but the visual effect is different. High-pass
quantization introduces low-frequency error, to which the human
perception is much less sensitive than to high-frequency errors.

High-pass quantization has the effect of preserving the details of
the surface. This property is desirable for various applications for
which the surface details are important, as discussed later.

3.1 Bounding the low-frequency error

Having a low frequency error across the surface suggests that it
might be effective to “nail” the model in place by adding more than
a single anchor vertex. Indeed, it can be shown that the more an-
chors we use, the lower the error. Anchors cost additional storage
space, however in practice less than 1% of the model vertices need
to be anchored for visually good reconstruction. While the addi-
tion of anchors is intuitive, it needs to be applied with care. Simply
eliminating the anchors from the L matrix and the associated linear
system by erasing the rows and the columns of the anchor vertices
will produces spikes at the anchored vertices, since when we quan-
tize §, no smoothness constraints are posed on the anchors. Thus,
we keep the Laplacian constraints of all the vertices and add the
anchors as additional constraints. By adding anchors, the matrix
becomes rectangular, so we solve the system in the least-squares
sense:

x' = argmin (HLX' - 5’H2+ Y |« _Ci|2> )
x ieC

where C is the set of anchors and ¢; are their positions. Assume
w.l.o.g. that |C| =k and C = {1,2,...,k}. The system above can be
formulated as

x' = argmin ||Ax’ - sz ,
x/

where

L
A = —_— 1
( i | ka(n—k) ) ' M

b (61,7"'76;17617"'7ck)T' (2)

This has the effect that X is the solution that best agrees with the
&’ constraints and the positional anchors. In [Sorkine et al. 2003] it
has been shown that adding a rather small number of anchors sig-
nificantly improves the visual error, and furthermore that the least-
squares solution nicely distributes the error across the surface. That
is, the error mainly consists of low frequencies and the details of
the surface (the high frequencies) are preserved.
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Figure 4: Reconstructing the geometry of the Camel’s head using the original connectivity. We removed the geometry from the head (marked
in (a)). (b) The anchor points around the “hole” are marked by small spheres. (c) Close-up on the reconstructed geometry. Note that the
connectivity of the head contains some information that induces non-trivial shape, without using a single anchor point.

e ATAV YA,
O
AL
R
Ry
R

& N
0
AN,
RN
0 .-;e:‘:.“ \\\\
SRR

N

(b)

Figure 5: Approximation using LS-meshes. (a) the original Camel head; (b) LS-mesh reconstruction with a few anchors demonstrates the

approximation ability of non-pure connectivity meshes.

4 Shape from connectivity

Up to now we have seen the effect of quantizing the §-coordinates.
Yet, an interesting question is how far we can go with the quan-
tization of the 8-coordinates. At the limit, what if we reduce the
d-information to zero bits? When no bits are allocated for the &-
coordinates, the solution of x’ = L~/ (0) generates some geometry
from nearly the connectivity alone (not entirely alone, because we
still have a small number of anchors containing some geometry).

The answer is demonstrated in Figure 4. In this example, the head
of the Camel is represented with no geometry, that is, differential
coordinates with zero bits. The recovered head (Figure 4(c)) seems
like a smooth version of the original head. It has some resemblance
to the original head, and certainly contains some non-trivial geom-
etry. It should be emphasized that the recovered head is recon-
structed from the connectivity alone. The red vertices around the
neck of the camel are anchor points which are used as constraints
for solving the system x’ = L~1(0).

Solving the above linear least-squares system reconstructs the
geometry of the mesh vertices, while approximating the known
geometry of the anchors. Since the reconstruction system also ac-
counts for the given connectivity of the mesh, it yields a shape
which is close to the notion of connectivity shapes [Isenburg et al.
2001]. In their work, Isenburg et al. [2001] showed that a pure con-

nectivity mesh has some natural shape, assuming that all the edges
of the mesh are of equal length. They employ an iterative optimiza-
tion process which minimizes an energy functional that inflates the
mesh towards a smooth shape, where the edges are close to uniform
length. The optimization process is non-linear and requires to in-
terleave some regularization steps so that the reconstructed shape
bears some resemblance to the original mesh. However, the key
contribution of their work is that it shows that a pure connectivity
mesh contains some non-trivial geometric information.

In light of the above, a mesh recovered by the least square solu-
tion can be regarded as a non-pure connectivity mesh, where only
some of the vertices contain geometric information. In [Sorkine
and Cohen-Or 2004] we use the term LS-meshes for meshes that
are reconstructed by such least-squares (LS) solution with a small
number of anchor points. While the connectivity shapes [Isenburg
et al. 2001] strive to satisfy the uniform edge length condition, in
an LS-mesh the vertices satisfy flatness and fairness conditions in
the least-squares sense.

Figure 5 shows the approximation power of an LS-mesh. Given the
connectivity augmented with a rather small set of anchor points,
the shape of the Camel’s head can be well approximated (see more
results in [Sorkine and Cohen-Or 2004]).

A relevant question is where to place the anchors. Figure 6 shows
an example of the Screwdriver model which consists of 27152 ver-
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Figure 6: Selecting the anchor points. In (a), 1000 anchor points for the LS-mesh were chosen randomly, which leads to poor reconstruction
in some parts of the model. In (b), 1000 anchors were selected using our greedy approach, leading to better approximation.

tices, and on which we placed 1000 anchors points. On the left we
see the results of placing the anchors by a random selection, while
on the right we see the results of a greedy approach, which places
one anchor at a time in the vertex that attained the maximal recon-
struction error. One can see that the random selection is inefficient
since it does not “predict” the places which will have large recon-
struction error. On the other hand, the greedy selection works quite
well and concentrates the anchors in strategic regions, such as the
edges of the screwdriver, where the reconstruction error is likely to
be larger otherwise. One can accelerate and approximate the greedy
approach by placing a number of anchors at local error maxima, and
then recompute the LS-mesh to obtain the error estimation for the
next selection step. An additional anchor selection algorithm is de-
veloped in [Chen et al. 2005] based on a theoretical bound of the
reconstruction error.

The geometry of an LS-mesh is defined by the following formula:
x=A%b (A" = (ATA)71AT),
where the matrix A has the same structure as in Eq. (2) and

b= (OIXIH Cl7"‘7ck)T

In [Sorkine et al. 2005] we analyze the reconstructed geometry x
and showed that in fact it is a linear combination of & basis functions
that are derived from A*:

x=cif; +cfr +... + kg,

where
£i = A" (Oruns Op(imt)s 1 Opegeiy)”

We show that the basis functions f; are fairly smooth, and most
of their “energy” is concentrated near a single anchor. Unlike the
basis functions (the eigenvectors) of the Laplacian, here the basis
functions are “geometry-aware”. In [Sorkine et al. 2005] we show
the effectiveness of having geometry awareness as opposed to hav-
ing bases which are geometry oblivious: geometry-aware bases can
approximate surface features much better, given that the anchor
points are located in the vicinity of the features. Furthermore, an
eigendecomposition is very computationally-intensive for moder-
ate meshes, and thus computing and storing the (dense) spectral
basis matrix is prohibitively expensive; we show that by defin-
ing the geometry-aware basis vectors to be the solutions of cer-
tain least-squares problems, the reconstruction problem reduces to
solving a single sparse linear least-squares problem, which can be
solved quickly using a state-of-the-art sparse-matrix factorization
algorithms.

5 Laplacian mesh editing

We have seen above that the addition of anchor points makes our
linear system over-determined, for which, in general, no exact so-
lution may exist. However, the system is full-rank and thus has a
unique solution in the least-squares sense:

X = argmin <|Lx— 5||2 + Z |x; — Ci2> )
X

ieC

This gave rise to the idea of using this framework for mesh edit-
ing. Since the d-coordinates represent the local details, the above
system enables their preservation through various modeling tasks
which are defined by manipulating the anchor positions ¢;. In [Lip-
man et al. 2004; Sorkine et al. 2004; Lipman et al. 2005a] we have
introduced such Laplacian mesh editing techniques and showed
an efficient linear reconstruction based on matrix factorization of
sparse matrices (see Figure 7).

Unlike other mesh editing approaches (e.g., [Kobbelt et al. 1998;
Botsch and Kobbelt 2004]) our approach explicitly emphasizes the
preservation of details. Dealing with surfaces with rich details is
becoming more and more pronounced in computer graphics and
geometric modeling, as the available surface data becomes increas-
ingly complex and detailed, especially thanks to the proliferation
of sub-millimeter accuracy 3D scanners and sophisticated input de-
vices and modeling packages for virtual 3D sculpting.

The main challenge in any mesh manipulation application is to han-
dle non-trivial transformations, i.e., transformations which include
rotations (especially large rotations), while preserving as much as
possible the visual characteristic of the shape at interactive rates.
It has been accepted that deforming shapes as rigidly as possible
provides plausible results. The key idea is to factor out the rotation
from the deformation. Since rotations are rigid transformations,
such factorization enables treating the deformation as a pure ro-
tation plus a residual elastic deformation. Cohen-Or et al. [1998]
have applied this concept to minimize the global deformation dur-
ing shape interpolation. Alexa et al. [2000] show how it can be
applied locally as a means of treating the volume (area) of a shape
as rigidly as possible. Xu et al. [2005] and Summer et al. [2005]
have extended these principles to the surface of a shape. However,
in the context of shape editing, the problem of factoring out the ro-
tation is significantly harder, since the target shape is not explicitly
given. Thus, the factorization and the shape definition have to be
solved simultaneously [Sorkine et al. 2004], or otherwise induced
from the transformation of the control vertices (anchors).

A more direct approach to factoring rotations is to represent the
shape with intrinsic coordinates [Sederberg et al. 1993], or with
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Figure 7: Examples of mesh editing results using Laplacian surface editing [Sorkine et al. 2004]. Note the intuitive preservation of the local

surface details.

rotation-invariant coordinates [Lipman et al. 2005b]. With purely
rotation-invariant coordinates, the factorization of the rotation is
given for free. Lipman et al. [2005b] proved that by representing
the mesh vertices within their own local frames, it is possible to
uniquely represent a mesh, and that its reconstruction merely re-
quires solving a sequence of two linear systems.

In recent years, many researchers have studied the manipulation
of meshes while preserving their surface details [Lipman et al.
2004; Sheffer and Kraevoy 2004; Sorkine et al. 2004; Sumner and
Popovié 2004; Yu et al. 2004; Fu and Tai 2005; Igarashi et al. 2005;
Jietal. 2005; Lipman et al. 2005b; Nealen et al. 2005; Sumner et al.
2005; Volodine et al. 2005; Xu et al. 2005; Zayer et al. 2005; Zhou
et al. 2005; Au et al. 2006]. As shown in these works, this frame-
work has other interesting applications in addition to mesh editing
via handle manipulation: the framework can be applied to detail
transfer between surfaces, mesh transplanting, sketch-based editing
of silhouettes and other curves, generation of suggestive contours
and sharp features, pose transfer, example-based editing and mesh
smoothing. The common idea in these works is to represent the
surface with differential coordinates and directly control these co-
ordinates under some constraints defining various objectives.

The subject of optimal deformation is studied in [Lipman et al.
2006]; this work formulates the deformation in terms of the local
frames and shows how to modify them in order to obtain a deformed
surface that satisfies the modeling constraints and whose curvature
is as close as possible to the original surface. Lipman et al. [2006]
also show how to extend the local frames framework to provide de-
formations that preserve the local volume of the shape. It should be
noted that while [Lipman et al. 2005b; Lipman et al. 2006] enable
linear mesh editing with rotation-invariant representation, and thus
allow arbitrarily large rotations, this comes at the price of loosing
the ability to set direct positional constraints, since the constraints
have to be formulated in terms of the local frames (i.e. orienta-
tions and not positions). A non-linear framework allows to perform
editing with positional constraints and large rotations, as well as
volume preservation, of course at the cost of efficiency and/or con-
voluted implementation [Botsch et al. 2006; Huang et al. 2006].

6 Epilogue

In contrast to the traditional global Cartesian coordinates, which
can only tell the spatial location of each point, a differential sur-
face representation carries information about the local shape of the

surface, the size and orientation of local details. Therefore, defin-
ing operations on surfaces that strive to preserve such a differential
representation, results in detail-preserving operations. The linearity
of the processing framework makes it very efficient, and it has be-
come an attractive research direction, as is evident from the amount
of recent publications on the subject.
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