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Abstract: A simple heuristic is proposed for the construction of robust experimental designs for multivariate

generalized linear models. The method is based on clustering a set of local optimal designs, and a method for

�nding local D-optimal designs using available resources is also introduced. Clustering, with its simplicity and

minimal computation needs, is demonstrated to outperform more complex and sophisticated methods.
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1. INTRODUCTION

Optimal experimental designs for generalized linear models (GLM) depend on the unknown coe¢ cients, and two

experiments having the same model but di¤erent coe¢ cient values will typically have di¤erent optimal designs.

Therefore, unlike experimental design for linear models, the prior knowledge and estimates of the outcome of

the experiment must be taken into account. For any given set of values for the model parameters there is an

experimental design which is optimal locally. However, since there is uncertainty about the values, one should

look for an experimental design that performs well all over the uncertainty space, giving higher priority to

regions of higher likelihood within that space.

Prior work on local optimal experimental designs for generalized linear models is mainly focused on a simple

linear e¤ect and one design variable, see for instance Abdelbasit and Plackett (1983), Ford, Torsney and Wu

(1992) or Mathew and Sinha (2001). Most extensions, for example Sitter and Torsney (1995), are limited to

two factors, or to �rst-order models that do not contain interactions.

Generalizing these results for local optimal designs to take account of uncertainty is even more di¢ cult.

Di¤erent attitudes toward design robustness for univariate generalized linear models can be found in Abdelbasit

and Plackett (1983), Sitter (1992), Hedayat, Yan and Pezzuto (1997) and Chaloner and Larntz (1989). Of

these, the latter should be emphasized for suggesting a Bayesian experimental design. Literature concerning

multivariate robust designs for GLM is scarce and includes Chipman and Welch (1996), who suggest a minimax
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approach, and Robinson and Khuri (2003), who evoke the idea of using so called quantile dispersion graphs.

Khuri, Mukherjee, Sinha and Ghosh (2004) survey design issues for generalized linear models. In the survey�s

conclusion they write "The research on designs for generalized linear models is still very much in developmental

stage. Not much work has been accomplished either in terms of theory or in terms of computational methods to

evaluate the optimal design when the dimension of the design space is high. The situation when one has several

covariates ... demand extensive work to evaluate �optimal�or at least e¢ cient designs" (Khuri et al., 2004, p.

42). Recently Woods, Lewis, Eccleston and Russell (2005), delivered much of the sought results by proposing a

method for �nding multivariate compromise designs that allow for uncertainty in the link function, the linear

predictor or the model parameters.

In this paper we suggest a simple heuristic capable of �nding designs that are robust to most parameters

an experimenter might consider, including (similar to Woods et al., 2005) uncertainty in the coe¢ cient values,

in the linear predictor equation and in the link function. Its advantages over Bayesian designs such as those

of Chaloner and Larntz (1989) or Compromise designs as in Woods et al. (2005) are the short computation

time required and the simplicity of the method, requiring only the ability to �nd local optimal designs and a

K-means cluster procedure (MacQueen, 1967).

Finding local optimal designs for GLM, and even more so for high-order multivariate models, is far from

trivial. Section 2 describes a fast and simple method for �nding local D-optimal designs for these complex cases.

Given a set of local D-optimal designs the core of the method proposed is to combine them into a set of

location vectors and use K-means clustering to derive a robust design, as motivated by the following examples.

1.1 Example 1

Assume a logistic model with the linear predictor � = �0 + �xx + �yy + �xyxy having uncertainty about �0

modeled as a uniform distribution over the region [0; 2] with �x = �y = 2; �xy = 0:2: Figure 1 shows the local

D-optimal designs for this model, for 25 di¤erent equally spaced values of �0 from the feasible region.
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Figure 1: Proximity of 25 local D-optimal designs for a logistic model with intercept value uncertainty
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Each local D-optimal design has 4 support points. It can be seen that di¤erent values of �0 result in a small

change of the location of these support points, and as a result there is a clear partition of the local designs�

points to four clusters. Wishing an e¢ cient experimental design without knowing any further information, it

seems reasonable to place one point in each cluster, in its "middle".

1.2 Example 2

Woods et al. (2005) noticed that the local D-optimal design for the centroid of the �0s uncertainty space may

often be an e¢ cient compromise design. Preferring the use of clustering can only be justi�ed if it remains an

e¢ cient method even in conditions where using the best local D-optimal design fails to perform well.

Continuing example 1 but assuming a larger uncertainty region for �0 causes the four clusters to overlap.

Figure 2 displays local D-optimal designs for 25 di¤erent values of �0 from [0; 15] with �x = �y = 10; �xy = 0:2.

The �lled points in the �gure show the local D-optimal design for the centroid of the feasible region, �0 = 7:5.
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Figure 2: An illustration of the shortcoming of the best local D-optimal design

It is seen that the local D-optimal design for the centroid of the beta space has two support points on the

diagonal whose distance from each other is smaller than the range of diagonal point shifts for other possible

values of �0. Coverage of the design space through clustering has better potential for creating a robust design

than the parameter space centroid or any other local D-optimal design.

2. FINDING LOCAL D-OPTIMAL DESIGNS

The procedure suggested in this paper assumes the ability to easily construct local optimal designs. The

assumption is far from being trivial, as common packages such as "gosset" (Hardin and Sloane 1993), the

statistical toolbox in MATLAB (The MathWorks, inc), JMP or the SAS Optex procedure were not designed to

be used with Generalized Linear Models.

Finding an exact local D-optimal design for GLM requires �nding a choice of n support points that will

maximize the determinant of the information matrix. For linear models the information matrix is simply F 0F ,

F being the regression matrix. For generalized linear models the information matrix depends on a weights
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matrix, and can be represented as F 0WF (see for example Atkinson and Donev, 1992): The weights are given

by W = V �1 (�)
�
d�
d�

�2
; V is the variance function, � is a vector with row values, �i, being the expected

response for the experimental con�guration expressed by the row Fi of the regression matrix, � = F� is the

linear predictor, � is the vector of p unknown coe¢ cients and the relation between �i and �i is expressed

through a given link function. For example, for a Poisson model with a log link the diagonal elements of W are

wii = �i = exp (Fi�) and for a binary response with the logit link wii = �i (1� �i) =
exp(Fi�)

(1+exp(Fi�))
2 :

Thus, given the values of � we can compute the values of the diagonal matrix W for any candidate set

of design points. Local D-optimal designs for generalized linear models can therefore be found by setting

~F = F
p
W and using a row exchange algorithm, such as Federov�s (1972), to �nd an n point subset of F that

maximizes the determinant of the information matrix ~F 0 ~F :

For multivariate problems a good candidate set may be of enormous size, causing common computer algo-

rithms to malfunction or preventing their implementation. To overcome this obstacle one may use sequential

methods. Begin with a rough grid chosen at random or from a low-discrepancy sequence. For this candidate set

calculate the regression matrix and �nd a D-optimal design. Use the result to create a new candidate set, with

each support point of the D-optimal design found being the center of a new random or quasirandom sequence;

in order to avoid large candidate sets, limit the size of the sequence around each point so that the number of

candidate points from all sequences will be reasonably small; in the examples presented we used 50 normally

distributed points around each candidate. Create a rule for adjusting the search radius around the points (for

instance reduce the search radius according to the largest distance between points in the new design when

compared to the previous step, but no less than 30% of the last search radius used). Create a stopping rule in

accordance with the accuracy desired.

For a notion on the e¤ectiveness of the procedure described, it takes less than one second to produce a

16 point local D-optimal design accurate to 2 decimal places for the 5 variable Poisson model containing two

interactions used in section 6: Computer run times presented throughout this paper were measured using a

desktop PC with a 2.4Ghz Celeron processor.

An implementation of the algorithm, and procedures for examples from the next sections, can be found at

http://www.math.tau.ac.il/�dms/GLM_Design .

3. CLUSTERING VERSUS BAYESIAN DESIGNS

Chaloner and Larntz (1987, 1989) discuss construction of Bayesian optimal designs for a one variable (two

parameters) logistic regression where the probability of success for an observation at x 2 [�1; 1] is p (x;�; �) =

1= (1 + exp (�� (x� �))). Their criterion for Bayesian D-optimality is to maximize the average log determinant

of the normalized information matrix; the expectation is taken according to a prior distribution of the coe¢ cients

(�; �). Their method requires the number of design points to be speci�ed and so they repeat the optimization

(using Nelder and Mead�s (1965) simplex algorithm) starting with 2 design points and increasing the number

steadily up to 20. They then choose the design that optimizes the criterion on the smallest number of design
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points. They illustrate their method with � and � uniformly distributed on an interval, given three di¤erent

interval values for each.

They demonstrate that as the uncertainty increases so does the minimum number of support points required

to attain the optimal value. But Chaloner and Larntz (1987) also show that out of three intervals examined for

�, only for the widest interval, when it is distributed uniformly on [�1; 1], is the Bayesian design signi�cantly

more e¢ cient than the best local D-optimal design. A design based on clustering yields similar results, and has

3 support points for the examples where the Bayesian design has 3 support points. It is more interesting to

evaluate the e¤ectiveness of a design based on clustering for the examples in which the Bayesian design proved

to be superior to the centroid local D-optimal design, that is for � � U [�1; 1]. As discussed in Chaloner and

Larntz (1989) the choice of interval for � has only small in�uence on the �nal design and its e¢ ciency, and we

will display the results when � � U [6; 8]. Their optimal Bayesian design uses 7 support points with a reported

value of �4:5783 for the average log of the information matrix determinant.

We used K-means clustering over 100 local D-optimal designs with the coe¢ cients of � and � set by a Nieder-

reiter (1988) quasi-random sequence over the described intervals. For a short description of low-discrepancy

sequences, see the appendix. Similar to Chaloner and Larntz (1989) the value for K, the number of support

points, was increased from 2 to 20. Figure 3 shows the mean value of the log of the determinant matrix when

estimated using the same 100 local designs.
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Figure 3: Mean value of the log of the determinant matrix estimated over a rough grid

Similar to the reported result, the criterion value seems to reach a stable value for a design with 7 support

points. Its value seems to be better than the one stated by Chaloner and Larntz.

5



Averaging over 100 designs may be insu¢ cient for a precise evaluation, and the use of the same coe¢ cient

values to create the cluster and to estimate its performance may create a bias. We therefore re-evaluated the 7

support point design (created through 100 local D-optimal designs) using 10,000 local D-optimal designs, with

their coe¢ cients determined again by a Niederreiter sequence. The criterion value given by this more thorough

evaluation approved the validity of the rough estimation. Its value is -4.25, higher than the value reported for

the Bayesian design.

One of the advances of Chaloner and Larntz (1989) over former work is to create designs without a require-

ment for the points to be equally spaced, and with a possibility for a di¤erent number of observations at each

point. Like their work, a design created by clustering is not restricted to equally spaced points, but it does put

equal weight on all the support points. It is possible to adjust the weights and improve the design using sequen-

tial quadratic programming on the weights. For the given example this leads to only a minor improvement of

the criterion value to -4.23.

Even though creating a robust design using clustering was found superior in this example, one should expect

Bayesian designs to be generally better. But, if clustering normally does not fall much from Bayesian designs

then it has clear advantages over them - simplicity of creation, and the need for considerably less computational

resources. Unlike Bayesian design, extending the clustering procedure to multivariate problems is almost trivial,

and is considered next.

4. CLUSTERING VERSUS MULTIVARIATE COMPROMISE DESIGNS

Woods et al. (2005) provide a method for �nding exact designs for experiments in which there are several

explanatory variables. They use simulated annealing to �nd, like Chaloner and Larntz (1989), a design with

a given number of support points that maximizes the average log determinant of the normalized information

matrix. They note that evaluating the integral is too computationally intensive for incorporation within a

search algorithm, and therefore average over a partial set chosen to represent the model space. Their method

allows creation of compromise designs with uncertainty in the link function, the linear predictor and the model

parameters.

In section 5, Woods et al. (2005) give an example of creating a 16 point compromise design across a parameter

space. They describe a crystallography experiment that is aimed to model how four explanatory variables (rate

of agitation during mixing, volume of composition, temperature and evaporation rate) a¤ect the probability

that a new product is formed. They recommend that when the suggested ranges for the unknowns, �i, are not

large the local D-optimal design for the centroid of the parameter space will be used. Otherwise they �nd a

compromise design based on a coverage design to perform better. The superiority of the compromise design

created with the use of a coverage set is demonstrated with a parameter space as described in Table 1 (based

on parameter space B3 in Table 1 of the original paper):
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Table 1: Coe¢ cients ranges from Woods et al. (2005) crystallography experiment

Parameter Range

�0 [�3; 3]

�1 [4; 10]

�2 [5; 11]

�3 [�6; 0]

�4 [�2:5; 3:5]

A design�s performance was evaluated using the median and minimum e¢ ciency relative to 10,000 local

D-optimal designs created for random parameter vectors from the parameter space. The e¢ ciency of a design

was calculated as (jMC j = jMLj)1=p where p is the number of unknown coe¢ cients, and MC and ML are the

information matrices for the evaluated and local D-optimal designs, respectfully. A standard factorial design

performed poorly for the example with a median e¢ ciency value of 0.07 and a minimum of 0.003.

Before creating a design using clustering, we examined the compatibility of our assessments to those in

Woods et al. (2005). We created 10,000 local D-optimal designs using the procedure described in section 2.

The values of the 10,000 parameter vectors were produced by a base 2 Niederreiter quasi-random sequence with

212 as a seed. This procedure enables recreation of the exact parameter vectors used here, and at the same time

promises a better spread of the parameter space than achieved by random sampling. We then used these designs

to evaluate the median and minimum e¢ ciency of the coverage design of Woods et al. (2005). The results were

compatible with those reported by Woods et al.: a median of 0:415 (reported 0:41), and a minimum of 0:113

(slightly lower than the reported 0:12).

The Woods et al. (2005) procedure requires their special algorithm and is computer intensive. It is reported

by Woods (2005) to require 147 minutes on a stronger computer than we have used. We proceeded, trying

to create an alternative design by clustering. The aim of the process was to �nd a simpler and less computer

intensive method for the creation of a design while retaining its robustness.

First we created local D-optimal designs for 100 parameter values, continuing the Niederreiter quasi-random

sequence used so far to ensure the use of di¤erent local optimal designs for the creation of the composite design

and for assessing its e¢ ciency. This preparation work took less than 1 minute. We then gathered the 1,600

resulting points and applied K-means clustering, as implemented in MATLAB (The MathWorks, inc.) to choose

16 representative points as our design. Often optimal design points are found on the boundary of the design

region; we therefore used the sum of the absolute di¤erences as a distance measure, so that each cluster is

represented by the component-wise median of its points.

Each time clustering is performed, a slightly di¤erent design emerges. This is due to the random choice

of initial cluster centroid positions. We will therefore summarize design performance via the median (and

minimum) e¢ ciencies averaged over 50 identical clustering runs, using the notation Mean [95% CI].

Clustering was found to have competitive results to the Woods et al. (2005) composite design, with median
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e¢ ciency of 0:40 [0:38; 0:42], and minimum e¢ ciency 0:091 [0:06; 0:12] : The time taken to create the composite

design (additional to the one minute preparation phase of �nding 100 local D-optimal designs) was negligible:

0:25 seconds [0:16; 0:33] :

Better results can be obtained by repeating the clustering process numerous times. Similar to Chaloner and

Larntz (1989) and Woods et al. (2005) we chose the cluster with the highest average log determinant of the

information matrix. Averaging was done on the rough grid of 100 parameter vectors that were used to create

the local D-optimal designs. Indeed, repeated clustering improved the results: the median e¢ ciency grew to

0:423 [0:416; :430], and the minimum e¢ ciency was 0:096 [0:06; 0:13] ; requiring only 25 seconds to choose the

design.

Furthermore, since clustering is very fast we can easily examine the e¤ect of di¤erent choices for the number

of support points. Figure 4 displays the result of clustering done with di¤erent numbers of support points.

At each number of support points we used clustering only once, based on the 100 local D-optimal designs.

We approximated the e¢ ciency using the same local optimal designs. Given the local designs, the process of

producing the data for the �gure took only 20 seconds.
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Figure 4: The e¤ect of di¤erent choices for the number of support points on the approximated e¢ ciency

From Figure 4 we see that the median e¢ ciency reaches a stable value around the previous number of 16

support points, or slightly above; but, the minimum e¢ ciency continues to grow and only stabilizes for 30

support points or more. We therefore learn that a design with more support points may be advised. In fact,

Woods et al. (2005) state that in the crystallography experiment 48 observations are to be used, and the 16

point design was to be replicated three times when applied. Other than a 16 point design, Woods (2005) reports

the computation time for a 24 point design to be 265 minutes, almost twice as much as their 16-point composite

design, which may be the reason for using replicates, rather than considering the option of adding new support
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points.

Given this, we chose as before the best design out of 100 repetitions for a 48-means clustering. As expected the

median did not change much: 0:423 [0:415; 0:432] but the minimum e¢ ciency increased to 0:177 [0:141; 0:213] :

The rise in the minimal value is of great importance, as we discuss in section 6. In addition, it is found

that e¢ ciency estimation based on 100 local D-optimal designs is quite accurate, so one can produce both a

compromise design and an estimate of its e¢ ciency distribution based on a small sample of local designs, which

is fast and easy to produce.

Producing the 48 point design, which exceeds in its e¢ ciency Woods�et al. (2005) reported results, requires

merely an addition of 72 [63; 80] seconds, and combined with the preparation phase take roughly 2% of the

time reported by Woods et al. (2005).

5. ROBUSTNESS FOR LINEAR PREDICTORS AND LINK FUNCTIONS

Woods�et al. (2005) method for �nding compromise designs allows uncertainty not only in the model parameters

but also in the link function and the choice of the linear predictor. Section 6 of their paper gives an example

with two explanatory variables in which there is uncertainty whether a �rst-order model or a model with the

interaction term is more appropriate, and also uncertainty about the link function - Probit versus the asymmetric

Complementary-Log-Log (CLL). The values of the model parameters were: � = (3:0; 1:6; 4:1)0 for the �rst-order

model, and � = (1:2; 1:7; 5:4;�1:7)0 when considering a model with the interaction term. The results given are

for designs with 6 observations.

Woods et al. (2005) showed that for this example all of the four local optimal designs perform badly for some

of the possible characteristics, with the �rst-order local D-optimal designs being insu¢ cient for any estimation

of the interaction term. A compromise design created for the same problem enables estimation of all four models

with e¢ ciencies of at least 0.64. Table 2 is a reproduction of Table 3 from Woods et al. (2005), adding a column

with the e¢ ciency achieved by clustering the four local D-optimal designs.

Table 2: E¢ ciencies of a design produced by clustering, Woods et al. (2005) compromise

design and four local optimal designs di, reproduced from Table 3 of the original paper

Design

Model Clustering Woods d3 d4 d5 d6

Probit No interaction 0.75 0.77 1.00 0.34 0.99 0.30

Interaction 0.81 0.80 0.00 1.00 0.00 0.97

CLL No interaction 0.64 0.64 0.99 0.24 1.00 0.11

Interaction 0.85 0.86 0.00 0.97 0.00 1.00

It is seen that the performance of the Woods et al. (2005) compromise design and the design created by

clustering the local D-optimal designs is very similar; both achieve at least moderate e¢ ciency for all four

models.
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In addition to demonstrating the heuristic qualities of clustering, this example is useful to demonstrate a

limitation in its usage. Three of the local D-optimal designs included a replicate of the point [1;�1] ; and so

had only 5 support points for a 6 point design. This poses an obstacle for clustering because, while the best

design may put higher weight at this support point than on the other design points, the output of the clustering

procedure includes any point only once, and if seeking a 6 point design it is likely to replace the replication

of the existing point by addition of a di¤erent point with inferior contribution. To overcome the obstacle we

jittered the points of the local D-optimal designs by a small amount. Indeed, clustering the jittered design

points puts two points very close to [1;�1], and is an easy way to overcome the limitation.

6. INK PRODUCTION EXAMPLE

Suppose we have a machine with 5 tubes, each containing a di¤erent chemical in a �xed volume, but the

concentration of each chemical can be chosen in advance. The machine produces ink which is given a quality

classi�cation by the number of imperfect ink marks counted on a standard printed test page. Using low

concentrations is assumed to result in low quality ink which is not usable. Although it is expected that the

higher the concentrations the higher the quality of the ink produced, high values are preferably avoided, as the

concentrations also determine the production cost. An experiment was requested to model the relation between

the number of imperfect marks and the concentration of the 5 chemicals.

A Poisson model was used for the quality measure. Prior estimates for the linear predictor and the uncer-

tainty of the model parameters were formed in collaboration with an expert from the factory. The expert was

asked to estimate the number of marks for di¤erent possible values of the �ve concentrations; his estimates

were analyzed as if they were experimental results, and the uncertainty modeled was approved by the expert

as representative. The expert believed a �rst-order model would be su¢ cient, but speci�ed two relations be-

tween pairs of chemicals to possibly have interaction e¤ects. Both a �rst-order model and a model with two

cross-product terms were constructed from the analysis of the thought experiment, with their results approved

by the expert as reasonable representations for both his understanding and his uncertainty of the true model.

The estimations are presented in Table 3, for concentration values coded to [�1; 1] :
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Table 3: Prior coe¢ cients estimates for two models for the ink production example

First-order With Interactions

Term Estimate S.E. Estimate S.E.

Intercept -1.52 0.21 -2.35 0.69

x1 -4.30 0.20 -5.53 0.94

x2 -1.79 0.16 -2.99 0.82

x3 -3.39 0.24 -3.95 0.59

x4 -0.28 0.32 -0.86 0.54

x5 0.23 0.30 0.41 0.36

x1x2 -2.07 1.32

x1x3 -1.13 0.98

Remark 1 Notice that the standard errors are much bigger for the model that contains interactions, even though

both models were estimated from the same data. This phenomenon of having less precise estimates for more

complex models is common.

Remark 2 Our analysis did not take into account the correlation of coe¢ cients, but it can be easily addressed,

if desired, in sampling the parameter vectors used to generate local D-optimal designs.

Estimation of e¢ ciency was done using 20,000 local D-optimal designs - half for the �rst-order model, and

the other half for a model with the suspected interactions. For each model, local D-optimal designs were found

for 10,000 coe¢ cient vectors sampled from the normal distribution via a quasi-random sequence.

6.1 Clustering versus a Full Factorial Design

The median e¢ ciency of a full factorial experiment with 32 points is less than 0.1 and, as can be seen in Figure

5, its distribution has 2 peaks, originating from the two models considered (the full factorial has higher e¢ ciency

for the �rst-order model).
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Figure 5: A full factorial design e¢ ciencies histogram for 2 considered models

with 10,000 representative model parameters each

The e¢ ciency can be greatly improved by using clustering. As a preparation phase, we created a set of

200 local D-optimal designs, 100 for each model, with parameters taken from a quasi-random sequence, in

accordance with the normal distribution assumed. The next step was to choose a good number of support

points. We repeated the process used with the crystallography experiment, clustering only once for each of a set

of possible support point numbers, and evaluating the e¢ ciency only roughly, over the same set of parameter

vectors.
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Figure 6: The e¤ect of di¤erent choices for the number of support points on the approximated e¢ ciency

Remark 3 For our purposes it is su¢ cient to cluster only once, for any tested number of support points,

without any repetitions - as was done in the production of Figure 6. But, lack of repetitions causes some of

the cases studied to perform very badly, due to a bad random choice of the initial K cluster centroids when
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performing the K-Means clustering procedure. Hence, the graph is not smooth, and the "dips" observed around

15 and 30 support points are likely to be an e¤ect of a poor clustering solution related to the random initial

choice of centroids, not to a real problem with these design sizes. Using this graph we choose the desired value

for K; then it is important to repeat the clustering process numerous times, to ensure high e¢ ciency.

Remark 4 It should be assumed that, when the unknown parameters�uncertainty is distributed normally, the

true minimum e¢ ciency should approach zero. Hence, the values of the lower curve in Figure 6 are not repre-

sentative for the minimum values. But, we argue that the lower curve is still a good indicator for the expected

change in small e¢ ciency quantiles.

It is seen that the median e¢ ciency is stable for any choice of more than 30 support points. If we now

choose, for example, a design with 48 support points, the median e¢ ciency (as evaluated with the comprehensive

database of 20,000 local D-optimal designs) is 0.65; Figure 7 displays a histogram of local e¢ ciencies for a design

achieved by clustering.
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Figure 7: E¢ ciencies histogram for a 48 point cluster design for 2 considered

models with 10,000 representative model parameters each

6.2 Clustering versus Centroid Design

As noted by Woods et al. (2005), the local D-optimal design for the centroid of the parameter space is often a

su¢ ciently robust design. When there is more than one model, as in our example, there is no single centroid.

Still, having a strong relation between the two examined models, one of the two centroids may be a good choice.

Indeed, the local D-optimal design for the richer model is found to perform well, as displayed in its e¢ ciency

histogram, Figure 8.
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Figure 8: Centroid local D-optimal design e¢ ciencies histogram

The centroid design�s median e¢ ciency is even higher in this case than the e¢ ciency achieved by clustering:

0.69. Furthermore, being a local optimal design the histogram is guaranteed to reach a maximum e¢ ciency

of 1. As a result, it may seem that a di¤erent example would better demonstrate the advantages of creating

designs by clustering; possible examples include experiments with more models being considered (perhaps with

a larger distinction between them), or a wider uncertainty in the parameter space, as is often the case when the

expert cannot give one set of estimates, but considers di¤erent scenarios.

But even in this example, the design created by clustering has an advantage over the centroid design, hidden

in the left region of the histograms. The relative e¢ ciency between any two designs can be considered as an

equivalent sample size; if the relative e¢ ciency of one design is �, then it requires 1=� times as many observations

to achieve the same D-criterion value. As is visually obvious (see Figure 9), an e¢ ciency value below 0.2 is

related to a drastic increase in the required sample size. It is much more important for a robust design to have

as small as possible a fraction of low e¢ ciencies, rather than to include high e¢ ciencies.
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Figure 9: The importance of having as small a portion as possible of low e¢ ciencies

Comparing the e¢ ciency histograms of the centroid and cluster designs, it is seen that the left tail of the
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cluster design is thinner. In fact, for the cluster design only 2% of the 20,000 models considered have e¢ ciency

smaller than 0.2, in comparison to 4.5% of the models for the Centroid design. Hence, clustering creates a more

robust design by decreasing the portion of the uncertainty space that, if discovered to be the true setup, would

render the design seriously ine¢ cient.

7. ALGORITHM SUMMARY

We now summarize the algorithm steps for the creation of a robust design through clustering:

1. Translate prior experimental results or experts�opinion into a set of possible models, with their uncertainty

de�ned and estimated.

2. For each model, linear predictor, link function, and/or target criterion, create a sequence of possible

parameter vectors, according to a de�ned distribution, as agreed in the �rst step. Sampling the parameter

space using a low-discrepancy sequence should be preferred over a random sample. In the examples

provided, we used 100 vectors produced by a Niederreiter�s (1988) low-discrepancy sequence.

3. Find local optimal designs for all the sequences created in step 2 (see section 2 for details).

4. Group the local designs from all models into a single matrix. Apply slight jittering on the components;

we decreased from the absolute value of each matrix element a uniformly distributed random variate on�
0; 10�4

�
.

5. Choose a number of support points, K, and use a K-means clustering procedure on the matrix to produce

a design. We recommend using the sum of the absolute di¤erences as a distance measure, so that each

centroid will be the component-wise median of the points in each cluster (In MATLAB this can be done

using the "kmeans" function with the option "cityblock" for distance.)

6. Repeat the process for various choices of K, in order to choose the most appropriate value.

7. For the chosen K value apply clustering numerous times (we used 100 repetitions). After each clustering

attempt, calculate the information matrix of the outcome for all the models and parameter vectors chosen

in step 2. Sum the log of the determinants of the information matrices. Use the clustering output with

the highest sum as your design.

8. CONCLUSIONS

Local D-optimal designs for GLM can be easily found using existing algorithms and computer packages with

minor adjustments. Creating a database of local optimal designs in accordance with an a-priori formulation of

uncertainty of the model (in the parameter space, the model considered, link function, etc.), can be used to

�nd a design robust to all aspects of the described uncertainty. The heuristic proposed is to then cluster the

resulting database. Clearly, this is a simple procedure, requiring minimal computational resources or time even

for complex models.
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The speed of the process allows exploration of various designs and an investigation of the e¤ect of choosing

di¤erent numbers of support points is encouraged. Special attention should be paid to �nding designs with as

small a fraction as possible of very low e¢ ciencies, say lower than 0.2. It has been demonstrated that the ability

to explore in a short time many alternative designs helps this simple procedure outperform more sophisticated

and complex design optimization methods.
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APPENDIX: LOW-DISCREPANCY SEQUENCES

This appendix is intended to provide background on low-discrepancy sequences in general, and particulary

on Nieddreiter�s (1988) quasirandom sequence. Source code for an implementation (for MATLAB, C++

and Fortran90) can be found at http://www.csit.fsu.edu/~burkardt/m_src/niederreiter2/niederreiter2.html ;

in addition to the source code the site brie�y explains the nature of the algorithm:

"A quasirandom or low discrepancy sequence, such as the Faure, Halton, Hammersley, Niederreiter or

Sobol�sequences, is �less random�than a pseudorandom number sequence, but more useful for such tasks as

approximation of integrals in higher dimensions, and in global optimization. This is because low discrepancy

sequences tend to sample space �more uniformly�than random numbers. Algorithms that use such sequences

may have superior convergence."

We used NIEDERREITER2 which, as explained in the URL above, is an adapation of the INLO2 and

GOLO2 routines in ACM TOMS Algorithm 738. The original code can only compute the "next" element of

the sequence. The revised code allows the user to specify the index of any desired element. The original, true,

correct version of ACM TOMS Algorithm 738 is available in the TOMS subdirectory of the NETLIB web site.

An Illustration

Figure A.1 compares 100 pseudorandom observations on [0; 1]3 ; produced by the command "RANDOM=rand(100,3)"

in MATLAB (The MathWorks inc.), to a 3 dimensional Niederreiter base 2 low-discrepancy sequence with 212

used as a seed, produced with the code suggested above. The upper row of the �gure contains the 2-dimensional

projections of the pseudorandom sequence, and the bottom row has the corresponding projections for Nieder-

reiter�s quasi-random sequence.
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Figure A.1: Comparison of 2D projections of a pseudorandom sequence (top row)

and a Niederreiter�s quasi-random sequence (bottom row)

Clearly, the low-discrepancy sequence covers the space more evenly, avoiding empty gaps which are common

in the pseudorandom sequence.

A brief overview on the mathmatical foundations of low-discrepency sequences can be found from Wikipedia,

The Free Encyclopedia, at http://en.wikipedia.org/w/index.php?title=Low-discrepancy_sequence&oldid=27681750

; the rest of this appendix is a part of the description in the quoted link.

A low-discrepancy sequence is a sequence with the property that for all N , the subsequence x1; :::; xN is

almost uniformly distributed (in a sense to be made precise), and x1; :::; xN+1 is almost uniformly distributed

as well. Low-discrepancy sequences are also called quasi-random or sub-random sequences, due to their use in

situations similar to those when pseudorandom or random numbers are used instead. The "quasi" modi�er is

used to denote more clearly that the numbers are not random (and to di¤erentiate them from pseudorandomness,

which uses di¤erent assumptions), but have useful properties similar to randomness in certain applications such

as the quasi-Monte Carlo method.

The notion of uniformity is made precise as the discrepancy de�ned below. Roughly speaking, the discrepancy

of a sequence is low if the number of points falling into a set B is close to the number one would expect from the

measure of B. At least three methods of numerical integration can be phrased as follows. Given a set x1; :::; xN

in the interval [0; 1], approximate the integral of a function f as the average of the function evaluated at those

points:
R 1
0
f (u) du � 1

N

NP
i=1

f (xi) : If the points are chosen as xi = i=N , this is the rectangle rule. If the points

18



are chosen to be randomly (or pseudorandomly) distributed, this is the Monte Carlo method. If the points are

chosen as elements of a low-discrepancy sequence, this is the quasi-Monte Carlo method. A remarkable result,

the Koksma-Hlawka inequality, shows that the error of such a method can be bounded by the product of two

terms, one of which depends only on f , and another which is the discrepancy of the set x1; :::; xN .

It is convenient to construct the set x1; :::; xN in such a way that if a set with N +1 elements is constructed,

the previous N elements need not be recomputed. The rectangle rule uses points set which have low discrepancy,

but in general the elements must be recomputed if N is increased. Elements need not be recomputed in the

Monte Carlo method if N is increased, but the point sets do not have minimal discrepancy. By using low-

discrepancy sequences, the quasi-Monte Carlo method has the desirable features of the other two methods.

De�nition of discrepancy

The Star-Discrepancy is de�ned as follows, using Niederreiter�s notation.

D�
N (P ) = sup

B2J�

���A(B;P )N � �s (B)
��� where P is the set x1; :::; xN , �sis the s-dimensional Lebesgue measure,

A(B;P ) is the number of points in P that fall into B, and J� is the set of intervals of the form
sQ
i=1

[0; ui) where

ui is in the half-open interval [0; 1). Therefore D�
N (P ) = kdisck1 where the discrepancy function is de�ned by

disc(y) = A([0;y);P )
N � �s ([0; y))

Two main conjectures

Conjecture 1. There is a constant cs depending only on s, such that D�
N (x1; :::; xN ) � cs

(lnN)s�1

N for any

�nite point set x1; :::; xN .

Conjecture 2. There is a constant c0s depending only on s, such that D
�
N (x1; :::; xN ) � c0s

(lnN)s

N for any

in�nite sequence x1; x2; x3; :::

These conjectures are equivalent. They have been proved for s � 2 by W. M. Schmidt. In higher dimensions,

the corresponding problem is still open. The best-known lower bounds are due to K. F. Roth.

The best-known sequences

Constructions of sequences are known (due to Faure, Halton, Hammersley, Sobol�, Niederreiter and Van der

Corput) such that D�
N (x1; :::; xN ) � C

(lnN)s

N where C is a certain constant, depending on the sequence. After

Conjecture 2, these sequences are believed to have the best possible order of convergence.
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