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1. Introduction

Game theory models rational agents as selfish players who take actions independently of each other. In reality, players’
decisions often depend on correlated external events (sunspots) and players may exchange messages before taking decisions.
The correlation of actions was formalized in the seminal work of Aumann (1974) who showed that correlated actions may
achieve (Pareto-)better outcomes. Aumann’s correlated equilibrium requires a centralized and trustworthy mediator, whose
existence is generally a demanding assumption. An alternative model that allows players to correlate their actions involves
cheap-talk, where players communicate directly with each other in a non-binding and costless way (see, e.g., Crawford and
Sobel, 1982; Farrell and Rabin, 1996). Many papers study the implementation of correlated equilibria by such decentralized
communication (Abraham et al., 2006, 2008; Barany, 1992; Ben-Porath 1998, 2003; Gerardi, 2004).

Most of the literature on cheap-talk concerns static games, with or without complete information. The very nature of
sequential games allows for various types of correlation mechanisms (Forges, 1986; Myerson, 1986): the mediator can send
messages before the beginning of the game, send additional messages during the play and receive messages from the play-
ers. A mediator who only sends pre-play messages gives rise to a normal form correlated equilibrium. If the mediator sends
further messages at each stage, it gives rise to an extensive form correlated equilibrium. When the mediator exchanges mes-
sages with the players all through the game, the corresponding equilibrium concept is termed communication equilibrium
(see Forges, 1986, for this classification). This latter equilibrium concept encompasses all others. A natural question is then
whether in sequential games, any communication equilibrium can be implemented by using cheap-talk, without the help
of a mediator. Another issue is the implementation of communication by pre-play procedures (mediated or not). Indeed, in
some applied settings, players may be able to communicate only before the start of the game; in others, communication
during the game may be costly and insecure. For example, in the midst of a military action, communication among units of
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the same army may be insecure or even impossible. On the stock market, traders receiving an important piece of news need
to act quickly, and every minute devoted to communication may have dramatic effects on performance (see Heller, 2010b).
The aim of the present paper is to study the implementation of communication equilibria by cheap-talk and/or pre-play
procedures.

We consider extensive form games with public information (Dubey and Kaneko, 1984; Osborne and Rubenstein, 1994),
where at each point of time, all players have the same information about the past history of the game. The length of the
game is possibly infinite. These games include repeated games and, more generally, stochastic games with perfect monitoring
of actions, where the players have symmetric information on the state variable.

Our first result (Theorem 9) shows that any communication equilibrium can be implemented by a pre-play correlation
device (a mediator sends messages to the players before the game starts) complemented by a simple cheap-talk mechanism,
where every player sends a single public message before each stage.

Our second result (Theorem 10) shows that when there are at least three players, one can replace the mediator by a
cheap-talk phase that takes place before the game starts. As a consequence, communication equilibria are implementable by
cheap-talk procedures. The cheap-talk mechanisms we use have two alternative forms. In the first form, the players perform
a long cheap-talk phase before the game starts, thereby exchanging many private messages. During the play, short cheap-
talk phases are performed whereby each player sends a single public message. In the second form, the players perform
cheap-talk phases before the game starts and at every stage along the play. The length of each cheap-talk phase is random,
but the expected number of messages sent at each phase is finite.

We now discuss the main ingredients of the proofs of these results. To prove Theorem 9, we first strengthen the result of
Solan (2001) and show that in games with public information, communication ε-equilibria are equivalent to extensive form
correlated ε-equilibria, i.e., it is not essential to assume that the mediator receives messages from the players or observes
the actual history of the game. Thanks to the revelation principle (see Forges, 1986 and Myerson, 1986), any communication
equilibrium can be implemented by a device which observes the history and sends recommendations that are obediently
followed by the players. If the mediator does not observe the history nor receives messages, it is enough to let it send lists
of history-dependent recommendations, and to let players coordinate on the messages relevant to the actual history. Second,
we let the mediator act only at the pre-play stage. We use authentication schemes à la Rabin and Ben-Or (1989) to let the
device send to each player encrypted recommended actions for the whole game. The encoding keys are told to another
player. At each stage of the game, players simultaneously broadcast the encoding keys. The authentication properties of the
schemes of Rabin and Ben-Or enable all players to know whether a broadcasted key is genuine or not.

To prove Theorem 10, we rely on the secure multiparty computation protocols of Rabin and Ben-Or (1989), and of Ben-
Or et al. (1988). These cheap-talk protocols allow players to jointly compute outputs which are polynomial functions of the
profile of private inputs of players. The computation is secure in that player i learns his own output without getting any
information on the inputs and outputs of the other players. These protocols have been used for cheap-talk implementation
of correlated equilibria in one-stage games in Abraham et al. (2006, 2008) and Heller (2010a). The novelty of the present
paper is the adaptation of these protocols for the implementation of communication equilibria in multistage games.

Stochastic games are a special kind of games with public information, where the players perfectly observe the state
variable and the action profile. Vieille (2000a, 2000b) proved that any two-player undiscounted stochastic game (with a finite
number of states) admits an equilibrium payoff (without any communication). Whether this holds true for stochastic games
with more than two players is an open problem. Solan and Vieille (2002) proved that any undiscounted n-player stochastic
game (with a finite number of states) admits an extensive-form correlated equilibrium. Our results yield the following
corollary: Every undiscounted n-player stochastic game (with a finite number of states) admits a cheap-talk equilibrium
payoff, i.e., a communication equilibrium payoff that involves only cheap-talk, with one of the two cheap-talk mechanisms
described above.

The paper is organized as follows. The model and the results are described in Section 2. The proof of the first main result
is given in Section 3, and the proof of the second main result is given in Section 4. We conclude in Section 5.

2. Model

2.1. Games with public information

We study a class of extensive form games, henceforth called games with public information, where there is a timing
structure, and at each point of time, all players have the same information about the past history of the game. These are
multistage games, where at each stage, the moves of each player and of chance are publicly disclosed.1 The game played
at each stage can be history dependent. This class of games has been described in the literature as extensive games with
perfect information and simultaneous moves (see Osborne and Rubenstein, 1994, p. 102, based on Dubey and Kaneko, 1984),
or as multistage games (see Forges, 1986). Let us define such games formally, following Osborne and Rubenstein (1994).

A game with public information is a tuple G = 〈I, H, P , A, f , (ui)〉 where:

• I is a finite set of players.

1 All of our results hold if players have symmetric partial information about chance moves.
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• H is a set of sequences, finite or infinite, called histories. A history is denoted h = (ak)k=1,...,K where K ∈ N ∪ {+∞} is
the length of h. The following three properties are assumed:
� The empty sequence ∅ is a member of H .
� A prefix of a history is a history: If (ak)

K
k=1 ∈ H and L < K then (ak)

L
k=1 ∈ H .

� If all prefixes of an infinite sequence (ak)
∞
k=1 are histories, then so is the infinite sequence. That is, if (ak)

L
k=1 ∈ H for

every positive integer L then (ak)
∞
k=1 ∈ H .

A history (ak)
K
k=1 ∈ H is terminal if it is infinite, or if there is no aK+1 such that (ak)

K+1
k=1 ∈ H . The set of terminal

histories is denoted Z .
• P is a mapping that assigns to each non-terminal history h the set of players P (h) ⊆ I that have to take an action after

history h. If P (h) = ∅ then there is a chance move after history h.
• A is a mapping that assigns to every non-terminal history h such that P (h) �= ∅, and to every player i ∈ P (h), a finite

set Ai(h) of actions available to player i after that history. Let A(h) be the set of available action-profiles at h: A(h) =
×i∈P (h) Ai(h). If P (h) = ∅ for some non-terminal history h, then A(h) is the finite set of chance moves at the history h.

The set of histories H , and the function A satisfy the following property. For every non-terminal history h: a ∈ A(h) ⇔
(h,a) ∈ H . That is, a history h = (ak)k=1,...,K is a sequence of action profiles where the components of ak are the actions
taken by players i ∈ P ((al)

k−1
l=1 ) or by chance (if P ((al)

k−1
l=1 ) = ∅):

• f is a mapping that assigns to every non-terminal history h such that P (h) = ∅, a probability distribution f (·|h) over
chance moves A(h). That is, when chance has to move after a non-terminal history h, an action a ∈ A(h) is chosen
according to the probability distribution f (· | h).

• For each player i ∈ I , ui : Z → [0,1] is the payoff function of player i defined over terminal histories. This function is
assumed to be measurable with respect to the product σ -algebra on H ; the σ -algebra over each finite set A(h) is the
discrete σ -algebra.

The game unfolds as follows. The empty history is the starting point of the game. Players in P (∅) choose actions simulta-
neously (if P (∅) = ∅, then chance chooses an action according to the distribution f (· | ∅)). Given the chosen action profile a,
players in P (a) choose actions at the next stage and so on until a terminal history z is reached (recall that histories can be
infinite and that an infinite history is terminal). Each player i ∈ I receives the payoff ui(z).

Games with public information encompass extensive form games without information sets, repeated games with perfect
monitoring of actions where all players move at each stage, and more generally, stochastic games with perfect monitoring
of state and actions, where the current game depends on a parameter that evolves according to the moves of the players
and of chance. In fact, any game with public information can be represented as a stochastic game, where H is the state
space and the law of motion is the one described above by the data of P and f .

2.2. Communication and correlated equilibria

Since the seminal work of Aumann (1974) on correlated equilibria, various solution concepts extending Nash equilibria
have been proposed to account for possibilities of costless communication between the players. We present now the main
solution concepts, following Forges (1986) and Myerson (1986).

A communication device is an agent that exchanges messages with the players between game stages. This models a
trustworthy mediator, which helps the players communicate and correlate their actions. It specifies spaces of messages that
the device sends to the players, spaces of messages that the device receives from the players, and the rule according to
which the device sends messages.

Formally, let G be a game with public information. A communication device is a tuple D = ((Si(h))i∈I,h∈H\Z ,

(Ri(h))i∈I,h∈H\Z ,μ) where:

• For each player i, Si(h) is a measurable set of signals that the device can send to player i after history h, and Ri(h) is
a measurable set of messages that the device can receive from player i after history h.

An extended history is a triple (h, s, r) where h = (ak)
K
k=1 is a non-terminal history of the game, s = (sk)

K
k=1, and r = (rk)

K
k=1

are feasible histories of messages, i.e., for each n < K , sn+1 ∈ S(hn) := ×i∈I Si(hn), and rn+1 ∈ R(hn) := ×i∈I Ri(hn), with
hn := (ak)k�n .

• μ is a transition probability that maps extended histories to probability distributions over signals sent to the players:
μ(·|h, s, r) ∈ Δ(S(h)) is a probability distribution over S(h).

Given a communication device D , the game extended by D, noted G(D), unfolds as follows. After each extended history
(h, s, r) = ((ak)

K , (sk)
K , (rk)

K ):
k=1 k=1 k=1
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(1) The device chooses a profile of signals sK+1 = (si
K+1) ∈ S(h) according to μ(h, s, r). Each player i is privately informed

of si
K+1.

(2) Each player i ∈ P (h) chooses an action ai
K+1 in Ai(h) (if P (h) = ∅ then chance’s move aK+1 ∈ A(h) is randomly chosen

according to f (·|h)). The selected action profile (or chance’s move) aK+1 is publicly announced.
(3) Each player i ∈ I sends a private message ri

K+1 ∈ Ri(h) to the device.

Remark 1. The definition of a communication device adopted here is called a general communication device in Solan (2001),
since in the original definition of Forges (1986), the device does not observe the history of the game. However, in games
with public information, this is the same concept. Indeed, at each stage K , the device may send to each player a vector of
messages, one for each possible history of length K . The recommendations for a given history depend on past recommen-
dations given along this history. In other words, the device simulates in parallel all possible executions of the game and
proceeds in each instance as if it were the actual game. Since histories are common knowledge, all players know which
message to take note of, and the messages associated to unrealized histories are irrelevant to them.

Throughout the paper, we assume that players have perfect recall and use behavior strategies. A behavior strategy of
player i in G(D) is a function yi = (xi,mi) mapping the extended histories of observations of player i to probability distri-
butions over actions or messages chosen by player i. That is, let (h, s, r) = ((ak)

K
k=1, (sk)

K
k=1, (rk)

K
k=1) be an extended history.

At stage K , player i has observed (h, (si
k)

K
k=1, (r

i
k)

K
k=1) and receives the new signal si

K+1. Then xi(h, (si
k)

K+1
k=1 , (ri

k)
K
k=1) is the

probability distribution over Ai(h) used by player i for choosing his new action (whenever i ∈ P (h)). After actions have been
chosen, player i has observed (h,aK+1, (si

k)
K+1
k=1 , (ri

k)
K
k=1) and chooses a new message ri

k+1 according to a distribution over

Ri(h) denoted mi(h,aK+1, (si
k)

K+1
k=1 , (ri

k)
K
k=1).

We denote by γ i
D(y) = E y(ui(z)) the expected payoff of player i with respect to the probability distribution induced

by the correlation device D and the strategy profile y over terminal histories. For ε � 0, a strategy profile y is an ε-Nash
equilibrium of the extended game G(D) if for every player i ∈ I and every strategy ŷi of player i: γ i

D(y) � γ i
D(y−i, ŷi) − ε,

where −i denotes I\{i} and y−i = (y j) j �=i .

Definition 2. Let G be a game with public information and ε � 0. A communication ε-equilibrium of G is a communication
device D and an ε-Nash equilibrium of G(D). A payoff vector g ∈ R I induced by a communication ε-equilibrium is a commu-
nication ε-equilibrium payoff. A payoff vector g ∈ R I is a communication equilibrium payoff if it is the limit of communication
ε-equilibrium payoffs as ε > 0 goes to 0.

Remark 3. A communication 0-equilibrium payoff is a communication equilibrium payoff. The converse need not be true. It
is possible that communication 0-equilibria do not exist whereas communication equilibrium payoffs do (see, e.g., the “Big
Match” in Blackwell and Ferguson, 1968).

Special classes of communication devices are the following:

• A communication device D is canonical if the mediator does not receive inputs from the players (Ri(h) is a singleton
for all i,h), and the signal it sends to each player i is a recommended action that player i should play at the next stage:
Si(h) = Ai(h) if i ∈ P (h), a singleton otherwise.

• A communication device is autonomous if the mediator does not receive inputs from the players (Ri(h) is a singleton)
and does not observe the history of the game (Si(h) and μ(·|h, r, s) depend on h only through its length K ).

• A communication device is a pre-play correlation device if it only sends messages before the beginning of the game, that
is Si(h) is a singleton unless h = ∅.

When the communication device D is canonical, one strategy that is available to each player i is the obedient strategy
σ̂ i that follows the device’s recommendation. For ε � 0, (D, (σ̂ i)i∈I ) is a canonical communication ε-equilibrium if D is a
canonical communication device and the obedient strategy profile σ̂ = (σ̂ i)i∈I is an ε-equilibrium of G(D). For ε � 0,
an extensive form correlated ε-equilibrium (correlated ε-equilibrium) of G is a communication ε-equilibrium induced by an
autonomous (pre-play correlation) device.

Remark 4. A revelation principle applies to communication equilibria (see Forges, 1986; Myerson, 1986). That is, any com-
munication ε-equilibrium is equivalent to a canonical communication ε-equilibrium where the device recommends actions
to the players, at equilibrium each player actually plays the recommended action, and then players faithfully report their in-
cremental information to the device. Here, the reports of the players consist in announcing the newly played action profile,
which is superfluous since the device observes the history. It is thus without loss of generality to assume that the players
do not send messages.
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This discussion leads to the following proposition.

Proposition 5. Let G be a game with public information. For every ε � 0, every communication ε-equilibrium is equivalent to:
(1) a canonical communication ε-equilibrium, and (2) an extensive form correlated ε-equilibrium.

A similar result is proved in Solan (2001), who shows that for games with public information and general action spaces,
communication and extensive form correlated equilibrium payoffs coincide. Proposition 5 is slightly stronger: every commu-
nication ε-equilibrium can be exactly replicated by an autonomous (or canonical) device. The first part of the proposition
directly follows from the revelation principle. The proof of the second part of the proposition is a building block of the proof
of Theorem 9, and is given in Section 3 for the sake of completeness.

Proposition 5 is specific to games with public information. For instance, in repeated games with imperfect private moni-
toring of actions, communication and extensive form correlated equilibria are not equivalent (see Renault and Tomala, 2004).
It is known, however, that pre-play correlated equilibria are not equivalent to extensive form correlated equilibria, even in
games with public information, see Forges (1986).

2.3. Cheap-talk

Cheap-talk is a particular form of communication where players can freely and costlessly exchange messages without any
mediation.2 In our cheap-talk model, we assume that each player is able to send a private message to any other player (and
no other player can intercept this message), and that each player is able to broadcast public announcements.3 In addition
we assume that the identity of the sender of each message is certifiable.

Definition 6.

• A cheap-talk phase specifies a finite message space M containing a null message ♦, and consists of (possibly infinitely
many) rounds of communication. In each round n, each player i can send simultaneous private and public messages (i.e.
send a private message to each player j and/or broadcast a message).

• A cheap-talk extension G∗ of a game with perfect information G is a game in extensive form where, after each non-
terminal history h, a cheap-talk phase is played with a history dependent message space M(h).

• A cheap-talk ε-equilibrium payoff of G is an ε-equilibrium payoff of a cheap-talk extension G∗ of G . A cheap-talk equi-
librium payoff is the limit of ε-equilibrium payoffs as ε > 0 goes to 0.

Cheap-talk extensions are particular kinds of communication devices, and consequently a cheap-talk ε-equilibrium is a
communication ε-equilibrium. Though a cheap-talk phase can have infinitely many rounds, in most of our constructions,
the number of communication rounds is either finite, or has finite expectation. Denote by si, j

k,n (resp. si,I
k,n) the private (resp.

public) message that player i sends to player j (resp. broadcasts) at the n-th round of the k-th cheap-talk phase. An
i-information set in a cheap-talk extension after the N-th round of the K -th cheap-talk phase is (h, si, N) where h = (ak)

K
k=1

is a history of the game, si = (si
k)

K+1
k=1 is the history of messages that player i sent or received in past cheap-talk phases

(1, . . . , K ), and in the current phase (K + 1) until round N (N may be finite or infinite). That is, for each k < K + 1,
si

k = (si, j
k,n, s j,i

k,n, s j,I
k,n) j∈I,n�1 is the sequence of messages player i sent or received in the k’th cheap-talk phase, and si

K+1 =
(si, j

K+1,n, s j,i
K+1,n, s j,I

K+1,n) j∈I,1�n�N is the sequence of messages that player i sent or received in the first N rounds of the

K + 1’th cheap-talk phase. A behavior strategy of player i in G∗ is denoted by yi =(xi, (mi
N )N�1) and maps i-information

sets to distributions over actions and messages. For an i-information set (h, si,∞) (∞ indicates the end of a cheap-talk
phase), we denote xi(h, si,∞) the probability distribution of the next action chosen of player i. For each i-information set
(h, si, N) where N is finite, we denote mi

n(h, si, N) the distribution of messages sent by player i (a private message for each
player j and a public message) at the (N + 1)-th round of the cheap-talk phase that follows history h.

An extended history in a cheap-talk extension after the N-th round of the K -th cheap-talk phase is a profile of
i-information sets for each player: (h, s, N) = (h, si, N)i∈I . Let y be a strategy profile in G∗ and (h, s) := (h, s,0) an ex-
tended history at the beginning of the cheap-talk phase that follows history h. The length of the cheap-talk phase that follows
(h, s) is a random variable denoted l y(h, s). That is, l y(h, s) is the minimal n0, such that for each round n � n0, all messages
that are sent by the players are equal to ♦. If there exists no such n0, ly(h, s) = ∞.

Definition 7. A strategy profile y in G∗ is finite-in-expectation if ly(h, s) has finite expectation for every extended history (h, s). The
strategy profile y is finite if there is L0 ∈ N such that ly(h, s) < L0 , for every extended history (h, s).

2 See Farrell and Rabin (1996) for a non-technical introduction to some of the main issues of cheap-talk.
3 When there are four or more players, the constructions may be adapted to use only 2-player private channels. Cryptographic assumptions (players are

computationally restricted and “one-way” functions exist) are needed to adapt the constructions to use only public announcements (see Abraham et al.
2006, 2008 and Urbano and Vila, 2002).
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An important feature of our work is the implementation of communication by pre-play correlation and short cheap-talk
phases. We thus examine extensions of the game where after the first stage, players only make public announcements.

Definition 8. An almost-pre-play cheap-talk ε-equilibrium of G is an ε-equilibrium y of the game extended by cheap-talk
such that at all cheap-talk phases, except at the first one, each player sends a single public message. That is: (1) the length
of each cheap-talk phase is 1: ∀h �= ∅, l y(h, s) � 1, and (2) all private message are null: ∀k > 1, n > 0, i, j ∈ I , si, j

k,n = ♦.
An almost-pre-play correlated ε-equilibrium of G is an ε-equilibrium of the game extended by a pre-play correlation device

and by cheap-talk such that only public messages are sent: (1) ∀h �= ∅, l y(h, s) � 1, and (2) ∀k > 1, n > 0, i, j ∈ I , si, j
k,n = ♦.

2.4. The main results

Our first result shows that in games with public information, a communication equilibrium payoff, or equivalently, an
extensive form correlated equilibrium payoff, is an almost pre-play correlated equilibrium payoff. That is, the device may
act only before the beginning of the game, provided that players can make cheap-talk public announcements throughout
the game.

Theorem 9. Let G be a game with public information, and g ∈ RI a communication equilibrium payoff. Then g is an almost-pre-play
correlated equilibrium payoff.

The formal proof in Section 3. The intuition is as follows. The device draws all recommendations for all possible histories.
Each recommendation is then encrypted using an encoding key. Player i is told the encrypted recommendations for himself,
while the encoding keys (one key for each recommendation) is told to another player j. At the relevant stage, player j
announces the encoding key so as to allow player i to learn the recommendation. To prevent player j announcing a false
value of the key, the device authenticates the key in such a way that player i is able to tell whether the key is genuine or
forged. This is done using the authentication schemes of Rabin and Ben-Or (1989), called check vectors therein.

Our second result shows that with more than two players, the mediator can be fully dispensed with. We show that, if
there are at least three players, any communication equilibrium payoff is an almost-pre-play cheap-talk equilibrium payoff
and a finite-in-expectation cheap-talk equilibrium payoff. Finally, if there are at least four players, it can be obtained as a
finite cheap-talk equilibrium payoff.

Theorem 10. Let G be a game with public information with three or more players, and g ∈ RI a communication equilibrium payoff.
Then,

(1) g is a finite-in-expectation cheap-talk equilibrium payoff. Moreover, if there are four or more players, then g is a finite cheap-talk
equilibrium payoff.

(2) g is an almost-pre-play cheap-talk equilibrium payoff.

The proof is given in Section 4. The main idea is to use the secure multiparty computation protocols of Rabin and Ben-Or
(1989), and of Ben-Or et al. (1988). These protocols allow the players to replace the mediator by cheap-talk. When there are
three players we adapt the protocol of Rabin and Ben-Or, which is finite-in-expectation, and when there are four or more
players we adapt the protocol of Ben-Or et al., which is finite.

Remark 11. A game with public information G is finite if there exists N0 ∈ N such that the length of each history is at most N0 . Our
proofs actually show that if G is finite, then any communication equilibrium payoff can be implemented by cheap-talk procedures
which have both properties: finite-in-expectation (or finite if there are at least four players) and almost-pre-play.

Special kinds of games with public information are stochastic games. Applying our results to these games, and relying on
the result of Solan and Vieille (2002), which shows that any n-player stochastic game admits an extensive form correlated
equilibrium, gives the following corollary:

Corollary 12. Every undiscounted n-player stochastic game (with a finite number of states) admits a finite cheap-talk equilibrium
payoff, an almost-pre-play cheap-talk equilibrium payoff, and an almost-pre-play correlated equilibrium payoff.

Most existing literature of cheap-talk implementation deals only with finite games and with implementation of normal-
form correlated equilibria, see, e.g., Forges (1990), Barany (1992), Ben-Porath (1998, 2003), Gerardi (2004), Abraham et al.
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(2006, 2008), and Heller (2010a). The main contribution of the present paper is the cheap-talk implementation of commu-
nication equilibria of extensive games with public information (finite and infinite).4

3. Proof of Theorem 9

Let G be a game with public information. From the revelation principle, we may assume without loss of generality that:
(1) the device observes the history of the game and recommends actions to the players, and (2) players obediently play the
recommended actions and do not send any messages. Let us fix a canonical communication device D such that the obedient
profile is an ε-equilibrium of the extended game, and let g be the corresponding payoff. The canonical communication ε-
equilibrium is given by a transition probability μ(·) from extended histories to recommended actions. For any pair (h, s),
where h is a non-terminal history of the game and s is a history of recommendations, μ(h, s) is a probability distribution
over A(h).

We begin by proving the second part of Proposition 5. We define first an autonomous device D∗ (which does not observe
the actual history) equivalent to D . We denote by H K the set of histories of length K (H0 = {∅}).

Step A. In a pre-play phase, D∗ does the following:

• s1(∅) ∈ A(∅) is drawn from μ(∅).
• For all a1 ∈ H1, s2(a1) ∈ A(a1) is drawn from μ(s1(∅),a1).
• For all h2 = (a1,a2) ∈ H2, s3(h2) ∈ A(h2) is drawn from μ(s1(∅),a1, s2(a1),a2).
• By induction, for all hK = (a1, . . . ,aK ) ∈ H K , sK+1(hK ) ∈ A(hK ) is drawn from μ(s1(∅),a1, . . . , sK (hK−1),aK ).

The construction implicitly stops when a terminal history is reached.
Step B. At the beginning of each stage K + 1, the device informs player i of {si

K+1(hK ): hK ∈ H K }.

The obedient strategy of player i consists of playing si
K+1(hK ) at stage K + 1 if the history hK occurred and i ∈ P (hK ).

The device D∗ and the obedient strategies form an extensive form correlated ε-equilibrium of the game which is equivalent
to D . Indeed, at each stage K + 1, after history hK , player i has the same information about other players’ recommendations
as under D . Moreover, player i expects all other players to obediently play the recommendations associated to hK . He has
thus the same incentives to play obediently as under D . This proves Proposition 5.

To construct an almost pre-play correlated equilibrium, we need to modify the device D∗ , so that the modified device
sends messages only before the start of the game. First, minimax punishments are needed in case a deviation is detected.
For each player i and history h, define

vi
h = inf

σ−i
sup

yi
γ i

h

(
yi,σ−i),

where γ i
h denotes the payoff of player i in the continuation game that follows h, and where the inf runs over correlated

distributions of strategies of players −i. For each player i, and each history h, let σ−i∗ (i,h) be such a distribution that
achieves the infimum up to ε. The device draws y−i∗ (i,h) according to σ−i∗ (i,h) for each i,h. Each player j is informed of

{
y j∗(i,h): h ∈ H, i �= j

}
.

We describe now how the recommended actions are processed. The modified device D∗∗ performs Step A as above. For
each history h, fix a prime number ph such that ph > |Ai(h)| for each i and ph > 1

ε . In the sequel, Ai(h) is treated as a
subset of Zph , the finite field of integers modulo ph . We also fix for each player i a player j(i) �= i. For each history h and
each player i ∈ P (h), the device does the following:

• The device draws three random variables (xi
h,αi

h, β i
h) independently and uniformly distributed in Zp .

• Player i is informed of (yi
h := xi

h + si(h)).
• Player j(i) is informed of (xi

h, ui
h := αi

hxi
h + β i

h).
• All players except player j(i) are informed of (αi

h, β i
h).

The random draws are all done at the pre-play stage and independently across players and histories. The device then
sends all these random messages to the respective players. Let us now describe the strategies of the players. After each
history h (where P (h) �= ∅):

• All the players in { j(i): i ∈ P (h)} simultaneously broadcast the pairs (x̂i
h, ûi

h). On the equilibrium path, each player
broadcasts the signals he received from the device. That is, (x̂i

h, ûi
h) = (xi

h, ui
h).

4 Observe that Ben-Porath (1998, 2003) and Gerardi (2004) present an implementation as a sequential equilibrium (of the extended cheap-talk game),
while we present only an implementation as a Nash equilibrium.
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• For each player i ∈ P (h), all players besides j(i) check whether ûi
h = αi x̂i

h + β i
h (they test each j(i)). Player j(i) passes

the test if at least one other player confirms that ûi
h = αi x̂i

h + β i
h .

• If all players j(i) pass their test, each player i plays ŝi(h) := yi
h − x̂i

h . Then the procedure is repeated for the next history

ĥ = (h, (ŝi(h))i∈I ).
• If a single player j does not pass a test, he is minimaxed for the remainder of the game, i.e. other players play y− j∗ ( j,h).
• If several players do not pass their test, the players play arbitrarily until the end of the game.

We have thus defined a pre-play correlation device and strategies in the game with cheap-talk one-shot public an-
nouncements. Note that the induced payoff is g . Indeed, if all players use these strategies, then ŝi(h) = si(h), thus the same
actions are played under D and D∗∗ . Let us now check that we have defined a 2ε-equilibrium.

Observe that player i does not get any information about the recommendations from the announcements of the device.
Since αi

h, β i
h are uniformly distributed, independently of the rest of the game, they convey no meaningful information. Since

xi
h is uniformly distributed, independently of si(h), so is yi

h = xi
h + si(h). This latter quantity thus conveys no information

about si(h). First assume that, after each history h and for each player i ∈ P (h), player j(i) announces the true pair (xi
h, ui

h).
Then, each player j(i) passes the test, and player i learns the value of si(h) = yi

h − xi
h . We have thus replicated the informa-

tion structure of D∗ where player i gets to learn his recommended actions for stage K at the beginning of stage K . Player i
has thus the very same incentives to play the recommended actions as under D∗ .

Second, let us check that for each history h and each player i ∈ P (h), no player j(i) can profitably misreport the pair
(xi

h, ui
h). The key point is that j does not know (αi

h, β i
h) and the probability of guessing this pair correctly, knowing that

ui
h = αi

hxi
h + β i

h , is 1/ph . Let (x̂i
h, ûi

h) be the pair announced by player j(i). The probability of passing the test is

Pr
(
ûi

h = αi
h x̂i

h + β i
h

∣∣ ui
h = αi

hxi
h + β i

h

)
.

If x̂i
h = xi

h then ûi
h = ui

h is necessary to pass the test and thus a misreport is almost surely detected. If x̂i
h �= xi

h , the test
succeeds only if αi

h = (ui
h − ûi

h)(xi
h − x̂i

h)−1 which has probability 1/ph . The probability to pass the test with a false report
is thus at most 1/ph .

Such a deviation of player j(i) is detected by all players with high probability. It yields player j(i) an expected payoff no
greater than (1 − 1/ph)v j(i)

h + 1/ph � g j(i) + 2ε.
Finally, we have to verify that it is not profitable for player i′ to falsely claim that player j(i) failed the test. If there are

only two players, then this is implied by the fact that g is a communication equilibrium payoff. If there are three or more
players, player i′ may profit if I\{ j(i)} are deceived to use a minimax punishment against honest player j(i). The fact that
we required unanimous agreement among I\{ j(i)} to declare that player j(i) failed the test, implies that such a punishment
cannot be falsely activated by a deviation of this type following an honest report of player j(i). Observe, in particular, that
when there are only three players, it is required that both player i and the third player check whether player j(i) tells the
truth.

Remark 13. The punishment is only needed when a deviation from the public announcements is detected. Deviations from
the recommendations are already taken care of by the device, as D∗∗ inherits most incentive properties of D .

Remark 14. The above proof uses the authentication schemes of Rabin and Ben-Or (1989) to process the recommended ac-
tions. Alternatively, it is possible to use a different, and in some aspects simpler, device D∗∗ , which is schematically sketched
as follows.5 Suppose that after some history h, player i has K available actions – (a1, . . . ,aK ), and that the recommended
action of the device D∗ is ak . Device D∗∗ randomly and uniformly chooses K different numbers {l1, . . . , lK } in the set
{1, . . . , L} (for large enough L), and in the pre-play phase it sends: (1) the ordered sequence (l1, . . . , lK ) to player i, isomor-
phic to his available actions; (2) the number lk to player j(i); and (3) a permutation of the ordered sequence (l1, . . . , lK ) in
a random order to all other players besides player j(i). At the mid-play talk phase after history h, player j(i) broadcasts the
number lk that he received (which is interpreted by player i as a recommendation to play action ak). Assuming that player
j(i) followed the protocol, then player i knows his recommended action, while all other players only know that player j(i)
broadcasted a valid recommended action. If player j(i) “lies” (broadcasts any other number), then the deviation is detected
by all other players with high probability.

4. Proof of Theorem 10

The main building block of our cheap-talk implementations is the secure multiparty computation protocols of Ben-Or,
Goldwasser and Wigderson (1988, henceforth BGW) and Rabin and Ben-Or (1989, henceforth RB). These protocols have been
used for cheap-talk implementation of normal-form correlated equilibria in Abraham et al. (2006, 2008) and Heller (2010a).

5 We uses Rabin and Ben-Or’s authentication scheme in order to make the proof of Theorem 9 more similar to the proof of Theorem 10, which extensively
uses schemes of Rabin and Ben-Or (1989).
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In this section we show how to adapt these protocols to implement canonical ε-communication equilibria. Specifically we
use RB’s protocol when there are three players, and BGW’s protocol when there are four or more protocols.

The first subsection describes the main properties of the protocols, and in the following subsections we apply these
protocols to prove the two points of Theorem 10.

4.1. Secure multiparty computations

The main tool for proving Theorem 10 are the protocols of BGW and RB. The setting is as follows. Each player i knows a
secret input xi ∈ Zp . The aim is to jointly compute n polynomials ( f i(x1, . . . , x|I|))i∈I , the outputs, in such a way that player i
learns his own output f i(x1, . . . , x|I|) without getting any information on the inputs and outputs of the other players. With
the help of a mediator, this is very simple. Each player privately reveals his input to the mediator, the mediator computes the
outputs and privately reveals f i(x1, . . . , x|I|) to player i. The aim of secure multiparty computation is to construct a protocol
whereby players send messages to each other and which replicate the computation by the mediator. That is, at the end of
the protocol, each player i learns f i(x1, . . . , x|I|), and the conditional distribution of (x j) j∈I, j �=i and ( f j(x1, . . . , x|I|)) j∈I given
the messages that player i sent and received (and his input xi ) is the same as the conditional distribution given only xi .

The protocols of BGW and RB deal with |I| players, out of which up to t players (t < |I|/2) may jointly deviate from the
protocol. We assume t = 1 and |I| � 3, i.e., only unilateral deviations are possible and there are at least 3 players. The reader
is referred to BGW and RB for a complete definitions of the protocols. Let us now recall the properties of these protocols
that are useful to us.

Both protocols share the following secrecy property: a unilateral deviation does not allow the deviator to acquire any
information about the inputs or the outputs of the other players.6

We now describe reliability properties of these protocols, namely the correction property of BGW’s protocol (with four or
more players), and the weaker monitoring property of RB’s protocol. The concern is that outcomes should not be affected too
much by unilateral deviations.

First, assume that there are at least four players. A strategy of player i is obedient if player i sends the messages recom-
mended by the protocol. Denote mi(xi) the obedient strategy of player i when his input is xi . The protocol of BGW has the
following correction property. If player i deviates and uses a strategy that is not obedient during the multiparty computation
(including sending invalid messages), then his deviation is corrected in the following sense. The computation of outputs
continues as if player i played according to mi(xi), for some xi ∈ Zp . All non-deviating players agree on the same obedient
strategy mi(xi). This agreement is achieved by one of the following: (1) the public broadcasted messages of player i are con-
sistent with a unique mi(xi)7; or (2) these public messages are invalid (they are not consistent with any obedient strategy);
in that case the deviator is identified, and all other players communicate among themselves, and choose the deviator’s input
xi arbitrarily. After the BGW protocol is completed a monitoring subphase is executed: all non-deviating players broadcast
the messages sent and received during the multiparty computation (a deviator may send arbitrary messages). Since there is
a strict majority of obedient players, all players agree on the values of all inputs and outputs.

Second, assume there are three players. Let (x1, . . . , x|I|) be the inputs of the players. A deviation of player i is essential
if the induced outputs of the other players, given that all other players follow the protocol, are different than the outputs
( f j(x1, . . . , x̃i, . . . , x|I|)) j∈I\{i} that are induced by mi(x̃i) for every x̃i ∈ Zp . That is, a non-essential deviation induces the
same outputs as one of the obedient strategies (possibly with a different player i’s input x̃i �= xi ), and therefore it does not
require a special treatment. An essential deviation, on the other hand, induces different outputs, and thereby distorts the
computation. Say that the protocol has the monitoring property if it is followed by a monitoring subphase such that (1) and
(2) below are satisfied:

(1) If only player i deviates during the multiparty computation, and this deviation is essential then all non-deviating players
commonly agree that player i deviated.

(2) If no player deviates during the multiparty computation, then at the end of the monitoring subphase, all non-deviating
players commonly agree: (i) that no deviation occurred, and (ii) on the values of the inputs and outputs of all the
players.

RB constructs a protocol that has the monitoring property with high probability. That is, for each δ > 0 there exists a
protocol such that for every unilateral deviation, the requirements (1) and (2) hold with probability at least 1 − δ. Further,
if no player deviates, then (2) occurs with probability 1.

4.2. Finite cheap-talk implementation

In this subsection we prove the first point of Theorem 10.

6 Though, when a player deviates, non-deviating players may acquire information. If a player receives an invalid message, he requires the sender to
broadcast the message, and he continues the computation with respect to the broadcasted message. Thus, other non-deviating players acquire some
information about inputs or outputs.

7 As part of the protocol, each player who receives an invalid private message, asks the sender to publicly broadcast the message to all other players.
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Proof. We fix a canonical communication device D such that the obedient profile is an ε-equilibrium of the extended
game. Let μ(·) be the corresponding transition probability from extended histories to recommended actions, and g be the
corresponding payoff. Let us construct a finite-in-expectation cheap-talk 3ε-equilibrium z that induces a payoff gε in an
ε-neighborhood of g .

After histories h ∈ H where P (h) = ∅, no communication is executed (players send null messages).
For each extended history (h, s) where h ∈ H is a history of length K such that P (h) �= ∅ and s is a history of recommen-

dations, we construct a cheap-talk phase from which each active player i ∈ P (h) obtains a recommended action ai ∈ Ai(h).
The cheap-talk phase comprises three subphases: (1) monitoring of the previous stage, (2) choosing a profile by multiparty
computation, (3) random monitoring (subphase (3) is needed only when there are three players). We describe how each of
subphase is executed. In the following, we set δ(h) = ε2/2K+1.

(1) Monitoring of the previous stage. Each player publicly broadcasts the messages that he sent and received during the last
computation subphase of the previous cheap-talk phase.

Note that, due to the correction property (or the monitoring property when there are three players), all non-deviating
players commonly agree (with probability at least 1 − δ(h) when there are three players) on the profile of recommended
actions that where induced in the previous cheap-talk phase, even if one of the players deviates in this subphase. As a
consequence, after the extended history (h, s), all non-deviating players agree on the value of s with probability at least
1 − ε2 (with probability 1 if there are at least four players).

(2) Choosing a profile. If there is no coalition of at least |I| − 1 players that agree on the value of s, then players play arbitrarily
in the remainder of the game.

Otherwise, they perform a multiparty computation protocol that draws (ai)i∈P (h) from the distribution μ(h, s) and informs player i
of ai only.

Note that the former case occurs with probability at most ε and only if there are three players and one of them is a
deviator. In the latter case, the multiparty computation protocol is as follows.

Let p = p(h) such that p > 1/δ(h), and p > |Ai(h)| for each i ∈ P (h). We assume that all action sets Ai(h) are subsets of
Zp and let M(h) = Zp ∪ {♦} be the set of messages.8 Let ( f i(·))i∈I be a vector of polynomials over Zp , such that the dis-
tribution of ( f i(x))i∈I approximates μ(h, s) when x is uniformly distributed. Formally, the polynomials satisfy the following
conditions:

• If x is uniformly distributed in Zp , then for all (ai)i∈P (h) ∈ ∏
i∈P (h) Ai(h),

∣∣Pr
((

f i(x)
)

i∈P (h)
= (

ai)
i∈P (h)

) − μ(h, s)
((

ai)
i∈P (h)

)∣∣ < δ(h).

• For each non-active player i /∈ P (h), f i(x) = 1 for all x ∈ Zp .
• If ai ∈ Zp \ Ai(h) for some active player i ∈ P (h), then

Pr
((

f i(x)
)

i∈P (h)
= (

ai)
i∈P (h)

) = 0.

Let each player i choose a uniformly distributed secret input xi ∈ Zp and let x = x1 + · · · + x|I| . As soon as at least one
player i chooses xi uniformly, then x is uniformly distributed, regardless of the way the other secrets (x j) j∈I are chosen.
The players then use the multiparty computation of BGW and RB for computing ( f i(x))i∈P (h) . At the end of this subphase,
each player i obtains the value of his output f i(x), which is interpreted as the protocol’s recommended action for player i:
if f i(x) = ai , then player i should play ai . If some player i does not receive a valid recommended action, he chooses his
action arbitrarily.9

If a player receives an invalid message during the computation subphase (for example, receiving a null message instead
of a number in Zp), then he asks the sender to publicly broadcast the message. If the broadcasted message is invalid as
well, then all non-deviating players commonly know the identity of the deviator and they minimax him for the rest of the
game.

When there are four or more players, the correction property of BGW’s protocol guarantees that unilateral deviations are
corrected by the other players: a recommended action profile is generated according to the desired distribution, and each
player correctly receives his recommended action. When there are three players we add a random monitoring subphase.10

(3) Random monitoring. The players decide, according to a joint lottery, whether to perform a monitoring subphase or not. In the
former case, each player broadcasts all messages he sent and received in the last computation subphase. In the latter case, nothing is
revealed and the cheap-talk phase ends (every player sends null messages), and each player plays his recommended action.

The joint lottery is conducted as follows: each player i simultaneously broadcasts a uniformly distributed random number
yi ∈ Zp . The players perform the monitoring phase if y1 +· · ·+ y|I| < εp, which occurs with probability approximately 1−ε.

8 Since actions sets are finite, we can map actions one-to-one to integers in {1, . . . , p}.
9 This may occur only if one player deviates during the computation, and if there are exactly three players.

10 This subphase is an adaptation of the random monitoring presented in Ben-Porath (1998), see also Heller (2010a).
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If some player i does not broadcast a valid number, we set yi = 0. The sum of the yi ’s is uniformly distributed as soon as
at least one player i chooses yi uniformly.

The monitoring property of RB’s protocol guarantees that when the monitoring subphase is executed (regardless of any
unilateral deviation during this subphase), with probability at least 1 − δ(h), all non-deviating players correctly agree on the
identity of any single deviator in the computation subphase (assuming that his deviation was essential). When everyone
(besides player i) agrees that player i deviated, then all the other players minimax player i for the rest of the game: they
use cheap-talk communication to implement a correlated profile that minimizes player i’s payoff.11 If no essential deviation
was detected in the monitoring subphase, the players choose a new profile using a new computation subphase.

This completes the description of the cheap-talk extension and of the strategies. Now we prove that we have defined a
3ε-equilibrium that induces a payoff ε-close to g .

First, observe that if all players follow the strategies z, the distributions of actions are close to the one given by μ
and thus the payoff is in an ε-neighborhood of g . Note also that by construction, z is finite (if all players follow the
protocol) when there are four or more players: after each history, the players execute the finite protocol of BGW once.
When there are three players, z is finite-in-expectation: each subphase is finite (due to the finiteness of RB’s protocol), and
the expected number of repetitions of these subphases (which are determined by the results of the joint lotteries in the
random monitoring subphase) is 1/ε, so it is finite as well.

Second, we discuss unilateral deviations. There are five types of deviations from the protocol: (1) deviation while mon-
itoring the previous phase, (2) deviation in the computation subphase, (3) deviation in the random monitoring subphase,
(4) deviation at the playing stage, (5) giving information to other players. We show that none of these deviations (nor a
combination of them) is profitable to the deviator:

(1) Deviating at “monitoring of the previous stage” subphases. In these subphases, players are supposed to broadcast
the messages they received and sent in the previous computation subphase. Following the extended history (h, s),
player i might deviate and send different messages in this subphase. However, the monitoring/correction properties
guarantee that the non-deviating players commonly agree on the value of s with probability at least 1 − δ(h) (with
probability 1 when there are four players or more). Thus, at all stages of the game, regardless of unilateral deviations at
these subphases, all non-deviating players know the correct recommended profiles in previous stages of the game, with
probability at least

1 −
∞∑

K=1

δ
(
(ak)k<K

)
� 1 −

∞∑

K=1

ε2/2K+1 = 1 − ε2.

Thus, with probability at least 1−ε2, a deviation at these subphases is not profitable. With probability ε2, the deviation
may not be detected, and the deviator may gain at most 1 (payoffs are between 0 and 1). Therefore, the total expected
gain from these deviations is at most ε2.

(2) Deviating at computation subphases:
• Public deviations – During the computation subphase, player i may broadcast an invalid message, e.g. by sending

a null message instead of a number in Zp . In this case, all other players detect the deviation and minmax player i.
Being minmaxed may increase player i’s payoff by at most ε relative to g , and thus by at most 2ε relative to the
payoff induced by z.

• Private deviations – Consider first the three player case. A player may send an incorrect message, while the recipient
of the message does not know that the message is incorrect. This may yield a profit of at most 1 if, at the random
monitoring step, the result of the joint lottery is such that the players do not execute the monitoring subphase.
However, the random monitoring is executed with probability at least 1 − ε, and the monitoring property of the
protocol guarantees that the identity of the deviator is revealed to all non-deviating players with probability at least
1 − ε2. In this latter case, the other players minmax the deviator for the rest of the game, and he may increase his
payoff by at most 2ε. The expected gain from such a deviation is thus at most 3ε.
When there are at least four players, the correction property implies that there are no such undetected deviations:
the recipient can always know whether a message is incorrect (that is, not induced by one of the protocol’s obedient
strategies), ask the recipient to broadcast it, and continue the computation with the broadcasted message (if it is also
invalid, it is treated as a public deviation).

(3) Deviating in the random monitoring subphase. We only need to consider the three player case here. Player i may
deviate at the joint lottery step, but such a deviation does not change the distribution of the lottery’s result. He may
also deviate in the random monitoring subphase itself. The monitoring property ensure that with probability at least
1 − δ(h), unilateral deviations at this stage do not affect players’ assessments on deviations in the last computation
subphase, and thus do not affect player i’s payoff. Thus, player i gains by deviating in a random monitoring subphase,
with probability at most δ(h). As the expected number of random monitorings at each stage is 1/ε, player i gets an

11 Recall that the non-deviating players have private communication channels that are secure from the eyes of the deviator (see Definition 6). They can
use these channels to coordinate the correlated profile that minimizes the deviator’s payoff.
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expected gain of at most εδ(h) = ε/2K+1, by deviating at all random monitoring subphases after a history of length K .
Thus, deviating in all the random monitoring subphases throughout the game may increase the deviator’s payoff by at
most ε.

(4) Deviating in the playing stage. Player i may play an action different from the recommended. The monitoring/correction
properties imply that the other players will know the profile of past recommendations with probability at least 1−δ(h).
Together with the fact that following the device’s recommendations is an ε-equilibrium of the extended game G(D),
this implies that player i may increase his payoff by at most 2ε + ε2 by the deviation.

(5) Giving information to other players: Player i may deviate by sending another player (say player j) some information
acquired during the computation phase, thereby allowing player j to obtain information about the recommended action
profile, and have a profitable deviation (which may be also profitable to player i). Since only unilateral deviations are
possible, player i should expect player j to conform with the strategies and thus disregard the extra information. When
player i deviates, we are off equilibrium (we have not required any perfection properties) and thus we assume that no
other player j deviates afterwards.

From this discussion, we conclude that no unilateral deviation may increase the payoff of the deviator by more
than 3ε. �
4.3. Almost-pre-play cheap-talk implementation

In this subsection we prove the second point of Theorem 10.

Proof. We show how to adapt the construction of the previous section to yield an almost-pre-play cheap-talk 3ε-
equilibrium z′ that induces a payoff in an ε-neighborhood of g . We use the same notation as in the previous proof
complemented by the following: Given a history h ∈ H of length K , let S(h) be the set of histories of recommendations
which are consistent with h. That is, (si

k)k=1,...,K ,i∈P (h|k) ∈ S(h) if and only if ∀k = 1, . . . , K , si
k ∈ Ai(h|k). For each history

h ∈ H and s ∈ S(h), let L(h, s) ∈ N be a large enough integer such that if L(h, s) many profiles are sampled according to
μ(h, s), then with probability at least 1 − δ(h) = 1 − ε/2K+1, the empirical distribution of the sample μL(h, s) is δ(h)-close
to μ(h, s): ∀a ∈ A(h), |μL(h, s)(a) − μ(h, s)(a)| < δ(h).

We describe now a long pre-play cheap-talk phase, and a short public mid-play cheap-talk phases.
Pre-play communication. During the first cheap-talk phase, the players perform multiparty computation many times, to

choose a large number of recommended action profiles for each possible history and each sequence of past recommended
profiles. Specifically, for each extended history (h, s) where h ∈ H and s ∈ S(h), players execute L(h, s) many times the fol-
lowing subphases: choosing a profile by multiparty computation and random monitoring. (As before, the random monitoring
is executed only when there are exactly three players. A single execution ends when the result of the joint lottery is such
that the players do not conduct the random monitoring.)

At the end of this phase, the players have jointly computed L(h, s) many profiles for each pair (h, s), and each player
knows only his part of each profile. If a deviation is detected in any such execution, the non-deviating players minmax the
deviator. Otherwise, the players execute a single-stage public mid-play communication protocol for choosing the new action
profile.

Mid-play communication. For each history h ∈ H , the players execute the following subphases: (1) For each sequence
of past recommended profiles s ∈ S(h),12 the players perform a joint lottery for choosing a uniformly distributed random
number j(h, s) between 1 and L(h, s). The recommended profile is then the j(h, s)-th profile among the L(h, s) profiles
constructed in the pre-play cheap-talk phase. (2) The players execute a “monitoring of the previous stage” subphase, in
which they simultaneously broadcast the messages of the computation of recommended action profile of the previous
stage.13 Due to the correction/monitoring property, at the end of this phase, all players know the chosen recommended
profile of the previous cheap-talk phase with probability at least 1 − δ(h). Thus with high probability, they commonly
know s, and each player plays his j(h, s)-th recommended action for (h, s).

The same arguments as in the previous subsection imply that z′ is an almost-pre-play cheap-talk 3ε-equilibrium that
induces a payoff ε-close to g . �

Note that it is also possible to have an almost-pre-play cheap-talk implementation by an alternative construction,14

where a single recommendation profile is constructed for each extended history (instead of L(h) profiles), and the players
use an authentication scheme as in Section 3. Pre-play communication in this alternative construction is shorter, because
players have to construct a smaller number of recommendation profiles (while the additional communication that is re-
quired to construct the authentication schemes is relatively short).

12 The players commonly know all the recommended profiles except the last one.
13 As the computation subphase is finite and bounded, players can simultaneously broadcast all these messages using a large enough finite alphabet.
14 We have chosen not to use this alternative construction, due to the relative complexity of its formal presentation.
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5. Concluding remarks

(1) Resistance to coalitional deviations: Abraham et al. (2006, 2008) and Heller (2010a) discuss how to use Rabin and
Ben-Or (1989) and Ben-Or et al. (1988)’s protocols for implementing normal-form correlated equilibria of finite games
in ways that are resistant to coalitional deviations. Specifically, Heller defines a k-strong equilibrium, as a profile that
is resistant to joint deviations of up to k players, and shows how to implement any k-strong normal-form correlated
equilibrium as a k-strong Nash equilibrium of the extended cheap-talk game, assuming that the deviating coalition is
a minority: k < |I|/2. The cheap-talk equilibria presented in this paper can be adapted to allow the implementation of
canonical communication equilibria in games with public information in a way that is resistant to coalitional deviations
of minorities.

(2) General action sets: Throughout the paper we assumed that at each stage of the game each player has a finite set of
actions. We now shortly discuss the extensions of our results to the case where the set of actions is a compact subset
of a separable metric space. Theorem 9 can be extended to this setup. Without loss of generality, the recommended
action of each player i can be represented as a sequence of zeros and ones. Each such “bit” can be encoded using the
scheme described in Section 3 (where the players simultaneously send an infinite number of messages at each mid-play
cheap-talk phase).
Theorem 10 can be extended only under strong continuity assumptions on the whole structure of the game tree.
With such assumptions, the action profile of the players at each stage can be approximated by a finite set, and the
distributed computation schemes described in Section 4 can be used. In the general case, the distributed computation
schemes, which relies on operations on a finite field, cannot be used when the action sets are infinite, and we do not
know whether all communication equilibrium payoffs can be obtained by unmediated cheap-talk procedures.
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