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1. Introduction

In most strategic interactions, the players are not fully informed of the game’s parameters, like their opponents’ action 
sets and payoff functions, and sometimes even their own payoff function and the identity of the opponents. This observation 
motivates the study of games with incomplete information, which was incepted in the fifties. Harsanyi (1967) introduced 
the model of Bayesian games, which are one-stage games with incomplete information. Aumann and Maschler (1968, 1995)
studied repeated games with incomplete information on one side, provided an elegant characterization to the value, and de-
scribed optimal strategies for the players. This characterization has been extended to continuous-time games by Cardaliaguet 
(2006) (see also Cardaliaguet and Rainer (2009a,b), Grün (2012a), and Oliu-Barton (2015)), and to repeated games with in-
complete information on both sides (see, e.g., Aumann et al. (1968) and Mertens and Zamir (1971)). For recent surveys on 
the topic, see Aumann and Heifetz (2002); Mertens et al. (2016).

In repeated games with incomplete information, the parameters of the game remain fixed throughout the interaction. 
Sometimes these parameters change along the play, in a way that is independent of the players’ actions. When the state 
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changes along the play according to a Markov process that is independent of the players behavior, the game is called a 
Markov game. For example, changes in global markets affect local consumers and producers, each of which has a negligible 
effect on the global market.

One illustrative example, adapted from Hernández and Neeman (2018), involves the allocation of enforcement resources 
across different locations with the goal of deterring unwanted behavior, like illegal parking. The compliance rate of the 
agents depends on their information about the amount of enforcement resources. When the amount of enforcement re-
sources is private information of the enforcing agency, and it varies over time, according to, say, the budget allocated for 
enforcement or the number of other tasks that the enforcing agency should perform, the situation can be modeled as a 
two-player zero-sum Markov game between the agency and the representative agent.

Two-player zero-sum Markov games with incomplete information on one side have been first studied by Renault (2006), 
who proved the existence of the uniform value; see also Neyman (2008) and Hörner et al. (2010). Since the state changes 
over time, the optimal strategy typically involves a repeated revelation of information. Recently Cardaliaguet et al. (2016)
studied discounted two-player zero-sum Markov games with incomplete information on one side, where the time duration 
between stages goes to 0, and characterized the limit value function and the limit optimal strategy of the informed player; 
see also Gensbittel (2016, 2019). Gensbittel and Renault (2015) studied Markov games when both players have partial 
information on the state variable.

This paper is part of a project whose goal is to study the optimal use of information in dynamic situations of incomplete 
information, and to provide an easy to use algorithm for calculating the value and optimal strategies. We study Markov 
games with incomplete information on one side and two states. Player 1 knows when the state changes, while Player 2 
does not know it. The players observe each other’s actions and have perfect recall, and thus Player 2 may use past actions 
of Player 1 to deduce the identity of the current state.

We study the limit value of this game as the gap between stages goes to 0. Consequently, the discount factor as well as 
the transition probabilities from one state to the other depend on the gap between stages. We will provide an algorithm for 
calculating the limit value of this game, when the gap between stages and the transition probabilities between the states 
go to 0, as well as an ε-optimal strategy for the informed player, when the gap between stages is small.

In addition to the literature on Markov games, our paper is related to two strands of literature. The literature on dynamic 
information provision (or dynamic persuasion), as studied, for example, by Renault et al. (2017) and Ely (2017), studies 
two-player nonzero-sum Markov games where an informed player tries to induce an uninformed player to act in a certain 
way that is desirable to the informed player. The optimization problem faced by the informed player in this model has 
similarities to the one in our setup.

Our paper is also related to the literature on numerical schemes for differential (resp. stochastic differential) games with 
asymmetric information, see, e.g., Cardaliaguet (2009) and Grün (2012b). Instead of constructing the value function on a 
discrete time and space grid, our construction permits to determine the areas corresponding to the different regimes of the 
revelation process. It can therefore be linked with the geometric construction of the value function for Dynkin games with 
asymmetric information in Gensbittel and Grün (2019).

To get some intuition to the problem, we contrast it with the case of repeated games with incomplete information on 
one side, in which the state does not change along the play, as studied by Aumann and Maschler (1995). Denote by πn

the belief of the uninformed player on the state at stage n. The process (πn)n∈N is a martingale that is controlled by the 
informed player. By the Martingale Convergence Theorem the process (πn)n∈N converges to a limit π∞ , which implies that 
as the game evolves information stops being revealed. In particular, under the optimal strategies of the players, the stage 
payoff will converge to u(π∞), the value of the one-stage game in which the state is chosen according to the probability 
distribution π∞ and no player is informed of the chosen state. It can then be proven that the value of the game is the 
concavification of the function u, that is, the smallest concave function that is larger than or equal to u. This, in turn, 
implies that the informed player has an optimal strategy in which information is revealed only at the first stage of the play.

Since the state changes along the play, the process (πn)n∈N is no longer a martingale; indeed, in addition to its depen-
dence on the informed player’s actions, the belief has a drift towards the stationary distribution of the associated Markov 
chain,1 denoted p∗ . We study the discounted game, and are interested in the optimal way of information revelation. As in 
the case of repeated games with incomplete information on one side, there are two ways in which the informed player can 
use her information at stage n:

A.1 The informed player may elect not to reveal any information at that stage. The optimal stage payoff is then u(πn), and 
the belief changes because of the drift towards p∗ .

A.2 The informed player may elect to split the belief between two other beliefs: for some p′, p′′ ∈ [0, 1] and some q ∈ [0, 1], 
the informed player plays in such a way that πn+1 = p′ with probability q and πn+1 = p′′ with probability 1 − q.

Since we study the limit value as the gap between stages goes to 0, it will be more convenient to consider the process 
in continuous time. One can expect that in continuous time, the interval [0, 1] of beliefs will be divided into subintervals, 

1 To be precise, p∗ is the probability of state s1 under the stationary distribution (and 1 − p∗ is the probability of state s2 under the stationary distribu-
tion).
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Fig. 1. Possible information revelation.

State s1 L R
T 1 0
B 0 0

State s2 L R
T 0 0
B 0 1

Fig. 2. The payoff matrices in Example 1.

Fig. 3. The value function in Example 1.

as depicted in Fig. 1. When the belief is in some subintervals, the informed player will reveal no information, and due to 
the transition, the belief of the uninformed player will slide towards the invariant distribution p∗ . When the belief is in 
the other subintervals, the informed player will reveal information. In the latter case, the stage payoff if no information is 
revealed is low, hence the informed player will avoid such beliefs.

This gives rise to two types of information revelations on the side of the informed player:

• If the current belief is within a subinterval I = [p′, p′′] which the informed player wants to avoid, she will split the 
belief of the uninformed player between the two endpoints of the interval, namely, p′ and p′′ .

• If the current belief is the upper end of the subinterval I and if p∗ < p′ , since the belief drifts towards the invariant 
distribution p∗ , the informed player will be able to reveal information in such a way that πn+1 ∈ {p′, p′′}. This implies 
that the belief will remain p′′ until it jumps to p′ at a random time.

If the current belief is the lower end of the subinterval I , if p∗ < p′ , and if the behavior of the informed player alternates 
in adjacent intervals, then p′ is the upper end of a subinterval I ′ in which the informed player reveals no information, and 
since the belief drifts towards the invariant distribution p∗ it will not get into the subinterval [p′, p′′]. If the interval lies 
below the invariant distribution p∗ , the behavior of the informed player is mirrored.

The above description of the general structure of the optimal information revelation strategy is conjectural. To prove that 
this description is correct, and to provide an algorithm that calculates the value function and the limit optimal strategy 
of the informed player, we will write down the equations that a value function that is derived from this description must 
satisfy, and use the characterization of the value function as given by Gensbittel (2019) to show that this intuition is correct.

We illustrate the optimal revelation strategies by three examples from the seminal work of Aumann and Maschler (1995), 
adapted to our model. We denote the two states by s1 and s2, and denote by p the probability that the uninformed player 
assigns to state s1. For expositional ease, in these examples state s2 is absorbing: once the play reaches it, it remains there 
forever. In particular, the invariant distribution is p∗ = 0.

Example 1 (Nonrevealing optimal strategy). Consider the Markov game with the payoff matrices that appear in Fig. 2. For 
every p ∈ [0, 1] the value of the one-stage game is u(p) = p(1 − p) (see Aumann and Maschler (1995), Section I.2 and the 
dotted line in Fig. 3). The value function is concave, and the informed Player 1 has no incentive to reveal information to 
Player 2. Consequently, the limit optimal strategy consists of playing the myopic optimal strategy. The belief, which starts 
at the initial belief, slides towards the invariant distribution p∗ = 0, and the limit value function is given by the discounted 
integral of the function u (see the dark line in Fig. 3).

Example 2 (Revealing optimal strategy). Consider the game with the payoff matrices that appear in Fig. 4. For every p ∈ [0, 1]
the value of the one-stage game is u(p) = −p(1 − p) (see Aumann and Maschler (1995), Section I.3, and the dotted line in 
Fig. 5). The value function is convex, and the informed Player 1 has incentive to reveal her information to Player 2. Conse-
quently, in the optimal strategy Player 1 reveals her information at every stage, and the limit value function is identically 0 
(see the dark line in Fig. 5).

We now exhibit a nontrivial and challenging case, where the function u is neither convex nor concave.
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State s1 L R
T -1 0
B 0 0

State s2 L R
T 0 0
B 0 -1

Fig. 4. The payoff matrices in Example 2.

Fig. 5. The value function in Example 2.

State s1 L R
T 1 0
B 0 2

State s2 L R
T -2 0
B 0 -1

Fig. 6. The payoff matrices in Example 3.

Fig. 7. The value function in Example 3.

Example 3 (Partial revelation of information). Consider the Markov game with the payoff matrices that appear in Fig. 6. For 
every p ∈ [0, 1] the value of the one-stage game is given by (see Aumann and Maschler (1995), Section I.4 and the dotted 
line in Fig. 7)

u(p) =

⎧⎪⎨⎪⎩
9p2−9p+2

6p−3 , if 0 ≤ p ≤ 1
3 ,

0 if 1
3 < p ≤ 2

3 ,
9p2−9p+2

6p−3 if 2
3 < p ≤ 1.

(1)

For p ≤ 1
3 the function u is convex, hence it is optimal for Player 1 to reveal some of her information. She should therefore 

pick some p0 ≥ 1
3 and split the belief of Player 2 between p = 0 and p = p0. Do we have p0 = 1

3 or p0 > 1
3 ?

Consider next the case that the initial belief is p = 1. If Player 1 reveals no information, at every stage k in which the 
belief is pk she obtains the payoff u(pk), and the belief drifts towards 0. Consequently, the payoff slides down the graph 
of u. Since in the interval 1

3 ≤ p ≤ 1 the graph of u lies below the line segment that connects the points ( 1
3 , u( 1

3 )) and 
(1, u(1)), it is not optimal for Player 1 to hide her information throughout: when the belief reaches some point p1 ∈ [ 1

3 , 1]
she should start revealing information. What is this point p1? How much information does Player 1 reveal? We will answer 
these questions and provide an algorithm that describes the limit strategy in the general case.

The paper is organized as follows. The model as well as known results appear in Section 2. Section 3 details the algorithm 
and discusses its relation to ε-optimal strategies of the informed player, Section 4 demonstrates the algorithm on few 
examples. Section 5 discusses possible extensions and open problems, and Section 6 proves the correctness of the algorithm.

2. The model

In this paper we study two-player zero-sum Markov games, which were first studied in Renault (2006). A two-player 
zero-sum Markov game G is a vector (S, A, B, g, δ, x1, x2, p) where
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• S = {s1, s2} is the set of states.
• A and B are finite action sets for the two players.
• g : S × A × B →R is a payoff function.
• δ is the discount rate.
• x1 and x2 are the rates of transition.
• p is the prior probability that the initial state is s1.

The game is played as follows. The initial state is s1 with probability p, and s2 with probability 1 − p. At every stage 
k ≥ 1 the players choose independently and simultaneously actions ak and bk in their action sets. If sk = s1, then the new 
state sk+1 is equal to s1 with probability 1 − x1 and to s2 with probability x1. If sk = s2, then the new state sk+1 is equal to 
s2 with probability 1 − x2 and to s1 with probability x2.

For every finite set Y , denote by �(Y ) the set of probability distributions over Y . We assume that information is asym-
metric: Player 1 knows the current state while Player 2 does not. In addition, we assume perfect recall. Consequently, a 
strategy of Player 1 is a sequence σ = (σk)k≥1, where σk : Sk × (A × B)k−1 → �(A) for every k ≥ 1. A strategy for Player 2 
is a sequence τ = (τk)k≥1, where τk : (A × B)k−1 → �(B) for every k ≥ 1. The sets of strategies of Player 1 and Player 2 
are denoted by S and T , respectively. Every pair of strategies (σ , τ ) ∈ S × T , together with the prior belief p, induces a 
probability distribution on the space (S × A × B)N of plays, where N is the set of positive integers, and the payoff is given 
by

g(p,σ , τ ) := E p,σ ,τ

⎡⎣∑
k≥1

δ(1 − δ)k−1 g(sk,ak,bk)

⎤⎦ .

Player 1 is the maximizer and Player 2 is the minimizer. Hence, the value of the game G is given by

v := max
σ∈S min

τ∈T g(p,σ , τ ) = min
τ∈T max

σ∈S g(p,σ , τ ). (2)

The value exists because the payoff is discounted and the strategy spaces of the players are compact in the product topology. 
A strategy σ (resp. τ ) of Player 1 (resp. Player 2) that achieves the maximum (resp. minimum) in the second (resp. third) 
term in Eq. (2) is called optimal.

We will be interested in the value of the game and in the optimal strategy of Player 1 when the duration between stages 
is small. Consequently, we will parameterize the game with a parameter n > 0, that will capture the duration between 
stages. Thus, given three positive real numbers r, λ1, and λ2, we denote by G(n)(p) the Markov game (S, A, B, g, 1 −
er/n, 1 − eλ1/n, 1 − eλ2/n, p). We denote by v(n)(p) = v(n)(p, r, λ1, λ2) the value of the game G(n)(p). It follows that the rates 
of switching states are roughly λ1/n and λ2/n, and therefore the limit invariant distribution as n goes to infinity is

p∗ := λ2

λ1 + λ2
.

Denote also

μ := r

λ1 + λ2
.

By Cardaliaguet et al. (2016) the limit v := limn→∞ v(n) exists and the limit as n goes to infinity of the optimal strategy 
of Player 1 can be characterized as the solution of a certain optimization problem. We now describe this result. Extend the 
domain of the payoff function g to S × �(A) × �(B) in a bilinear fashion:

g(s, x, y) =
∑
a∈A

∑
b∈B

g(s,a,b)x(a)y(b), ∀(x, y) ∈ �(A) × �(B), s ∈ S.

For p ∈ [0, 1], the value of the one-stage game given that the two states s1 and s2 are observed by none of the players and 
s1 is the current state with probability p (and s2 with probability 1 − p) is

u(p) := max
x∈�(A)

min
y∈�(B)

(
pg(s1, x, y) + (1 − p)g(s2, x, y)

)
.

Let p ∈ [0, 1] be given and let (	, F , P ) be a sufficiently large probability space. Let S(p) be the set of all càdlàg, [0, 1]-
valued processes (πt)t≥0 defined over (	, F , P ) that satisfy E[π0] = p and E[πt |Fπ·

s ] = p∗ + (πs − p∗)e−(λ1+λ2)(t−s) for 
every 0 ≤ s ≤ t , where Fπ·

t is the σ -algebra generated by (πs)s≤t .

Theorem 2.1 (Cardaliaguet et al., 2016, Theorem 1. P1). The sequence of functions p 
→ v(n)(p) converges uniformly to a function 
v : [0, 1] →R that satisfies
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v(p) = max
(πt )t≥0∈S(p)

E

⎡⎣ ∞∫
0

re−rt u(πt)dt

⎤⎦ , ∀p ∈ [0,1]. (3)

The function v is termed the limit value function. The processes (πt)t≥0 ∈ S(p) in Eq. (3) represent the possible revelation 
mechanisms induced by the actions of the informed player. In particular, the process that realizes the maximum in Eq. (3)
represents the optimal revelation process for the continuous-time game, and is termed the limit optimal strategy for the 
informed player. The characterization of v provided by Cardaliaguet et al. (2016) is via a differential equation, as summarized 
by the next result.

Theorem 2.2 (Cardaliaguet et al., 2016, Theorem 1. P2). The limit value function v is the unique viscosity solution of the equation

min{rv(p) − 〈tRp, D v(p)〉 − ru(p);−λmax v(p, D2 v(p))} = 0, ∀p ∈ �(2),

where R =
(−λ1 λ1

λ2 −λ2

)
is the generator of the Markov chain, �(2) is the simplex in R2, and λmax v(p, D2 v(p)) is the maximal 

eigenvalue of the restriction of D2v(p) to the tangent space at p to �(2).

Since in the sequel we will not need the notion of viscosity solution, we do not provide their definition, and refer to 
Cardaliaguet et al. (2016) for the definition used in the above theorem. In Cardaliaguet et al. (2016) it is also shown how the 
optimal solution (pt)t≥0 in Eq. (3) can be used to identify ε-optimal strategies for the informed player in the discrete-time 
game G(n)(p), provided n is sufficiently large.

Gensbittel (2019) reformulates Theorem 2.2 in terms of directional derivatives. Using the fact that in the two-state case 
the resulting equations are one-dimensional, we can prove that the limit value function v is differentiable on [0, 1] \ {p∗}. 
This leads to the following simple characterization of v that involves only an ordinary differential equation.

Recall that the hypograph of a function f : [0, 1] → R is the set of all points that are on or below the graph of the 
function. When f is concave, its hypograph is a convex set, and its set of extreme points coincides with the set of points 
on the graph of f where f is not affine, plus the corner points (0, f (0)) and (1, f (1)).

Theorem 2.3. The function v is the unique continuous, concave function v : [0, 1] → R which is differentiable on [0, 1] except, 
possibly, at p∗ , and that satisfies the following conditions:

G.1 v(p∗) ≥ u(p∗), with an equality if (p∗, v(p∗)) is an extreme point of the hypograph of v.
G.2 For every p ∈ [0, 1] \ {p∗} we have v ′(p)(p − p∗) + μ (v(p) − u(p)) ≥ 0.
G.3 For every extreme point (p, v(p)) of the hypograph of v such that p = p∗ we have

v ′(p)(p − p∗) + μ(v(p) − u(p)) = 0, (4)

where for p = 0 (resp. p = 1), v ′(p) stands for the right (resp. left) derivative of v at p.

Proof. By Theorem 2.12 in Gensbittel (2019), the limit value function is the unique concave, Lipschitz function that satisfies

r(v(p) − u(p)) − −→
D V (p,tRp) ≥ 0, ∀p ∈ [0,1],p = (p,1 − p),

and, if (p, v(p)) is an extreme point of the hypograph of v ,

r(v(p) − u(p)) − −→
D V (p,tRp) ≤ 0, (5)

where 
−→
D V (p, ·) is the directional derivative of V : �(2) � (p, 1 − p) 
→ V (p, 1 − p) := v(p), and R =

(−λ1 λ1
λ2 −λ2

)
. It 

follows that

−→
D V (p,tRp) =

⎧⎪⎪⎨⎪⎪⎩
−v ′+(p) r

μ(p − p∗) if p < p∗,

−v ′−(p) r
μ(p − p∗) if p > p∗,

−→
D V (p,0) = 0 for p = (p∗, (1 − p∗)).

(6)

Statement G.1 follows from the above discussion.
Statements G.2 and G.3 will follow once we show that v ′−(p) = v ′+(p) for every p ∈ (0, 1) \ {p∗}.

Suppose first that p > p∗ . This implies that for every q > p it holds that q > p∗ , hence r
μ(q − p∗) > 0. Since v is concave, it 

also implies that v ′−(q) ≤ v ′+(p) ≤ v ′−(p). From Eqs. (5) and (6) it follows that
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0 ≤ μ(v(q) − u(q)) + v ′−(q)(q − p∗) ≤ μ(v(q) − u(q)) + v ′+(p)(q − p∗).

From the continuity of u and v we deduce that

0 ≤ μ(v(p) − u(p)) + (p − p∗)v ′+(p) ≤ μ(v(p) − u(p)) + (p − p∗)v ′−(p).

If (p, v(p)) is an extreme point of the hypograph of v , then

μ(v(p) − u(p)) + (p − p∗)v ′−(p) = 0,

and it follows that v ′−(p) = v ′+(p). If (p, v(p)) is not an extreme point of the hypograph of v , then there exist p1, p2 ∈ [0, 1]
and α ∈ (0, 1) such that p = αp1 + (1 − α)p2 and v(p) = αv(p1) + (1 − α)v(p2). Since v is concave, it follows that v is 
affine on the interval [p1, p2], and therefore differentiable on its interior. In particular, v ′−(p) = v ′+(p) in this case as well.

Suppose now that p < p∗ . In this case for q < p we have r
μ(q − p∗) < 0 and v ′+(p) ≤ v ′−(p) ≤ v ′+(q) for every q < p, and 

an analogous argument to the one provided above leads to the same result: v ′−(p) = v ′+(p). We conclude that statements 
G.2 and G.3 hold as well. �
Remark 2.4. The arguments of the proof of G.2 and G.3 cannot be used for p = p∗ , because tRp∗ = 0. In fact, the function v
may not be differentiable at p∗ , see variation b of Example 3 below.

3. An algorithm to calculate the value function and the optimal revelation process

In this section we present a finite stage recursive algorithm for calculating the limit value function and the limit optimal 
strategy for the informed player. We start by explaining the intuition behind the algorithm.

3.1. Intuition

We shall see that the limit value function at the invariant distribution p∗ can be explicitly calculated. The interval [0, 1]
will be divided into finitely many subintervals: in some intervals the informed player reveals no information, and she plays 
in such a way that the belief never enters the remaining intervals.

The algorithm will assume that the limit value was already calculated in a certain closed interval that contains p∗ , and 
will calculate it for a larger interval. The calculation for beliefs smaller than p∗ will be analogous to the calculation for 
beliefs larger than p∗ , hence we will concentrate on the latter.

In this section we provide the equations that the limit value function must satisfy under the two types of information 
revelation that were discussed in the introduction.

3.1.1. No revelation of information
We first provide the equation that the limit value function satisfies in an interval in which no information is revealed 

by the informed player. Recall that v(n)(p) is the value of the game with time step 1/n and initial distribution p ∈ [0, 1]. 
Let p∗ < p′ < p′′ ≤ 1 and suppose that for every belief p ∈ [p′, p′′] of the uninformed player, the optimal strategy of the 
informed player is not to reveal her information. The continuation payoff is given by v(n)(pe−λ1/n + (1 − p)(1 − e−λ2/n)). 
Therefore the value function satisfies the relation

v(n)(p) = (1 − e−r/n)u(p) + e−r/n v(n)(pe−λ1/n + (1 − p)(1 − e−λ2/n)). (7)

Simple algebraic manipulations yield that

v(n)(p) − v(n)
(

pe−λ1/n + (1 − p)(1 − e−λ2/n)
)

p − (
pe−λ1/n + (1 − p)(1 − e−λ2/n)

)
= (1 − e−r/n)u(p) − (1 − e−r/n)v(n)

(
pe−λ1/n + (1 − p)(1 − e−λ2/n)

)
p − (

pe−λ1/n + (1 − p)(1 − e−λ2/n)
) .

Taking the limit as n goes to ∞ and recalling that μ = r
λ1+λ2

and p∗ = λ2
λ1+λ2

, we obtain that the limit value function 
v = limn→∞ v(n) is the solution of the following differential equation:

v ′(p) = μ(u(p) − v(p))

∗ . (8)

p − p



90 G. Ashkenazi-Golan et al. / Games and Economic Behavior 122 (2020) 83–104
3.1.2. Some revelation of information
Suppose that the informed player wants to avoid beliefs in some open interval (p′, p′′). In this case, whenever the belief 

is in the interval (p′, p′′), the informed player will reveal information in such a way that the belief changes to either p′ or 
p′′ . In continuous time this implies that after time 0 the belief will never lie in the open interval (p′, p′′). Therefore, this 
kind of information revelation will occur at most once, at the first stage of the game. It follows that for every n ∈ N the 
value function v(n) is affine on the interval [p′, p′′], and therefore so is the limit value function v , that is,

v ′−(p′′) = v(p′′) − v(p′)
p′′ − p′ . (9)

Suppose now that at some stage the belief is p′′ . Two cases can occur. Suppose first that p∗ < p′ < p′′ and that moreover 
in some interval (p′′, p′′′) the informed player reveals no information. Since p′′ is an endpoint of an interval in which no 
information is revealed, by Eq. (8)

v ′+(p′′) = μ(u(p′′) − v(p′′))
p′′ − p∗ . (10)

Since v is smooth at p′′ , we have v ′+(p′′) = v ′−(p′′), and therefore by Eqs. (9) and (10) we have

v(p′′)
(

1

p′′ − p′ + μ

p′′ − p∗

)
= v(p′)

p′′ − p′ + μu(p′′)
p′′ − p∗ ,

or, equivalently,

v(p′′) = v(p′)(p′′ − p∗) + μ(p′′ − p′)u(p′′)
p′′ − p∗ + μ(p′′ − p′)

. (11)

Substituting v(p′′) from Eq. (11) in Eq. (10) we obtain that

v ′(p′′) = μ(u(p′′) − v(p′))
p′′ − p∗ + μ(p′′ − p′)

. (12)

Since v is affine on (p′, p′′), we deduce that for every p ∈ [p′, p′′] we have

v(p) = v(p′) + (p − p′) μ(u(p′′) − v(p′))
p′′ − p∗ + μ(p′′ − p′)

. (13)

Suppose now that p′ < p∗ < p′′ . When the belief is p′′ (resp. p′), it remains p′′ (resp. p′) until it jumps at a random time 
to p′ (resp. p′′). Applying Eq. (11) to the jumps from p′ to p′′ and from p′′ to p′ , we obtain two affine equations in v(p′)
and v(p′′). If for every p ∈ (p′, p′′) the informed player splits the belief to p′ and p′′ , we obtain a strategy for the informed 
player that guarantees a payoff of

v(p) = u(p′) (μ + 1)p′′ − p∗

(p′′ − p′)(μ + 1)
+ u(p′′) p∗ − p′(μ + 1)

(p′′ − p′)(μ + 1)
+ pμ · u(p′′) − u(p′)

(p′′ − p′)(μ + 1)
, p ∈ [p′, p′′]. (14)

Remark 3.1. Substituting p = p∗ in Eq. (14) we obtain:

v(p∗) = p′′ − p∗

p′′ − p′ u(p′) + p∗ − p′

p′′ − p′ u(p′′). (15)

3.1.3. Conclusion
The intuition we presented describes the conjectured behavior of the belief of Player 2 under the optimal strategy of 

Player 1: in the first stage the belief may split, and thereafter the behavior alternates between sliding continuously towards 
the invariant distribution p∗ and jumping at a random time to a belief closer to or behind p∗ .

To find the points where the behavior of the belief changes, we will begin from “the end”, that is, from p = p∗ , and 
work our way towards p = 1 (and then towards p = 0). Supposing that the limit value function was already calculated for 
every belief p in some interval [p∗, p0], we compare the incremental value of the two strategies described in Sections 3.1.1
and 3.1.2, find the maximal interval [p0, p1] for which the better strategy yields a higher increment, and accordingly extend 
the definition of the limit value function to the interval [p∗, p1]. We then conduct the analogous procedure for p’s smaller 
than p∗ .
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3.2. The algorithm to compute the limit value function

In this section we present the algorithm that calculates the limit value function. We will start with some notations. 
Given an interval I ⊂ [0, 1), we define the function a : I ×R →R ∪ {+∞} by

a(p, x) := sup
p′∈(p,1]

μ(u(p′) − x)

p′ − p∗ + μ(p′ − p)
, ∀p ∈ I, x ∈R. (16)

Analogously, given some interval I ⊂ (0, 1], we define the function ̃a : I ×R →R ∪ {−∞} by

ã(p, x) := inf
p′∈[0,p)

μ(u(p′) − x)

p′ − p∗ + μ(p′ − p)
.

Since the function u is continuous, for p = p∗ we have

a(p, x) = max
p′∈[p,1]

μ(u(p′) − x)

p′ − p∗ + μ(p′ − p)
and ã(p, x) = min

p′∈[0,p]
μ(u(p′) − x)

p′ − p∗ + μ(p′ − p)
.

For a fixed x ∈ R, the function a(·, x) (resp. ã(·, x)) is continuous on I \ {p∗}, and, if x = u(p∗) and I = [p∗, ̂p] (resp. 
I = [̂p, p∗]) for some p̂, then it is continuous on I .

Define also⎧⎨⎩ ρ(p, x) := sup
{

p′ ∈ (p,1] : a(p, x) = μ(u(p′)−x)
p′−p∗+μ(p′−p)

}
if p > p∗,

ρ̃(p, x) := inf
{

p′ ∈ [0, p) : ã(p, x) = μ(u(p′)−x)
p′−p∗+μ(p′−p)

}
if p < p∗,

(17)

with inf∅ = 1 and sup ∅ = 0.
To see the motivation for these definitions, recall the discussion in Section 3.1.2. When Player 1 wants to make the 

belief of Player 2 jump from some p′ > p to p, the value function on the interval [p, p′] is affine and given by Eq. (11). In 
particular, the slope of the value function to the left of p′ is given by μ(u(p′)−v(p))

p′−p∗+μ(p′−p)
, see Eq. (12). To maximize the payoff in 

a small neighborhood to the right of p, Player 1 will jump to p from some belief p′ that attains the maximum in Eq. (16). 
The quantity a(p, v(p)) is defined to be the slope at such optimal belief p′ , and ρ(p, v(p)) is the largest optimal belief. The 
quantities ̃a(p, v(p)) and ρ̃(p, v(p)) have analogous interpretations when p < p∗ .

We now present the algorithm, which defines in steps a function w : [0, 1] →R that is later shown to be the limit value 
function. The initial step of the algorithm identifies a closed interval [̃p0, p0] that includes the stationary distribution p∗ , 
on which the calculation of the limit value function is simple.

The algorithm then defines iteratively an increasing sequence (pk)k≥0 of points in the interval [p0, 1]; at the k’th iteration 
of the algorithm we define the point pk+1 and extend the definition of w to include (pk, pk+1]. This part of the algorithm 
terminates when pk = 1. Finally, the algorithm defines iteratively a decreasing sequence (̃pk)k≥0 of points in the interval 
[0, ̃p0] and extends the definition of w to include [̃pk+1, ̃pk). This part of the algorithm terminates when p̃k = 0.

Initialization:
Let p0 = inf{p > p∗, (cav u)(p) = u(p)} and p̃0 = sup{p < p∗, (cav u)(p) = u(p)}. Define a function w : [̃p0, p0] → R as 

follows:

• If p̃0 = p∗ = p0, then set w(p∗) = u(p∗).
• If p̃0 < p0, then w is defined by (compare this expression with Eq. (14))

w(p) := u(̃p0)
p0(μ + 1) − p∗

(p0 − p̃0)(μ + 1)
+ u(p0)

p∗ − p̃0(μ + 1)

(p0 − p̃0)(μ + 1)
+ pμ · u(p0) − u(̃p0)

(p0 − p̃0)(μ + 1)
, p ∈ [̃p0, p0]. (18)

Increasing part of the algorithm:

I.1. Let k ≥ 0 and suppose that the function w is already defined on the interval [p0, pk].
I.2. If pk = 1, the first part of the algorithm terminates; go to Step D.1.
I.3. If pk < 1, let ϕk : [pk, 1] →R be the solution of the following differential equation:{

ϕk(pk) = w(pk),

ϕ′
k(p) = μ(u(p)−ϕk(p))

p−p∗ , p ∈ (pk,1], (19)

and set

ψk(p) := w(pk) + (p − pk)a(pk, w(pk)), ∀p ∈ (pk,1]. (20)
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I.4. If ρ(pk, w(pk)) > pk , define

pk+1 := ρ(pk, w(pk)). (21)

Extend the domain of w to include (pk, pk+1] by

w(p) := ψk(p), ∀p ∈ (pk, pk+1]. (22)

I.5. Otherwise, ρ(pk, w(pk)) = pk . Define

pk+1 := inf{p > pk : ρ(p,ϕk(p)) > p}, (23)

with inf∅ = 1. Extend the domain of w to include (pk, pk+1] by

w(p) := ϕk(p), ∀p ∈ (pk, pk+1].
I.6. Increase k by 1 and go to Step I.2.

Decreasing part of the algorithm:

D.1. Let k ≥ 0 and suppose that the function w is already defined on the interval [̃pk, ̃p0].
D.2. If p̃k = 0, the algorithm terminates.
D.3. If p̃k > 0, let ϕk : [0, ̃pk] →R be the solution of the following differential equation:{

ϕk (̃pk) = w (̃pk),

ϕ′
k(p) = μ(u(p)−ϕk(p))

p−p∗ , p ∈ [0, p̃k).
(24)

Define

ψ̃k(p) := w (̃pk) + (p − p̃k )̃a(̃pk, w (̃pk)), ∀p ∈ [0, p̃k]. (25)

D.4. If ρ(̃pk, w (̃pk)) < p̃k , define

p̃k+1 := ρ(̃pk, w (̃pk)).

Extend the domain of w to include [̃pk+1, ̃pk) by

w(p) := ψ̃k(p), ∀p ∈ [̃pk+1, p̃k).

D.5. Otherwise, ρ(̃pk, w (̃pk)) = p̃k . Define p̃k+1 := sup{p < p̃k : ρ(p, ϕk(p)) < p}, with inf∅ = 0. Extend the domain of w to 
include [̃pk+1, ̃pk) by

w(p) := ϕk(p), ∀p ∈ [̃pk+1, p̃k).

D.6. Increase k by 1 and go to Step D.2.

The idea is that after the initialization, the algorithm determines for each point pk whether for beliefs slightly above pk
it is optimal for Player 1 to reveal information or to reveal nothing until the belief reaches pk . The decision is based on 
comparison of derivatives: the derivative of ϕk , the nonrevealing payoff, is compared to a(pk, w(pk)), the highest possible 
derivative when splitting. The strategy that gives the highest derivative is the one that is played, for as long as it’s derivative 
is indeed the higher one. The changes from a revealing strategy to nonrevealing strategy and vice versa occur at the points 
(pk)k≥0 and (̃pk)k≥0, where the former lower derivative becomes the higher one. Since the derivative from the right is 
equal to the derivative from the left in points where the behavior of the informed player changes, the corresponding payoff 
function, and consequently the limit value function, turn out to be differentiable.

On intervals (pk, pk+1] (resp. [̃pk+1, ̃pk)) where the function w is defined by Step I.4 (resp. D.4), w is linear, while on 
intervals (pk, pk+1] (resp. [̃pk+1, ̃pk)) where the function w is defined by Step I.5 (resp. D.5), w is nonlinear. We therefore 
call intervals on which w is defined by Steps I.4 and D.4 (resp. I.5 and D.5) linear intervals (resp. nonlinear intervals).

Remarks 3.2.

1. In the initialization step, under the optimal strategy of Player 1, the belief jumps at random times from p̃0 to p0 and 
back. When p∗ is an extreme point of this interval, say p∗ = p̃0, substituting p = p∗ in Eq. (18) yields w(p∗) = u(p∗). 
Consequently, in this case at the belief p∗ there is no revelation of information.
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2. On the interval [̃p0, p0] the function w coincides with the value function v . Indeed, by Lemma 2 in Cardaliaguet et al. 
(2016), for every p ∈ [̃p0, p0] we have

v(p) =
∞∫

0

e−rt(cav u)(p∗ + (p − p∗)e−(λ1+λ2)t)dt,

with (cav u)(p) = u(̃p0) + u(p0)−u(̃p0)
p0−p̃0

(p − p̃0). This integral can be calculated explicitly and it coincides with the ex-
pression of w in Eq. (18).

3. In general Eq. (19) does not have an explicit solution. In the special case that p∗ = 0 and μ = 1, this equation has an 
explicit solution, given by

ϕk(p) = pk

p
ϕ(pk) + 1

p

p∫
pk

u(t)dt.

4. Calculating the limit of the term on the right-hand side of Eq. (16) as p′ converges to p, we deduce that for every x ∈R
we have a(p, x) ≥ μ · u(p)−x

p−p∗ , provided p = p∗ . In particular, substituting x = ϕk(p), the solution of Eq. (19), this gives

a(p,ϕk(p)) ≥ ϕ′
k(p).

On a nonlinear interval (pk, pk+1] we can be even more precise: for every p such that ρ(p, ϕk(p)) = p, it follows from 
the definition of a(p, ϕk(p)) that

a(p,ϕk(p)) = μ · u(p) − ϕk(p)

p − p∗ = ϕ′
k(p). (26)

In particular, given that pk+1 = inf{p > pk : ρ(p, ϕk(p)) > p}, Eq. (26) holds for every p ∈ (pk, pk+1) as well as for the 
right (resp. left) derivative of ϕk for p = pk (resp. p = pk+1).

We now state the main theorem of the paper.

Theorem 3.3.

1. For every k ≥ 0 such that pk < 1 we have pk < pk+1 .
2. For every k ≥ 0 such that ̃pk > 0 we have ̃pk+1 < p̃k .
3. The algorithm terminates after a finite number of iterations; that is, there is k ≥ 0 such that pk = 1 and there is k ≥ 0 such that 

p̃k = 0.
4. The function w generated by the algorithm is the limit value function of the game, i.e., w = v.

The proof of Theorem 3.3 is relegated to Section 6, after the algorithm is demonstrated on some examples.

3.3. On the optimal use of information

Theorem 3.3 states that the algorithm computes the value function v . It also allows to construct an ε-optimal strategy for 
the informed player in the game G(n)(p), provided n is sufficiently large. Indeed, as exhibited by Cardaliaguet et al. (2016), 
an ε-optimal strategy for the informed player in the game G(n)(p) can be constructed using the process (πt)t≥0 that attains 
the maximum in Eq. (3). According to this ε-optimal strategy, at each stage l of the discrete-time game, the informed player 
plays an optimal strategy in the two-player zero-sum strategic-form game with payoff function g(πl/n, ·, ·). Thus, πl/n serves 
as a fictitious belief of the uninformed player at stage l. Since the gap between stages is small, the uninformed player can 
approximate the belief process from the realized actions of the informed player. In this sense, the informed player reveals 
information about the state of nature along the play. We now argue that the algorithm provides this process.

• As we have seen, the informed player plays in such a way that the belief never lies in the interior of a linear interval. 
Consequently, the process at time t = 0 is defined as follows.
Let p ∈ �(S) be the initial distribution. If p is in the interior of a linear interval (pk, pk+1) for some k ≥ 0, then the 
process (πt)t≥0 has a jump at time t = 0: π0 is equal to pk or pk+1, where the probability to attain each value is 
determined so as E[π0] = p, that is, pk P [π0 = pk] + pk+1 P [π0 = pk+1] = p. The analogous statement holds if p lies in 
a linear interval (̃pk+1, ̃pk) for some k ≥ 0, and if p ∈ (̃p0, p0). Otherwise we set π0 = p.

• When the belief is in a nonlinear interval, the informed player reveals no information. Consequently, in nonlinear 
intervals the process (πt)t≥0 is defined as follows.
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Let t0 ≥ 0, and suppose that πt0 lies in a nonlinear interval (pk, pk+1] for some k ≥ 1. The process (πt)t≥0 evolves 
continuously: πt0+h = p∗ + (πt0 − p∗)e−(λ1+λ2)h for every h > 0 such that πt0+h ∈ [pk, pk+1).
If πt0 lies in a nonlinear interval [̃pk+1, ̃pk) for some k ≥ 1, the process (πt)t≥0 is defined analogously.

• When the belief is the upper end of a linear interval, the belief remains pk+1 for some time, until it changes to pk; that 
is, the informed player reveals information at a random time.
Let t0 ≥ 0, and suppose that πt0 = pk+1, where (pk, pk+1] is a linear interval. For t > t0 the value of πt remains pk+1, 
until it jumps to pk at the rate αk := (λ1 + λ2)

pk+1−p∗
pk+1−pk

. Indeed, the fact that (πt−t0 )t≥0 belongs to S(pk+1) implies that 
E[πt |πt0 = pk+1] = p∗ + (pk+1 − p∗)e−(λ1+λ2)(t−t0) . Writing on the other hand

E[πt | πt0 = pk+1] = pk+1 P [T > t | πt0 = pk+1]
+ ∫ t

t0
(p∗ + (pk − p∗)e−(λ1+λ2)(t−s))P [T ∈ ds | πt0 = pk+1],

with T := inf{s ≥ t0, πs = pk+1}, it follows by elementary computations that P [T > t | πt0 = pk+1] = e
−(λ1+λ2)

pk+1−p∗
pk+1−pk

(t−t0)
.

If πt0 = p̃k+1, where [̃pk+1, ̃pk) is a linear interval, then the process (πt)t≥0 is defined analogously for t > t0.
• When the belief is p0 (resp. p̃0), with p0 = p̃0, the uninformed player makes the belief jump to p̃0 (resp. p0) at a 

random time.
Let t0 ≥ 0, and suppose that πt0 = p0. As in the previous point, for t > t0 the value of πt remains p0, until it switches 
to p̃0 with jump rate equal to (λ1 + λ2)

p0−p∗
p0−p̃0

. If πt0 = p̃0, the belief process jumps back to p0 with jump rate (λ1 +
λ2)

p∗−p̃0
p0−p̃0

.

It follows that the set of possible fictitious beliefs of the uninformed player is divided into finitely many disjoint regions; 
some regions should be avoided, and the informed player reveals information in such a way that the fictitious belief does 
not lie in these regions, while in the remaining regions the informed player reveals no information. It turns out that the 
types of the regions are alternating: each region that should be avoided lies between two nonrevealing regions, and vice 
versa. This phenomenon already occurred in the setup of Aumann and Maschler (1995), where the state remains constant 
throughout the play. Yet while in the setup of Aumann and Maschler (1995) the nonrevealing regions are singletons, in our 
setup the regions are always intervals with non-empty interiors (except possibly {p∗}).

4. Examples

In this section we illustrate the algorithm on the three examples provided in the Introduction. Recall that in these exam-
ples μ = r = 1 and the state s2 is absorbing, so that p∗ = 0. We will also analyze two variants of the third example, where 
state s2 is not absorbing; the first is a nontrivial example where the algorithm has both an increasing and a decreasing part, 
and the second will show that the limit value function may be nondifferentiable at p∗ .

Example 1, continued. In this example the function u is given by u(p) = p(1 − p) for every p ∈ [0, 1]. The function u is 
concave, and therefore ̃p0 = p0 = 0, and w(0) = 0. We next compute the solution of Eq. (19) with initial condition ϕ(0) = 0. 
For p ∈ [0, 1], the solution is (see Remark 3.2.3)

ϕ(p) = 0

p
+ 1

p

p∫
0

t(1 − t)dt = p

2
− p2

3
.

It follows that

a(p,ϕ(p)) = sup
p′∈(p,1]

p′(1 − p′) − p
2 + p2

3

2p′ − p
.

For every p ∈ [0, 1] the supremum is obtained only at p′ = p, that is ρ(p, ϕ) = p for every p ∈ [0, 1]. This implies that 
the condition of Step I.5 holds, p1 = 1, and the first part of the algorithm terminates. Since p̃0 = 0, the second part of the 
algorithm is vacuous. In conclusion, the limit value function is given by

v(p) = p

2
− p2

3
, ∀p ∈ [0,1],

and the optimal strategy of Player 1 is never to reveal her information.

Example 2, continued. Recall that in this example the function u is given by u(p) = −p(1 − p) for every p ∈ [0, 1]. Since 
(cav u)(p∗) = 0 = αu(0) + (1 − α)u(1), ∀α ∈ [0, 1], we have p̃0 = 0 and p0 = 1. From Eq. (18) we obtain that v(p) = 0 for 
every p ∈ [0, 1]. Consequently, the optimal strategy of Player 1 is to always reveal her information.
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Example 3, continued. In this example the function u(p) is given by Eq. (1) and is represented by the dotted line in Fig. 7. 
For this example the algorithm runs as follows. Since p∗ = 0 we have p̃0 = 0. Simple calculations show that p0 = 1

3 , and 
from Eq. (18) we have w(p) = − 2

3 + p for every p ∈ [0, 13 ]. On [ 1
3 , 23 ] the solution of Eq. (19) is ϕ0(p) = 1

3p v( 1
3 ) + 1

p

∫ p
1
3

0 dx =
− 1

9p . It follows that, for p ∈ [ 1
3 , 23 ],

a(p,ϕ0(p)) = supp′∈(p,1]
u(p′)−ϕ0(p)

2p′−p

= max

{
supp′∈(p, 2

3 )
−ϕ0(p)
2p′−p ; supp′∈[ 2

3 ,1]
9p′2−9p′+2

3(2p′−1)
+ 1

9p

2p′−p

}
= max

{
1

9p2 ,
6p+1

9p(2−p)

}
,

where the suprema are respectively attained at p and 1. Solving 1
9p2 = 6p+1

9p(2−p)
, we obtain

a(p,ϕ0(p)) =
{

1
9p2 with ρ(p,ϕ0(p)) = p, for p < p := −1+√

13
6 ,

6p+1
9p(2−p)

with ρ(p,ϕ0(p)) = 1, for p ≥ p.

Therefore (using Step I.5) p1 = inf{p > p0, ρ(p, ϕ0(p)) > p} = p and w(p) = ϕ0(p) = − 1
9p2 for p ∈ [ 1

3 , p]. Finally (Step I.4) 
p2 = ρ(p, w(p)) = 1 and w(p) = − 1

9p + 1
9p2 (p − p) on [p, 1], and the algorithm terminates. In conclusion, the limit value 

function is given by

v(p) =

⎧⎪⎪⎨⎪⎪⎩
p − 2

3 , if 0 ≤ p < 1
3 ,

− 1
9p , if 1

3 ≤ p < p, with p =
√

13−1
6 (� 0,434),

− 1
9p + 1

9p2 (p − p), if p ≤ p ≤ 1.

(27)

In particular

v(1) = 1

9p2
(2p − 1).

The evolution of the optimal belief process in this example is as follows. Suppose that the initial belief π0 = 1. The belief 
process jumps to p with jump rate equal to 1

1−p , and then slides towards 1
3 with speed π ′

t = −pe−(t−T ) , where T is the 
jump time. Once it arrives to 1

3 , it jumps to 0 with jump rate 1, where it remains forever. If π0 ∈ (p, 1) or π0 ∈ (0, 13 ), the 
process first splits to the extreme points of the interval, and then continues as described above. As described in Section 3.3, 
the optimal belief process determines one ε-optimal strategy for the informed player when the gap between stages is small.

Example 3, variation a.
Here we assume that λ1 = 3 and λ2 = r = 1, and therefore state s2 is no longer absorbing. It follows that μ = 1

4 and p∗ =
1
4 = 0. The algorithm starts at p∗ = 1

4 and runs in both directions. Here we write down the main steps of the algorithms; 
the detailed calculations appear in Appendix 7.1. The function u is convex on [0, 13 ] (see Fig. 8), one can show that p̃0 = 0
and p0 = 1

3 , and therefore the decreasing part of the algorithm is vacuous. For the increasing part of the algorithm, Eqs. (19)
and (21) for k = 0 can be solved explicitly and give p1 � 0.3858. It is then not difficult to show that p2 = 1. It turns out 
that the limit value function is

v(p) =

⎧⎪⎨⎪⎩
2

15 (3p − 2), if 0 ≤ p < 1
3 ,

− 2
15 · 3−1/4 · (4p − 1)−1/4, if 1

3 ≤ p < p1,

ap + b if p ∈ (p1,1],
(28)

where a = 2
3 −w(p1)

4−p1
� 0.21709 and b = 2

3 − 4a � −0.20177 (see Fig. 8). The optimal revelation process has the following 
structure. If π0 = 0, the process jumps to p∗ = 1

3 with jump rate λ1 + λ2 = 4, where it remains forever. If π0 = 1, the 
process jumps to p1 with jump rate (λ1 +λ2)

1−p∗
1−p1

� 4.342, then slides towards 1
3 with speed π ′(t) = −4(p1 − p∗)e−4(t−T ) �

−0.21e−4(t−T ) , where T is the jump time. For any other starting point, the optimal revelation process can be deduced from 
these two cases, by adding, if necessary, an initial splitting.

Example 3, variation b.
Suppose now that λ1 = 4

3 , λ2 = 2
3 , which implies that r = 1, p∗ = 1

3 , and μ = 1
2 . In this case (cav u)( 1

3 ) = u( 1
3 ) = 0 and 

p̃0 = p0 = 1
3 , and in both directions the algorithm starts with an affine part and lasts only one step: p̃1 = 0 and p1 = 1. The 

limit value function turns out to be
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Fig. 8. The value function in Example 3, variation a.

Fig. 9. The value function in Example 3, variation b.

v(p) =
{

2
3 p − 2

9 , if 0 ≤ p < 1
3 ,

1
3 p − 1

9 , if 1
3 ≤ p < 1̄.

(29)

(See Fig. 9.) Note that v is not differentiable at p∗ = 1
3 . For the precise computations, see Appendix 7.2. Here, the set of 

beliefs is divided into two linear intervals. Consequently, at time 0 the belief is split between 0 and 1
3 (if the initial belief 

is smaller than 1
3 ) or between 1

3 and 1 (if the initial belief is larger than 1
3 ). Then the optimal revelation process jumps to 

p∗ = 1
3 with jump rate equal to 2, where it remains forever.

5. Perspectives and open questions

An interesting question concerns the dependence of the value function and the optimal strategy of the informed player 
on the transition rates λ1 and λ2 and on the discount rate r. The invariant measure p∗ = λ2

λ1+λ2
determines the interval 

[̃p0, p0] at the initialization of the algorithm, as well as the rate of information revelation by the informed player when πt

is p0, p̃0, or the extreme point of a linear interval that is farther away from the invariant distribution. The ratio μ = r
λ1+λ2

affects the slope of the nonlinear part (see Eq. (19)) and therefore also the slope of the linear parts of the value function. The 
larger μ, the more extreme is the slope (larger when the slope is positive, smaller when the slope is negative). Example 3
and its variants show that for different parameters, the value function may have a completely different structure.

The algorithm we presented computes the value function of a zero-sum Markov game, yet it applies to all games where 
the optimization problem of the informed player can be expressed as an optimization problem with respect to a belief 
process

v(p) = max
(pt )∈S(p)

E

⎡⎣ ∞∫
0

re−rt u(pt)dt

⎤⎦ , (30)

whenever the function u is Lipschitz, piecewise twice differentiable, and its second derivative changes signs finitely many 
times. These last two properties hold when u is semialgebraic, and in particular in repeated games with incomplete infor-
mation. They also hold for o-minimal structures in general (see, e.g., Coste (1999)). For a study of games with payoffs and 
transitions that are in some o-minimal structure, see Bolte et al. (2015).

One setup where the optimization problem can be expressed as in Eq. (30) is the model of dynamic information pro-
vision, see, e.g., Ely (2017) and Renault et al. (2017). In this setup, the payoff is not zero sum and it depends on the state 
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and on the action of the uninformed player, but not on the action of the informed player. Consequently, the uninformed 
player is myopic, her action at each stage depends solely on her belief, and it turns out that the limit value function is 
of type (30), where u is an indicator function, hence discontinuous. By approximating the discontinuous function u with a 
continuous semialgebraic function û, and applying our algorithm to û, one can approximate the limit value function of the 
original problem. This approach has been taken by Ashkenazi-Golan et al. (2020) who study dynamic information provision 
with two states of nature when the function u is a monotone step function, and provide insights regarding the structure of 
the optimal strategy of the informed player.

The algorithm is tailored for repeated games with incomplete information and two states. A natural question is whether 
the algorithm can be generalized to games with more than two states. Unfortunately, the existing literature exhibits the 
inherent complexity in Markov games with three states. For example, in the model of dynamic information provision, 
while the two-state case can be easily solved, Renault et al. (2017) provided a well chosen example showing that even 
in the case where the transition matrix is a homothety, the optimal strategy for the informed player may be complex. 
A similar phenomenon occurs in related models. In a work in progress, Gensbittel and Rainer (2020) study the continuous 
time counterpart of Renault et al. (2017) and show that in general, there is no much hope for an explicit construction if 
the number of states exceeds two. Gensbittel and Grün (2019) studied optimal stopping with asymmetric information in 
continuous time, and provided an algorithm to compute the optimal strategy of the informed player only in the two-state 
case. In the case where the cost function is time inhomogeneous but the information does not evolve, that is, the Markov 
process is constant, Cardaliaguet and Rainer (2009b) provided a three-state example admitting an optimal revelation process 
which is a continuous martingale, i.e., a stochastic integral with respect to a Brownian motion, living on a hyperspace 
described by a mean curvature motion. In this example, there exists an optimal revealing process with a simpler structure as 
well, yet the question if there always exists an optimal revealing process without Brownian part is still open. Another natural 
extension concerns signals as in Gensbittel (2019), who studied Markov games in continuous time where the uninformed 
players observe a diffusion depending on the Markov state process. In this model, the value function depends on both 
the state and the diffusion process. This diffusion process adds a supplementary dimension to the value function and its 
characterization. Therefore, it is not clear how to adapt the algorithm to this case.

The algorithm provides an optimal strategy for the informed player. An interesting open question is the determination of 
the optimal strategy for the uninformed player.

A strategy is uniform ε-optimal if it is ε-optimal in all discounted games, provided the discount rate is sufficiently close 
to 1. Renault (2012) (resp. Gensbittel and Renault (2015)) proved that in zero-sum Markov games with incomplete infor-
mation on one side (resp. on both sides) both players have uniform ε-optimal strategies, for every ε > 0. By definition, if 
uniform ε-optimal strategies exist for every ε > 0, then the discounted value function converges to a limit when the dis-
count rate goes to 0. To date it is not known whether in continuous-time repeated games with asymmetric information, the 
discounted value function converges to a limit as the discount rate goes to 0, and in particular, whether uniform ε-optimal 
strategies exist. We hope that our research will help in the solution of this problem.

6. Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3. In Section 6.1 we study the sequence (pk) and show that the 
algorithm provided in Section 3.2 terminates. In Section 6.2 we show that the function w is concave and differentiable 
everywhere, except, possibly, at p∗. In Section 6.3 we show that w = v .

6.1. On the sequence (pk)

In this section we study the sequence (pk). We will show that it is strictly increasing (Lemma 6.2) and that if pk is 
defined by Eq. (21) then pk+1 is defined by Eq. (23), and vice versa (Lemma 6.3). We will then show that there is k ∈ N
such that pk = 1. We start with a technical lemma that will determine the value of u and ϕ on the elements of the sequence 
(pk).

Lemma 6.1. Let q ∈ (p∗, 1). Suppose that w is defined at q and set ρ := ρ(q, w(q)). Suppose that u is twice differentiable on some 
open interval I that contains ρ .

1. If q < ρ , then
(i) u′(ρ) = 1+μ

μ a(q, w(q)), and

(ii) u′′(ρ) ≤ 0.
2. Let ϕ : [q, 1] →R be a function satisfying ϕ(q) = w(q) and ϕ′(p)(p − p∗) = μ

(
u(p) −ϕ(p)

)
on [q, 1]. If q = ρ , then ϕ′′(q) ≤ 0.

Proof. We start with the first claim. Set �(p) := p − p∗ + μ(p − q) and F (p) := μ · u(p)−w(q)
�(p)

for every p ∈ I . Since u is 
differentiable on I , the function F is also differentiable on I , and its derivative is

F ′(p) = μ · u′(p)�(p) − (1 + μ)(u(p) − w(q))

2
. (31)
� (p)
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If q < ρ , then ρ is a local extremum in I of F , and we have F ′(ρ) = 0. From Eq. (31) we obtain

u′(ρ) = (1 + μ)
u(ρ) − w(q)

�(ρ)
= (1 + μ)

u(ρ) − w(q)

ρ − p∗ + μ(ρ − q)
. (32)

Item (i) follows by the definition of a(q, w).
The second derivative of F at ρ is

F ′′(ρ) = μ · u′′(ρ)�2(ρ) − 2(1 + μ)
(
u′(ρ)�(ρ) − (1 + μ)(u(ρ) − w(q))

)
�3(ρ)

. (33)

From Eq. (32) the second term in the numerator in Eq. (33) vanishes, hence

u′′(ρ) = 1
μ F ′′(ρ)�(ρ).

Since ρ is a local maximum of F , we have F ′′(ρ) ≤ 0. Since �(ρ) > 0, Item (ii) follows.
We turn to the second claim. If ρ = q, the maximum of F on [q, 1] is attained at q. Therefore F ′(q) ≤ 0. It follows from 

Eq. (31) that

u′(q) ≤ (1 + μ)
u(q) − ϕ(q)

q − p∗ = 1 + μ

μ
ϕ′(q). (34)

Further, from the relation ϕ′(q)(q − p∗) = μ(u(q) − ϕ(q)), we get

ϕ′′(q)(q − p∗) = μu′(q) − (1 + μ)ϕ′(q). (35)

Eqs. (34) and (35) imply that ϕ′′(q) ≤ 0. �
Lemma 6.2. For all k ≥ 0 such that p∗ ≤ pk < 1, we have pk < pk+1 .

Proof. By Step I.4, if ρ(pk, w(pk)) > pk , then (pk, pk+1] is a linear interval and pk+1 = ρ(pk, w(pk)) > pk , as claimed. If 
ρ(pk, w(pk)) = pk , then by Step I.5, (pk, pk+1] is a nonlinear interval and

pk+1 = inf{p > pk,ρ(p,ϕ(p)) > p}, (36)

where ϕ is the solution of Eq. (19). In this case the result is not trivial. We shall prove it by contradiction.
Suppose to the contrary that pk+1 = pk . Then Eq. (36) implies the existence of a sequence (qn)n∈N ⊂ (pk, pk + ε) such 

that qn ↘ pk and ρ(qn, ϕ(qn)) > qn for every n ∈N . In what follows, we set ρn := ρ(qn, ϕ(qn)).
Let ρ be an accumulation point of the sequence (ρn)n∈N and denote still by (qn)n∈N a subsequence of (qn)n∈N such 

that ρ(qn, ϕ(qn)) converges to ρ . Since p 
→ a(p, ϕ(p)) is continuous,2 and, by Eq. (16)

a(qn,ϕ(qn)) = μ · u(ρn) − ϕ(qn)

ρn − p∗ + μ(ρn − qn)
, (37)

letting n tend to ∞ in Eq. (37) we get

a(pk,ϕ(pk)) = μ · u(ρ) − ϕ(pk)

ρ − p∗ + μ(ρ − pk)
.

By assumption, the value a(pk, ϕ(pk)) is attained only at pk = ρ(pk, ϕ(pk)). Thus ρ = pk . By taking a subsequence of 
(qn)n∈N , still denoted (qn)n∈N , we can assume that ρn+1 < qn < ρn for every n ∈N .

Since the function u is semialgebraic, there exists n0 such that u is smooth on the interval (pk, qn0). Moreover, by 
Lemma 6.1(1) we have u′′(ρn) ≤ 0 for every n ≥ n0. This implies that u′ is nonincreasing and u is concave on (pk, qn0). We 
can strengthen this conclusion: we can choose n0 such that u′ is strictly decreasing and u is strictly concave on (pk, qn0). 
Indeed, suppose that this does not hold. In this case u is linear in a small one-sided neighborhood of pk : there exist ε̃ ≤ ε

and α, β ∈ R such that u(p) = αp + β for all p ∈ [pk, pk + ε̃]. By Lemma 6.1(1), it follows that μ
1+μα = a(qn, ϕ(qn)) =

a(pk, ϕ(pk)) for n sufficiently large. By Eq. (37) we therefore have

a(pk,ϕ(pk)) = μ ·
1+μ
μ a(pk,ϕ(pk))ρ

n + β − ϕ(qn)

ρn − p∗ + μ(ρn − qn)
,

or, equivalently, β + a(pk,ϕ(pk))
μ (p∗ + μqn) = ϕ(qn). In addition, for every p > ρn we have by the definition of ρn ,

2 as the maximum of a set of uniformly Lipschitz continuous functions.
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a(pk,ϕ(pk)) = a(qn,ϕ(pk)) > μ · u(p) − ϕ(qn)

p − p∗ + μ(p − qn)
= μ ·

1+μ
μ a(pk,ϕ(pk))p + β − ϕ(qn)

p − p∗ + μ(p − qn)
,

or, equivalently, β + a(pk,ϕ(pk))
μ (p∗ +μqn) < ϕ(qn), a contradiction. It follows that u′ is strictly decreasing in a small one-sided 

neighborhood of pk .
Now fix n > n0 and let ρ̃ ∈ (qn, ρn). Since u′ is strictly decreasing on (pk, qn0) and ρn+1 < qn , we have u′(ρn) < u′(ρ̃) <

u′(ρn+1), or, equivalently, using Lemma 6.1(1),

μ

1 + μ
u′(ρ̃) ∈ (a(qn,ϕ(qn)),a(qn+1,ϕ(qn+1))).

By the continuity of the function p 
→ a(p, ϕ(p)), there exists q′ ∈ (qn+1, qn) such that a(q′, ϕ(q′)) = μ
1+μ u′(ρ̃). It follows 

that, if ρ ′ is close enough to ρn , it belongs to the set of points where the maximum a(q′, ϕ(q′)) is attained. Therefore it 
holds that ρ ′ := ρ(q′, ϕ(q′)) ≥ ρ̃ ≥ qn . Moreover, since q′ > qn , we have

a(qn,ϕ(qn)) < a(q′,ϕ(q′)). (38)

Consider now the function � on [q′, 1] defined by �(p) := ϕ(q′) +a(q′, ϕ(q′))(p −q′). The reader can verify that the function 
� is a solution of

�(q′) = ϕ(q′),
�′(p)(p − p∗) = μ(u(p) − �(p)), ∀p ∈ [q′,1],

with u(p) := ϕ(q′) + a(q′,ϕ(q′))
μ

(
p − p∗ + μ(p − q′)

)
for every p ∈ [q′, 1]. It follows that the function γ : [q′, 1] → R defined 

by γ (p) := �(p) − ϕ(p) is a solution of

γ (q′) = 0,

γ ′(p)(p − p∗) = μ(̃u(p) − γ (p)), ∀p ∈ (q′,1),
(39)

with ̃u(p) = u(p) − u(p), for every p ∈ [q′, 1]. Eq. (39) can be solved quasi-explicitly:

γ (p) = c(p)(p − p∗)−μ, ∀p ∈ [q′,1],
with c(q′) = 0 and c′(p) = μũ(p)(p − p∗)μ−1.

By the definition of a(q′, ϕ(q′)) and u, the function ũ is nonnegative on [q′, 1]. It follows that, for every p ∈ [q′, 1] we 
have c(p) ≥ 0 and consequently γ (p) ≥ 0, which is equivalent to �(p) ≥ ϕ(p). Substituting p = qn , we obtain in particular 
that �(qn) ≥ ϕ(qn), or, equivalently,

ϕ(qn) − ϕ(q′) ≤ a(q′,ϕ(q′))(qn − q′). (40)

To derive a contradiction, recall that, by the definition of a(q′, ϕ(q′)) and a(qn, ϕ(qn)),

u(ρ ′) = ϕ(q′) + a(q′,ϕ(q′))
μ

(ρ ′ − p∗ + μ(ρ ′ − q′))

and

u(ρ ′) ≤ ϕ(qn) + a(qn,ϕ(qn))

μ
(ρ ′ − p∗ + μ(ρ ′ − qn)).

Combining these two equations with Eq. (40) we obtain

a(q′,ϕ(q′))(ρ ′ − p∗ + μ(ρ ′ − qn)) ≤ a(qn,ϕ(qn))(ρ ′ − p∗ + μ(ρ ′ − qn)).

Since ρ ′ > p∗ and ρ ′ > qn this implies that a(q′, ϕ(q′)) ≤ a(qn, ϕ(qn)), contradicting Eq. (38). It follows that pk+1 that is 
defined by Eq. (36) satisfies pk+1 > pk . �

The following lemma says that linear intervals are followed by nonlinear intervals and vice versa.

Lemma 6.3.

1. If p∗ < p0 < 1, then ρ(p0, w) = p0 and (p0, p1] is a nonlinear interval. (If p0 = p∗ , then (p0, p1] may be a linear or a nonlinear 
interval.)

2. For every k ≥ 1 such that pk > 1, if (pk−1, pk] is a linear interval (resp. a nonlinear interval), then (pk, pk+1] is a nonlinear 
interval (resp. a linear interval).
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Proof. By the definition of p̃0 and p0, we have

u(p) − u(p0)

p − p0
<

u(p0) − u(̃p0)

p0 − p̃0
, ∀p ∈ (p0,1].

Simple (though tedious) algebraic manipulations combining this inequality with Eq. (18) for p = p0 yield

u(p) − w(p0)

p − p∗ + μ(p − p0)
<

u(p0) − w(p0)

p0 − p∗ , ∀p ∈ (p0,1].
Claim 1 follows.

We turn to prove Claim 2. Suppose that (pk−1, pk] is a linear interval. By construction we have

a(pk−1, w(pk−1)) = μ · u(pk) − w(pk−1)

pk − p∗ + μ(pk − pk−1)
. (41)

Since on the interval (pk−1, pk] the function w is defined by Eqs. (22) and (20), we have w(pk−1) = w(pk) −
a(pk−1, w(pk−1))(pk − pk−1), and Eq. (41) becomes

a(pk−1, w(pk−1)) = μ · u(pk) − w(pk)

pk − p∗ . (42)

To show that (pk, pk+1] is a nonlinear interval we will show that ρk := ρ(pk, w(pk)) = pk . By Eq. (42) and Remark 3.2.4 we 
have

a(pk−1, w(pk−1)) = μ · u(pk) − w(pk)

pk − p∗ ≤ a(pk, w(pk)) = μ · u(ρk) − w(pk)

ρk − p∗ + μ(ρk − pk)
.

Using again the relation w(pk) = w(pk−1) + a(pk−1, w(pk−1))(pk − pk−1), this last inequality becomes

a(pk−1, w(pk−1)) ≤ μ · u(ρk) − w(pk−1)

ρk − p∗ + μ(ρk − pk−1)
.

Since ρ(pk−1, w(pk−1)) is the maximal p′ that satisfies a(pk−1, w(pk−1)) = μ · u(p′)−w(pk−1)

p′−p∗+μ(p′−pk−1)
, this implies that 

ρ(pk, w(pk)) = ρ(pk−1, w(pk−1)) = pk , which is what we wanted to prove. For later use we note that in this case we 
have a(pk−1, w(pk−1)) = a(pk, w(pk)).

Finally assume that (pk−1, pk] is a nonlinear interval, so that pk = inf{p > pk−1, ρ(p, w(p)) > p}. To prove that (pk, pk+1]
is a linear interval we will show that ρ(pk, w(pk)) > pk . Suppose to the contrary that ρ(pk, w(pk)) = pk . Then, the algo-
rithm dictates that pk+1 = inf{p > pk, ρ(p, ϕk(p)) > p} and w = ϕk on (pk, pk+1]. By the definition of pk , this implies that 
pk+1 = pk , contradicting Lemma 6.2. We conclude that (pk, pk+1] is a linear interval. �
Lemma 6.4. The algorithm ends after a finite number of iterations: there exists k ≥ 0 such that pk = 1 and there exists ̃k ≥ 1 such that 
p̃k̃ = 0.

Proof. We will prove the first claim. The second claim is proven analogously. Assume by contradiction that pk < 1 for 
every k ∈N , and set p∞ = limn→∞ pn . By Lemma 6.2, (pk, pk+1) = ∅ for every k ∈N . Since u is semialgebraic, there is n0
sufficiently large such that u is twice differentiable on [pn0 , p∞). Let k ≥ n0 be such that the interval (pk, pk+1] is linear. By 
Eq. (26) and the definition of a(pk, w(pk)) (Eq. (16)),

• a(pk, w(pk)) = μ · u(pk)−w(pk)
pk−p∗ = μ · u(pk+1)−w(pk)

pk+1−p∗+μ(pk+1−pk)
,

• a(pk, w(pk)) ≥ μ · u(p)−w(pk)
p−p∗+μ(p−pk)

, for every p ∈ (pk, pk+1).

Equivalently, if we set

f (p) = μ(u(p) − w(pk)) − a(pk, w(pk)) − a(pk, w(pk))(p − p∗ + μ(p − pk)), (43)

it holds that f (pk) = f (pk+1) = 0 and f (p) ≤ 0 for every p ∈ (pk, pk+1).
By Lemma 6.3 there are infinitely many linear intervals. We argue now that, provided k is sufficiently large, if the 

interval (pk, pk+1] is linear then there exists p ∈ (pk, pk+1) with f (p) < 0. Indeed, if this is not true, then for every such 
k sufficiently large, f (p) = 0 for every p ∈ (pk, pk+1). By Eq. (43) this implies that u is affine on (pk, pk+1). Since u is 
semialgebraic, it is affine on the whole interval [pn1 , p∞), for some large enough n1. But in this case, for every k ≥ n1, if 
ρ(pk, w) > pk then ρ(pk, w) = p∞ , contradicting the fact that pk < p∞ for every k.

We conclude that for every k sufficiently large such that the interval (pk, pk+1] is linear there is p ∈ (pk, pk+1) satisfying 
f (p) < 0. In that case we can also find p′ ∈ (pk, pk+1) such that f ′′(p′) > 0. Since f ′′ = μu′′ , this implies that u′′(pk) > 0. 
Since u is semialgebraic, this implies that u′′(p) > 0 for every p sufficiently close to p∞ . However, by Lemma 6.1 (1.ii), 
u′′(q) ≤ 0 for some q ∈ (pk, pk+1), a contradiction. �
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6.2. The function w is differentiable and concave

Lemma 6.5. The function w is differentiable on [0, p∗) ∪ (p∗, 1]. If ̃p0 < p∗ < p0 , then w is differentiable everywhere.

Proof. By its definition, the function w is affine on [̃p0, p0]. Hence w is differentiable on (p∗, p0), and if ̃p0 < p∗ < p0 then 
w is differentiable at p∗ .

We next note that w is differentiable on each interval (pk−1, pk). Indeed, on each of these intervals, w is affine or the 
solution of a standard first order differential equation.

We now show that w is differentiable at each of the points (pk)k≥1, and, if p∗ < p0, it is also differentiable at p0. Denote 
by w ′−(p) (resp. w ′+(p)) the left (resp. right) derivative of w at p.

If p∗ < p0, then w is affine on [p∗, p0] and by Eq. (18) we have w ′−(p0) = μ(u(p0)−u(̃p0))
(p0−p̃0)(μ+1)

. By definition, w ′+(p0) =
ϕ′+(p0) = μ · u(p0)−w(p0)

p0−p∗ . Substituting w(p0) by its expression in Eq. (18), we deduce that w ′+(p0) = w ′−(p0).
For k ≥ 1, either ρ(pk, w) > pk or ρ(pk, w) = pk . In the first case, (pk, pk+1] is a linear interval, and then w ′−(pk) =

μ · u(pk)−w(pk)
pk−p∗ and w ′+(pk) = μ · u(pk+1)−w(pk)

pk+1−p∗+μ(pk+1−pk)
. pk is defined to be inf

{
p > pk−1 : ρ(p,ϕk−1) > p

}
. Thus, for all p ∈

(pk−1, pk) we have

u(pk+1) − w(p)

pk+1 − p∗ + μ(pk+1 − p)
≤ u(p) − w(p)

p − p∗ .

Since pk is the infimum of a decreasing sequence where the last inequality is reversed, and by the continuity of w and 
u, we get the equality of the derivatives.

In the second case the interval (pk−1, pk] is linear. For such k we have w ′−(pk) = a(pk−1, w(pk−1)) and w ′+(pk) =
μ · u(pk)−w(pk)

pk−p∗ , and the equality of the derivatives follows from Eq. (42).
Analogous arguments hold for the interval [0, p∗). �

Lemma 6.6. The function w is concave.

Proof. On the interval [̃p0, p0] and on linear intervals the function w is affine. We turn to prove that w is concave on the 
nonlinear intervals. We will only discuss nonlinear intervals defined by Step I.5.

On nonlinear intervals the function w coincides with the solution ϕ of Eq. (19). Moreover, ρ(q, ϕ) = q for every q in 
such an interval. The function u is semialgebraic, hence twice differentiable on [0,1], except possibly at finitely many points. 
If q is in a nonlinear interval and u is twice differentiable at q, then u is twice differentiable in an open neighborhood of q, 
and hence, by Lemma 6.1(2), we have w ′′(q) = ϕ′′(q) ≤ 0.

It follows that the interval [0, 1] can be partitioned into finitely many subintervals such that w ′ is weakly decreasing 
on the interior of each of the subintervals. If w is differentiable on [0, 1], we can conclude from this that w ′ is decreasing 
everywhere, i.e., w is concave on the whole interval [0, 1]. By Lemma 6.5, this is the case when p̃0 < p∗ < p0. If p∗ = 0
(resp. p∗ = 1) then w is concave on (0, 1] (resp. [0, 1)), and hence also on [0, 1].

Suppose then that p∗ ∈ (0, 1), and p∗ = p0 or p∗ = p̃0. In this case we have to examine the behavior of w at p∗ , where 
it may not be differentiable. We will handle the case p∗ = p0. The case p∗ = p̃0 is handled analogously.

Since w is differentiable on [0, p∗) ∪ (p∗, 1], both the left and the right derivatives at p∗ exist, and it is sufficient to 
show that w ′+(p∗) ≤ w ′−(p∗). We will show that w ′+(p∗) = a(p∗, w(p∗)). Indeed, when p∗ = p0 we have w(p∗) = u(p∗), 
and therefore

a(p∗, w(p∗)) = μ

1 + μ
sup

p∈(p∗,1]
u(p) − u(p∗)

p − p∗ . (44)

We distinguish between two cases.

• If ρ(p∗, w) > p∗ , then the interval [p∗, p1] is linear, that is, w = ψ0, and we have

w ′+(p∗) = ψ ′
0+(p∗) = a(p∗, w(p∗)).

• If ρ(p∗, w) = p∗ , then the interval [p∗, p1] is nonlinear. In this case, we have

w ′+(p∗) = ϕ′
0+(p∗) = limp↘p∗ ϕ′

0(p) = limp↘p∗ μ · u(p)−ϕ0(p)
p−p∗

= μ limp↘p∗ u(p)−u(p∗)
p−p∗ − μ limp↘p∗ ϕ0(p)−ϕ0(p∗)

p−p∗

= μu′+(p∗) − μϕ′
0+(p∗) = μu′+(p∗) − μw ′+(p∗).

By Eq. (44) we deduce that
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. 
w ′+(p∗) = μ

1 + μ
u′+(p∗) = μ

1 + μ
sup

p∈(p∗,1]
u(p) − u(p∗)

p − p∗ = a(p∗, w(p∗)).

We now calculate w ′−(p∗). If ̃p0 = p0 = p∗ , a similar argument shows that w ′−(p∗) = ã(p∗, w(p∗)) = μ
1+μ infp∈[0,p∗)

u(p)−u(p∗)
p−p∗

However, in this case, at p0 the function u is equal to its convex hull, and therefore

w ′+(p∗) = μ

1 + μ
sup

p∈(p∗,1]
u(p) − u(p∗)

p − p∗ ≤ μ

1 + μ
inf

p′∈[0,p∗)

u(p′) − u(p∗)
p′ − p∗ = w ′−(p∗),

as desired. If p̃0 < p0 = p∗ , Eq. (18) yields

w ′−(p∗) = μ

1 + μ

u(p0) − u(̃p0)

p0 − p̃0
.

From the definition of p̃0 and p0 we deduce that

u(p0) − u(̃p0)

p0 − p̃0
≥ sup

p∈(p0,1]
u(p) − u(p0)

p − p0
, (45)

and once again it follows that w ′+(p∗) ≤ w ′−(p∗). �
6.3. The functions w and v coincide

Proposition 6.7. For every p ∈ [0, 1] we have w(p) = v(p).

Proof. To prove the claim we show that the function w satisfies the conditions of Theorem 2.3. Condition G.1 holds by the 
definition of w on the interval [̃p0, p0]. By Lemmas 6.5 and 6.6, w is concave and differentiable on [0, 1] \ {p∗}.

Since w is affine on the interval [̃p0, p0] and on linear intervals [pk, pk+1], and since by Lemma 6.3 the two end-points 
of these intervals lie in nonlinear intervals, it follows that all the extreme points of the hypograph of w lie in nonlinear 
intervals [pk, pk+1]. On these intervals, from Eq. (26), the relation w ′(p)(p − p∗) +μ (w(p) − u(p)) = 0 holds, and therefore 
Condition G.3 holds. Moreover, Condition G.2 holds on nonlinear intervals [pk, pk+1].

It remains to show that Condition G.2 holds: w ′(p)(p − p∗) + μ (w(p) − u(p)) ≥ 0 on the interval [̃p0, p0] and on linear 
intervals. On a linear interval (pk, pk+1] we have w(p) = w(pk) + (p − pk)a(pk, w(pk)) and w ′(p) = a(pk, w(pk)). It then 
follows by the definition of a(pk, w(pk)) that on these intervals

(p − p∗)w ′(p) + μ(w(p) − u(p))

= (p − p∗)a(pk, w(pk)) + μ
(

w(pk) + (p − pk)a(pk, w(pk)) − u(p)
)

= (
p − p∗ + μ(p − pk)

)
a(pk, w(pk)) + μ

(
w(pk) − u(p)

)
≥ 0,

as desired.
On the interval [̃p0, p0] the function w is affine, thus w ′ is constant and therefore the function w(p) + w ′(p)(p−p∗)

μ is 
affine as well. The points (̃p0, u(̃p0)) and (p0, u(p0)) are on the graph of this last function. These points and the interval 
connecting them are on the graph of the function cav u. It follows that for every p ∈ (̃p0, p0) we have u(p) ≤ w(p) +
w ′(p)(p−p∗)

μ , which implies that w ′(p)(p − p∗) + μ (w(p) − u(p)) ≥ 0. �
7. Appendix: the computation for Example 3, variations a. and b.

7.1. Example 3, variation a.

We here analyze the algorithm when λ1 = 3 and λ2 = r = 1, which implies that μ = 1
4 and p∗ = 1

4 .

1. Initialization: Simple calculations yield that p̃0 = 0 and p0 = 1
3 . By Eq. (18) we obtain w(p) = 2

15 (3p − 2) for p ∈ [0, 13 ]. 
In particular w( 1

3 ) = − 2
15 .

2. We compute the solution of Eq. (19) with the initial condition ϕ( 1
3 ) = − 2

15 . For p ∈ [ 1
3 , 23 ], the solution is

ϕ(p) = − 2

15
3−1/4(4p − 1)−1/4,

and we obtain

a(p,ϕ(p)) = max

{
u(p) − ϕ(p)

4p − 1
,

u(1) − ϕ(p)

4 − p

}
= max

{
− ϕ(p)

4p − 1
,

2
3 − ϕ(p)

4 − p

}
.
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Following Step I.5 of the algorithm, p1 is the last p ∈ ( 1
3 , 1] that satisfies the relation

a(p,ϕ(p)) = u(p) − ϕ(p)

4p − 1
.

On [ 1
3 , 23 ], this relation is equivalent to

(4p − 1)−
5
4 (1 − p) = 3

1
4 ,

which yields p1 � 0.3858.
3. The next step is to determine p2 and the function w on the interval (p1, p2]. As already noted, we have

a(p1, w(p1)) = sup
p∈[p1,1]

u(p′) − w(p1)

4p − p1 − 1
=

2
3 − w(p1)

4 − p1
,

and the supremum is attained at p′ = 1. Let �(p) = w(p1) + (p − p1)a(p1, w(p1)), for every p ∈ [p1, 1]. It can be shown 
that, for every p ∈ (p1, 1) we have a(p1, w(p1)) > u(p)−�(p)

4p−1 . Therefore p2 = 1 and w(p) = �(p) for every p ∈ [p1, 1]. 
The first part of the algorithm ends.

4. Since p̃0 = 0, the second part of the algorithm is vacuous.

Thus, the limit value function is given by

v(p) =

⎧⎪⎪⎨⎪⎪⎩
2

15 (3p − 2), if 0 ≤ p < 1
3 ,

− 2
15 · 3−1/4 · (4p − 1)−1/4, if 1

3 ≤ p < p1,

ap + b if p ∈ (p1,1],
(46)

where a = 2
3 −w(p1)

4−p1
� 0.21709 and b = 2

3 − 4a � −0.20177.

7.2. Example 3, variation b.

We here analyze the algorithm when λ1 = 4
3 , λ2 = 2

3 , and r = 1, which implies that p∗ = 1
3 and μ = 1

2 .

1. Initialization: Simple calculations show that (cav u)( 1
3 ) = u( 1

3 ) = 0 and p̃0 = p0 = 1
3 .

2. We turn to the first part of the algorithm. The reader can verify that

a( 1
3 , w( 1

3 )) = sup
p′∈( 1

3 ,1]

μ(u(p′) − w( 1
3 ))

p′ − 1
3 + μ(p′ − 1

3 )
= max

p′∈[ 2
3 ,1]

9p′2−9p′+2
6p′−3 − 0

2(p′ − 1
3 ) + (p′ − 1

3 )
= max

p′∈[ 2
3 ,1]

3p′ − 2

6p′ − 3
.

This maximum is obtained at p′ = 1. Therefore, ρ(p0, w(p0)) = 1, and the condition of Step I.4 holds. We obtain 
a( 1

3 , w( 1
3 )) = 1

3 , and the first part of the algorithm ends with p1 = 1.
3. For the second part of the algorithm we compute

ã(̃p0, w(p0)) = ã( 1
3 , w( 1

3 ))

= infp′∈[0, 1
3 )

μ(u(p)−w( 1
3 ))

p′− 1
3 +μ(p′− 1

3 )
= infp′∈[0, 1

3 )

9p′2−9p′+2
6p′−3

3p′−1 = infp′∈[0, 1
3 )

3p′−2
6p′−3 .

This infimum is attained at p′ = 0. Therefore, ρ(̃p0, w (̃p0)) = 0, and the condition of Step D.4 holds. We obtain 
ã( 1

3 , w( 1
3 )) = 2

3 , and the algorithm ends with p̃1 = 0.

In conclusion, the limit value function is given by:

v(p) =
{

2
3 p − 2

9 , if 0 ≤ p < 1
3 ,

1
3 p − 1

9 , if 1
3 ≤ p < 1̄.

(47)
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