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Abstract
We consider discrete-time Markov decision processes in which the decision maker
is interested in long but finite horizons. First we consider reachability objective: the
decision maker’s goal is to reach a specific target state with the highest possible
probability. A strategy is said to overtake another strategy, if it gives a strictly higher
probability of reaching the target state on all sufficiently large but finite horizons.
We prove that there exists a pure stationary strategy that is not overtaken by any pure
strategy nor by any stationary strategy, under some condition on the transition structure
and respectively under genericity. A strategy that is not overtaken by any other strategy,
called an overtaking optimal strategy, does not always exist. We provide sufficient
conditions for its existence. Next we consider safety objective: the decision maker’s
goal is to avoid a specific state with the highest possible probability. We argue that the
results proven for reachability objective extend to this model.
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1 Introduction

We consider discrete-time Markov decision processes (MDP) with finite state and
action spaces. We consider two different types of objectives for the decision maker:
reachability objectives and safety objectives. The decision maker is said to have reach-
ability objective, if his goal is to reach a specific state of the MDP with the highest
possible probability, and the decision maker is said to have a safety objective, if his
goal is the opposite: to avoid a specific state of the MDP with the highest possible
probability. Both objectives are standard and have been analyzed extensively in the
literature, but they are quite different in nature (see, e.g., [1–3]).

An important question is on which time horizon the decision maker evaluates his
strategies.On any givenfinite horizon, backward induction guarantees that the decision
maker has a pure optimal strategy. This optimal strategy can depend heavily on the
horizon, and generally there is no strategy that is optimal on all finite horizons. On the
infinite horizon, the decision maker has a pure stationary optimal strategy (cf. [4,5]).

In this paper, instead of considering a fixed horizon, we propose to evaluate strate-
gies by how they perform on all long but finite horizons. In particular, such an
evaluation can be meaningful, if the decision maker knows that the decision pro-
cess will last for many periods, but he has no information on its exact length. In the
case of reachability objectives, such an evaluation may also reflect the attitude of a
decision maker who is patient and can wait for many periods to reach the target state.

More precisely, when the decisionmaker has reachability objective with target state
s∗, we say that a strategy σ overtakes another strategy σ ′, if there exists T ∈ N such
that, on all finite horizons t ≥ T , the probability of having visited the state s∗ within
horizon t is strictly larger under σ than under σ ′. Thus, conditionally on the MDP
lasting at least T periods, σ performs better than σ ′ regardless of the horizon, and
consequently the decision maker should prefer σ to σ ′. When the decision maker has
a safety objective and wants to avoid a state s∗, we say that a strategy σ overtakes
another strategy σ ′, if there exists T ∈ N such that, on all finite horizons t ≥ T , the
probability of having visited the state s∗ within horizon t is strictly smaller under σ

than under σ ′.
We also define a more permissive version of the aforementioned relations between

strategies. For reachability objectives, we say that a strategy σ weakly overtakes
another strategy σ ′, if there exists T ∈ N such that, on all finite horizons t ≥ T ,
the probability of having visited the target state s∗ within horizon t under σ is at
least as much as that under σ ′, but strictly more for infinitely many horizons t . The
definition is analogous for safety objectives.

Under these comparisons of strategies, we call a strategy overtaking optimal, if it
is not overtaken by any other strategy and call it strongly overtaking optimal, if it is
not weakly overtaken by any other strategy. Strong overtaking optimality is a strict
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refinement of overtaking optimality, and as an appealing property, they are both strict
refinements of optimality on the infinite horizon.

Our contribution. For reachability objectives, we obtain the following results, sorted
by the attributes of the MDP. (I.1) We prove that if the MDP is such that each action
can lead to at most one non-target state with a positive probability, then there exists
a pure stationary strategy that is not weakly overtaken by any pure strategy. This
is Theorem 4.1. We show with Example 4.2 that such a statement does not hold
for all MDPs. (I.2) We prove by means of Example 4.1 that an overtaking optimal
strategy does not always exist. This MDP is however constructed in a very specific
way and is non-generic. (I.3) We consider MDPs that are generic, in the sense that the
transition probabilities are randomized using any non-trivial joint density function.We
show for these MDPs that there exists a pure stationary strategy that overtakes each
other stationary strategy. This is Theorem 5.1. (I.4) We present sufficient conditions
in Theorem 6.1 for the existence of a stationary strategy that is strongly overtaking
optimal. For safety objectives, we argue that the same results hold.

Proof techniques. We use quite different proof techniques to obtain our results. For
proving result (I.1),we transform theMDPwith the reachability objective into a regular
MDP, by assigning payoffs to actions based on the immediate transition probabilities
to the target state. In this new MDP, we invoke some results in [6] to derive a specific
pure stationary strategy.We show that this strategy is exactly the desired strategy in the
original MDP with the reachability objective. This proof technique is suitable for pure
strategies, but probably also limited to them, as the relation between the two MDPs
is much weaker for non-pure strategies. When considering generic MDPs in result
(I.3), we rely on techniques from linear algebra. The overtaking comparison between
two stationary strategies can be reduced to the comparison of the spectral gaps of
the transition matrices that these strategies induce. The spectral gap of a transition
matrix refers to the difference between the largest eigenvalue, which is equal to 1, and
the modulus of the second eigenvalue, which can be a complex number. To obtain
result (I.3), we need to compare the spectral gaps of transition matrices induced by
stationary and pure stationary strategies. Result (I.4) is proven in a constructive way.
Themixed actions of the desired stationary strategy can be derived from the conditions
of Theorem 6.1. The results for safety objectives are proven similarly.

Related literature. Reachability and safety problems were studied both in the MDP
framework and in the context of two-player zero-sum games, for an overview we refer
to [1] and respectively to [2] and [3]. An important distinction is made between the
qualitative and the quantitative approaches. The qualitative approach is interested in
the probability with which the decision maker succeeds to meet his objective. For the
quantitative approach, however, it also matters how quickly the target state is reached
in the case of reachability objective, or how long the bad state has been avoided in
the case of a safety objective. Our overtaking approach could thus be classified as a
quantitative approach on the infinite horizon. For other quantitative approaches, we
refer to [7,8] and the references therein, and to [9].

In the literature, various definitions of overtaking optimality have been proposed.
They all serve as a refinement of optimality on the infinite horizon, based on the
performance of strategies on the finite horizons. For an overview, we refer to [10–16].
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A well-established definition of overtaking optimality is given in Section 5.4.2 in
[11] for MDPs in which the decision maker receives a payoff at each period, depend-
ing on the state and the chosen action. According to this definition, a strategy σ ∗ is
overtaking optimal if, for each strategy σ and for each error-term δ > 0 the following
holds: for all large horizons N , the expected sum of the payoffs during the first N
periods under σ ∗ is at least as much as that under σ minus δ. In our framework, there
are no immediate payoffs, hence this definition does not apply. However, we show in
Example 3.1 that, if we take the natural assignment of payoff 0 to each non-target state
and payoff 1 to the target state, then our definition of overtaking optimality can lead
to different strategies than Puterman’s definition, as well as variants of Puterman’s
definition defined therein.

Our definition of overtaking optimality is a relatively direct translation of the def-
initions of sporadic overtaking optimality in [6,10] and repeated optimality in [16],
into the context of MDPs with reachability and safety objectives.

One important feature of our definition is that it does not require the strategy to
outperform all other strategies on long but finite horizons. It only requires that the
strategy is not outperformed by any other strategy. Our definition is therefore weaker
than overtaking optimality and uniform overtaking optimality as in [10], and weaker
than strong overtaking optimality as in [17] or [18]. See also [16], who delineates
“not-outperformed” definitions from “outperform-all” definitions of optimality.

Organization of the paper. Section 2 details the model. Then, we start by analyzing
reachability objectives. Section 3 provides an example, which highlights different
aspects of the concept of overtaking optimality by comparing it with other optimality
notions. Sections 4 and 5 present the results for piecewise deterministic MDPs and
generic MDPs, respectively. Section 6 provides sufficient conditions that ensure that
a stationary strategy is strongly overtaking optimal. In Sect. 7, we turn to safety
objectives. Section 8 concludes.

2 TheModel

2.1 MDPs with Reachability Objective

The model. An MDP is given by [1] a nonempty, finite set S of states, [2] for each
state s ∈ S, a nonempty, finite set A(s) of actions and [3] for each state s ∈ S and
action a ∈ A(s), a probability distribution p(s, a) = (p(z | s, a))z∈S on the set S of
states. The MDP is played at periods in N = {1, 2, . . .} as follows: The initial state
s1 is given. At each period t , the decision maker chooses an action at ∈ A(st ), which
leads to a state st+1 ∈ S drawn according to the distribution p(st , at ). An MDP with
reachability objective is anMDP together with a specific state s∗ ∈ S, called the target
state, which is not the initial state s1.

Histories. Let H∞ be the set of all infinite histories, i.e., the set of sequences
(s1, a1, s2, a2, . . . ) such that si ∈ S, ai ∈ A(si ), and p(si+1 | si , ai ) > 0 for each
i ∈ N. A history at period t is a prefix (s1, a1, . . . , st−1, at−1, st ) of an infinite history.
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Denote by Ht the set of all histories at period t , by H = ∪t∈NHt the set of all histories,
and by s(h) the final state of each history h ∈ H .

Strategies. A mixed action in a state s ∈ S is a probability distribution on A(s). The
set of mixed actions in state s is denoted by �(A(s)). A strategy σ is a map that, to
each history h ∈ H , assigns a mixed action σ(h) ∈ �(A(s(h))). The interpretation
is that, if history h arises, σ chooses an action according to the probabilities given by
the mixed action σ(h). A strategy σ is called pure, if σ(h) places probability 1 on one
action, for each history h. A strategy σ is called stationary, if the recommendation of
the action only depends on the current state, i.e., σ(h) = σ(h′)whenever s(h) = s(h′).
Note that a pure stationary strategy can be seen as an element of ×s∈S A(s). Every
initial state s and strategy σ induce a probability measure Psσ on H∞, where H∞
is endowed with the sigma–algebra generated by the cylinder sets. We denote the
corresponding expectation operator by Esσ .

Value and optimality. Let t∗ denote the first period when state s∗ is reached; if s∗ is
not reached then t∗ = ∞. The value at the initial state s is the maximal probability
that state s∗ can be reached: v(s) = supσ Psσ (t∗ < ∞). A strategy σ is called optimal
at the initial state s if Psσ (t∗ < ∞) = v(s). It is known that the decision maker always
has a pure stationary strategy that is optimal at all initial states (cf. [4,5]).

Overtaking optimality.We say that a strategy σ overtakes a strategy σ ′ at the initial
state s if there is T ∈ N such that for all periods t ≥ T we have Psσ (t∗ ≤ t) >

Psσ ′(t∗ ≤ t). This means that, for all periods t ≥ T , the probability under σ to reach
s∗ within the first t periods is strictly larger than that under σ ′. If the decision maker
is sufficiently patient with regard to his goal to reach the target state, then he strictly
prefers σ to σ ′.

Note that two strategies can be incomparable in the sense that neither of them
overtakes the other one. Consider the following example. The state space is {x, s∗}.
In state x , the decision maker has three actions: a0, a1/2, a7/8. For z ∈ {0, 1/2, 7/8},
under action az , the play moves to state s∗ with probability z and remains in state x
with probability 1 − z. Now suppose that σ recommends to always play action a1/2
and σ ′ recommends to play the sequence of actions a0, a7/8, a0, a0, a7/8, a0, . . . as
long as the play is in state x . Then, at periods t = 3k + 1, where k ∈ N, we have
Psσ (t∗ ≤ t) = Psσ ′(t∗ ≤ t) = (7/8)k . At periods t = 3k + 2, we have Psσ (t∗ ≤
t) > Psσ ′(t∗ ≤ t). At periods t = 3k, we have Psσ (t∗ ≤ t) < Psσ ′(t∗ ≤ t). So, σ
and σ ′ are incomparable.

A strategy σ is called overtaking optimal at the initial state s, if there is no strategy
that overtakes σ at that initial state. That is, σ is maximal with respect to the relation
of “overtakes” between strategies.

Note that any optimal strategy overtakes any strategy that is not optimal. Indeed,
if strategy σ is optimal at the initial state s but strategy σ ′ is not, then Psσ (t∗ <

∞) = v(s) > Psσ ′(t∗ < ∞), and hence Psσ (t∗ ≤ t) > Psσ ′(t∗ ≤ t) for all
sufficiently large t . Consequently, an overtaking optimal strategy at the initial state s
is also optimal at that initial state. As Example 3.1 will show, the converse is not true:
there exist optimal strategies at an initial state that are not overtaking optimal at that
initial state. Thus, overtaking optimality is a strict refinement of optimality.
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Strong overtaking optimality. We say that a strategy σ weakly overtakes a strategy
σ ′ at the initial state s if there is T ∈ N such that for all periods t ≥ T we have
Psσ (t∗ ≤ t) ≥ Psσ ′(t∗ ≤ t) with strict inequality for infinitely many t . Note that if σ

overtakes σ ′ at the initial state s then σ also weakly overtakes σ ′ at that initial state.
A strategy σ is called strongly overtaking optimal at the initial state s, if no strategy

weakly overtakes σ at that initial state. A strongly overtaking optimal strategy at an
initial state is also overtaking optimal at that initial state.

2.2 Discounted and Average Payoff MDPs

We will also consider MDPs with the discounted payoff or with the average payoff,
but only as auxiliary models. A discounted MDP is an MDP together with a discount
factor β ∈]0, 1[ and a payoff function, namely a function (s, a) 	→ u(s, a) ∈ R that
maps a payoff to each state s ∈ S and action a ∈ A(s). For initial state s ∈ S, the
β-discounted value is defined as

vβ(s) = sup
σ

Esσ

[
(1 − β) ·

∞∑
t=1

β t−1 · u(st , at )

]
. (1)

A strategy σ is called β-discounted optimal at the initial state s, if the supremum in (1)
is attained at σ . A strategy σ ∗ is called Blackwell optimal, if there is B ∈]0, 1[ such
that σ ∗ is β-discounted optimal at all initial states for all discount factors β ∈ [B, 1[.

By the results of [19] and [5], it is known that for each discount factor β ∈]0, 1[,
the decision maker has a pure stationary strategy that is β-discounted optimal at all
initial states, and that he has a Blackwell optimal strategy too.

An average payoff MDP is similar to a discounted MDP, except that the
decision maker’s goal is to maximize the expectation of the average payoff
lim infT→∞ 1

T

∑T
t=1 u(st , at ). The average value and average optimality are defined

analogously to the corresponding definitions for reachability objective. By [4,5], it is
known that the decision maker has a pure stationary strategy that is average optimal
at all initial states. Moreover, each Blackwell optimal strategy is average optimal at
all initial states.

3 Reachability Objectives: An Illustrative Example

In this section, we discuss a specific MDP with reachability objective, which demon-
strates four properties of overtaking optimality. First, there are optimal strategies that
are not overtaking optimal. That is, overtaking optimality is a strict refinement of
optimality. Second, finding overtaking optimal strategies cannot be done by simply
solving a related discountedMDP. Third, the strategy that minimizes the expected time
of reaching the target state s∗ can be different from the overtaking optimal strategies,
even when the latter is unique. Fourth, for a related MDP, overtaking optimality in
not the same as the concept of overtaking optimality as defined in [11], or the related
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x

y

z

c : q

d : p

a : q

b : 1
2

Fig. 1 The MDP in Example 3.1

concepts of cumulative overtaking optimality and average overtaking optimality that
were defined therein.

Example 3.1 Consider an MDP that has state space S = {x, y, z, s∗} such that:

– State x is the initial state. In this state, the decision maker has two actions: a and b.
Action a leads to state s∗ with probability q and to state y with probability 1− q.
Action b leads to state s∗ with probability 1

2 and to state z with probability 1
2 .

– In state y, there is only one action, denoted by c, which leads to state s∗ with
probability q and to state y with probability 1 − q.

– In state z, there is only one action, denoted by d, which leads to state s∗ with
probability p and to state z with probability 1 − p.

– State s∗ is absorbing.

The probabilities p and q are such that 0 < p < q <
2p

2p+1 . For example, p = 0.1

and q = 0.11. Note that p <
2p

2p+1 implies p < 1/2, and therefore p < q <
2p

2p+1
implies q < 1/2 as well.

The MDP is depicted in Fig. 1. In this figure, the state s∗ is omitted for simplicity,
states x , y, and z are denoted by circles, and actions are denoted by arcs together with
the name of the action and the corresponding probability of moving to state s∗. For
example, the arrow from state x to state y denoted by a : q indicates that this action
is called a and that, when played at state x , it leads to state s∗ with probability q and
to state y with probability 1 − q.
Suppose that the initial state is x . Since in states y and z there is a single action,
a strategy is characterized by the action it selects in state x . Choosing the action
a at state x leads to the following sequence of probabilities of moving to state s∗:
(q, q, q, . . .). Choosing the action b at state x leads to the following sequence of
probabilities of moving to state s∗: (1/2, p, p, . . .). The state s∗ is eventually reached
with probability 1 under both actions a and b. Below we argue that while b (and not a)
is optimal according to many optimality concepts, a (and not b) is overtaking optimal
under reachability objective.
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Claim 1 In Example 3.1, action a is overtaking optimal under reachability objective,
and action b is not.

Proof Take a period t ≥ 2. Under a the probability of reaching the target state s∗
within the first t periods is Pxa(t∗ ≤ t) = 1 − (1 − q)t−1, whereas under b this
probability is Pxb(t∗ ≤ t) = 1

2 + 1
2 · (

1 − (1 − p)t−2
)
. Thus,

Pxa(t
∗ ≤ t) − Pxb(t

∗ ≤ t) = −(1 − q)t−1 + 1

2
· (1 − p)t−2

= (1 − p)t−2 ·
[
−

(
1 − q

1 − p

)t−2

· (1 − q) + 1

2

]
.

Since p < q by assumption, (1 − q)/(1 − p) < 1. So, Pxa(t∗ ≤ t) − Pxb(t∗ ≤ t) is
positive for large t ∈ N. This completes the proof. ��
Claim 2 Consider the discountedMDP that has payoff equal to 1 in state s∗ and payoff
0 in states x , y and z. Strategy b is Blackwell optimal, while strategy a is not Blackwell
optimal.

Proof In the discounted MDP, if state s∗ is reached at some period t , then the β-
discounted payoff is equal to (1−β) · (β t−1 +β t +· · · ) = β t−1. Thus, action a leads
to the expected discounted payoff Da(β) = qβ 1

1−(1−q)β
, whereas action b leads to

the expected discounted payoff: Db(β) = 1
2β + 1

2 pβ
2 1
1−(1−p)β . As one can verify,

we have

Db(β) − Da(β) =
1
2β(1 − β) · (1 − (1 − 2p)(1 − q)β − 2q

)
(1 − (1 − p)β) · (1 − (1 − q)β)

.

The denominator of the fraction above is positive for all β ∈]0, 1[. As q <
2p

2p+1 by
assumption, the expression 1− (1−2p)(1−q)−2q is positive. Hence, the numerator
of the fraction above is positive for large β ∈]0, 1[. Thus, we find Db(β) > Da(β)

for large β ∈]0, 1[, and the claim follows. ��
Claim 3 In Example 3.1, the expectation of the period t∗ when reaching the state s∗
is smaller under b than under a: Exb(t∗) < Exa(t∗).

Proof We have Exa(t∗) = 2q + 3(1 − q)q + 4(1 − q)2q + · · · = 1
q + 1 and

Exb(t∗) = 2 · 1
2 + 1

2 · [3p + 4(1 − p)p + 5(1 − p)2 p + · · · ] = 1
2p + 2. Since

q <
2p

2p+1 by assumption, the claim follows. ��
Claim 4 Consider the MDP with payoff 1 in state s∗ and payoff 0 in states x , y, and z.
The strategy b is both overtaking optimal and cumulative overtaking optimal according
to the definitions in Section 5.4.2 in [11], and strategy a is neither of them.1

1 Both a and b are average overtaking optimal according to Puterman’s definition.
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Proof For each strategy σ and period N , define R(σ, N ) to be the expected sum of the
payoffs (which is also the sum of the expected payoffs) up to period N . Since the initial
state x is not the target state, R(a, 1) = R(b, 1) = 0 holds trivially. We claim that
R(a, N ) < R(b, N ) for every N ≥ 2, and, moreover, limN→∞ R(b, N )− R(a, N ) =
− 1

2p + 1−q
q > 0.

Since Pxa(t∗ ≤ t) = 1 − (1 − q)t−1, for every N ≥ 2 we have

R(a, N ) =
N∑
t=2

(
1 − (1 − q)t−1

)
= (N − 1) − (1 − q) · 1 − (1 − q)N−1

1 − (1 − q)
,

and since Pxb(t∗ ≤ t) = 1
2 + 1

2 · (
1 − (1 − p)t−2

)
, we have

R(b, N ) =
N∑
t=2

(
1

2
+ 1

2
· (1 − (1 − p)t−2)

)
= (N − 1) − 1

2
· 1 − (1 − p)N−1

1 − (1 − p)
.

Since p < q and q <
2p

2p+1 by assumption, 1 − (1 − q)N−1 > 1 − (1 − p)N−1 and
1−q
q > 1

2p , and therefore (1 − q) · 1−(1−q)N−1

1−(1−q)
> 1

2 · 1−(1−p)N−1

1−(1−p) . Thus, R(a, N ) <

R(b, N ), and therefore b (and not a) is cumulative overtaking optimal according to
Puterman’s definition. Moreover,

lim
N→∞ R(b, N ) − R(a, N ) = − 1

2p
+ 1 − q

q
> 0,

so b (and not a) is overtaking optimal according to Puterman’s definition. ��

4 Reachability Objectives: Piecewise Deterministic MDPs

Apiecewise deterministicMarkov process [20] is a processwhose behavior is governed
by random jumps at points in time, but whose evolution is deterministically governed
by an ordinary differential equation between those times. These processes have been
shown to be useful in a wide range of applications, including queueing theory, ruin
problems, biochemistry and geology. In this section, we study an analogous concept
when the state space is finite and when the jumps lead to the target state.

We call anMDPwith reachability objective piecewise deterministic if for each state
s 
= s∗ and each action a ∈ A(s) there is a stateω(s, a) ∈ S such that p({ω(s, a), s∗} |
s, a) = 1. That is, for any state and action, the play moves to the target state s∗ or to
a specific state that is not s∗.

A special case of piecewise deterministic MDPs is that of deterministic MDPs
(see Section 3.3 in [11]), that is, when there is no randomness in the transitions: for
every state s ∈ S and action a ∈ A(s) there is a unique state w(s, a) ∈ S such that
p(w(s, a) | s, a) = 1.

The following theorem states that, in piecewise deterministic MDPs with reacha-
bility objective, there always exists a pure stationary strategy that is at least as good as

123



Journal of Optimization Theory and Applications

any pure strategy in the overtaking sense. The main idea of the proof is to transform
the MDP with reachability objective into an average payoff MDP. The payoffs that
we assign to actions are related to the probabilities that these actions lead to the target
state.

The condition that the MDP is piecewise deterministic plays an important role.
Indeed, Example 4.2 will show that the result is not true in general for MDPs that are
not piecewise deterministic.

Theorem 4.1 In every piecewise deterministicMDP with reachability objective, there
exists a pure stationary strategy that is not weakly overtaken by any other pure strategy.

To prove Theorem 4.1, we need the following result. The proof is provided in the
Appendix.

Theorem 4.2 Consider a deterministic discounted MDP and let σ be a Blackwell
optimal strategy. There exists no pure strategy σ ′ and no initial state s ∈ S with the
following properties:

– Property I: there is M ∈ N such that for all periods t ≥ M we have ut (s, σ ) ≤
ut (s, σ ′), where ut (s, σ ) and ut (s, σ ′) are the expected average payoffs up to
period t under σ and respectively under σ ′ at initial state s,

– Property II: ut (s, σ ) < ut (s, σ ′) holds for infinitely many t.
Proof of Theorem 4.1 Consider a piecewise deterministic MDP M with reachability
objective. We may assume2 that there is no state s 
= s∗ and action a ∈ A(s) such
that p(s∗ | s, a) = 1. As the MDP M is piecewise deterministic, this implies that
p(ω(s, a) | s, a) > 0, for every s ∈ S and a ∈ A(s).

We define an auxiliary average payoff deterministic MDP M′ as follows: (i) The
state space is S′ = S − {s∗}. (ii) For each state s ∈ S′, the action space is the same as
in the MDP M with reachability objective: A′(s) = A(s). (iii) For each state s ∈ S′
and action a ∈ A(s), the transition and the payoff in M′ are defined as follows:
p′(w(s, a) | s, a) = 1 and u′(s, a) = − log(p(w(s, a) | s, a)).

Intuitively, the MDP M′ represents what happens if in the MDP M the decision
maker is unlucky at all periods and the process never reaches state s∗. Let σ be a pure
Blackwell optimal stationary strategy inM′. We show that σ is not weakly overtaken
by any pure strategy, thereby proving the theorem.

Consider any other pure strategy ρ inM′. Since theMDPM′ is deterministic, each
of the pure strategies σ and ρ induces a specific infinite history inM′ with probability
1. Let (st , at )t∈N denote the infinite history induced by σ and (zt , bt )t∈N denote the
infinite history induced by ρ.

In the original MDPM, the probability under σ that state s∗ is not reached within
the first t periods is 1− Ps1,σ (t∗ ≤ t). This probability is related to the payoffs in the
average payoff MDPM′. Indeed, for each period t ≥ 2 we have

log
(
1 − Ps1,σ (t∗ ≤ t)

) = log

(
t−1∏
k=1

p(sk+1 | sk, ak)
)

=
t−1∑
k=1

log (p(sk+1 | sk, ak))

2 Indeed, in such a state s it is optimal to choose such an action a, as it leads in one step to state s∗. Hence,
such a state can be deleted from the MDP, and each transition to state s can be rewritten as a transition
directly to s∗.
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= −
t−1∑
k=1

u′(sk, ak) = −(t − 1) · ut−1(s1, σ ).

Similarly, log
(
1 − Ps1,ρ(t∗ ≤ t)

) = − ∑t−1
k=1 u

′(zk, bk) = −(t − 1) · ut−1(s1, ρ).
By the choice of σ in M′ (cf. Theorem 4.2), one of the following holds: (i) There

is M ∈ N such that for all periods t ≥ M we have ut (s1, σ ) = ut (s1, ρ). (ii) There
is a strictly increasing sequence (tk)k∈N of periods such that for each k ∈ N we have
utk (s1, σ ) > utk (s1, ρ).

If (i) holds, then we have Ps1,σ (t∗ ≤ t) = Ps1,ρ(t∗ ≤ t) for all t ≥ M + 1,
and hence ρ does not weakly overtake σ in the original MDP M. If (ii) holds, then
Ps1,σ (t∗ ≤ tk) > Ps1,ρ(t∗ ≤ tk) for each k ∈ N, and hence ρ does not weakly
overtake σ in the original MDP M in this case either. ��

The following example demonstrates that, even if theMDPwith reachability objec-
tive is piecewise deterministic, an overtaking optimal strategy may fail to exist. In the
example, each pure strategy is equally good in the overtaking sense, but each pure
strategy is overtaken by any strategy that uses randomization at every period.

Example 4.1 Consider the MDP with reachability objective given in Fig. 2, with a
notation similar to that of Example 3.1. The initial state is state x .

Since in states y and z there is a single action, a pure strategy is characterized by
the period in which the action b is first played in state x . When playing action b and
subsequently action d, the total probability during these two periods of reaching the
target state is 3

4 . Playing action a twice (or action e twice) leads to the same total
probability, as 1

2 + 1
2 · 1

2 = 3
4 . It follows that Pxσ (t∗ ≤ t) = 1 − 1

2t−1 , for all pure

strategies σ , except of the strategy σ ′ = at−2b that plays the action a in the first t − 2
periods and the action b in period t − 1, for which Pxσ ′(t∗ ≤ t) > 1 − 1

2t−1 . This
implies that strategies that use randomization at state x at every period do better in the
overtaking sense than all pure strategies. Indeed, given any t ≥ 2, when calculating
the probability of reaching the target state within the first t periods, there is a positive
probability that action b is played exactly at period t − 1 (and thus we reach the target
state exactly at period t), while not having to include consequences of playing action
d yet.

Claim 1 Consider Example 4.1. For each pure strategy σ , it holds for sufficiently large
periods t that the probability of reaching the target state within the first t periods is
Pxσ (t∗ ≤ t) = 1− 1

2t−1 . In particular, no pure strategy is overtaken by another pure
strategy.

123



Journal of Optimization Theory and Applications

Proof For the pure strategy a∞ that plays a at all periods, we have for all periods t
that Pxa∞(t∗ ≤ t) = 1 − 1

2t−1 . For any other pure strategy an−1b that plays a at
the first n − 1 periods and plays b at period n, we have for all periods t ≥ n + 1 that
Px,an−1b(t

∗ ≤ t) = 1 − 1
2t−1 . ��

Claim 2 Consider Example 4.1. Take two strategies σ and σ ′. Consider a period t ≥ 2.
Then, Pxσ (t∗ ≤ t) > Pxσ ′(t∗ ≤ t) holds if and only if the probability under σ

of being in state x and playing action b at period t − 1 is strictly larger than that
under σ ′, i.e., Pxσ (at−1 = b) > Pxσ ′(at−1 = b). Consequently, if the condition
Pxσ (at−1 = b) > Pxσ ′(at−1 = b) holds for all sufficiently large periods t , then σ

overtakes σ ′.

Proof Suppose that when playing two strategies σ and σ ′, it holds that for some period
t ≥ 2 we have Pxσ (at−1 = b) > Pxσ ′(at−1 = b).

On the finite horizon up to period t , the set of pure strategies is the finite set
Wt = {at , b, ab, a2b, . . . , at−1b}. Under at−2b, the probability of reaching the
target state within the first t periods is Px,at−2b(t

∗ ≤ t) = 1 − 1
2t−2 · 1

4 = 1 − 1
2t ,

while under each other pure strategy τ 
= at−2b, this is Pxτ (t∗ ≤ t) = 1 − 1
2t−1 .

The strategy σ induces in a natural way a probability distribution on the finite setWt

of pure strategies. Indeed, denote by ((x, a)k−1, x) the history at period k in which the
play remained through action a in state x until period k, and by σ(h)(a) the probability
to select action a after history h. Then, we have: (i) Pxσ (b) = σ(x)(b), since (x) is
the history at period 1. (ii) Pxσ (at ) = σ(x)(a) · σ(x, a, x)(a) · · · σ((x, a)t−1, x)(a).
(iii) For k = 1, . . . , t − 1, we have Pxσ (akb) = σ(x)(a) · · · σ((x, a)k−1, x)(a) ·
σ((x, a)k, x)(b). Similarly, the strategy σ ′ also induces a probability distribution on
Wt . It follows on the finite horizon t that

Pxσ (t∗ ≤ t) =
∑
τ∈Wt

Pxσ (τ ) · Pxτ (t
∗ ≤ t)

= Pxσ (at−2b) ·
(
1 − 1

2t

)
+ (1 − Pxσ (at−2b)) ·

(
1 − 1

2t−1

)
,

and similarly for the strategy σ ′.
Thus, Pxσ (t∗ ≤ t) > Pxσ ′(t∗ ≤ t) if and only if Pxσ (at−2b) > Pxσ ′(at−2b), if

and only if Pxσ (at−1 = b) > Pxσ ′(at−1 = b). The proof is complete. ��
ByClaim 2, the stationary strategy ( 12 ,

1
2 )

∞ that always chooses action a and action
b each with probability 1

2 overtakes every pure strategy. Also, the stationary strategy
(p, 1 − p)∞ overtakes the stationary strategy (q, 1 − q)∞ if q < p < 1, as for large
periods t we have

Px,(p,1−p)∞(at−1 = b) = pt−2 ·
(1
2

)t−2 · (1 − p) > qt−2 ·
(1
2

)t−2 · (1 − q)

= Px,(q,1−q)∞(at−1 = b).

This means that in Example 4.1 there is no stationary overtaking optimal strategy. We
now show that there is no overtaking optimal strategy at all.
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Claim 3 The MDP in Example 4.1 admits no overtaking optimal strategy.

Proof Consider any strategy σ . We construct a strategy that overtakes σ . The strategy
σ can be seen as a sequence (ξn)

∞
n=1 where ξn denotes the probability that σ assigns

to action b when being in state x at period n. We distinguish two cases.

Case 1Assume that either ξn = 0 for all periods n or ξn = 1 for some period n. In
this case, Pxσ (an = b) = 0 at large periods n. Hence, by Claim 2, the stationary
strategy ( 12 ,

1
2 )

∞ overtakes σ .
Case 2 Assume that ξm > 0 for some period m and ξn < 1 for all periods n. We
can choose a sequence (ξ ′

n)
∞
n=1 such that (i) for all periods n = 1, . . . ,m − 1 we

have ξ ′
n = ξn , (ii) for period m we have ξ ′

m < ξm , (iii) for all periods n > m we
have ξn < ξ ′

n < 1, and (iv)
∏∞

n=1(1− ξ ′
n) = ∏∞

n=1(1− ξn). The idea is to slightly
reduce the probability ξm at period m and slightly increase all probabilities ξn ,
n > m, so that (iv) holds, i.e., the total probability of ever playing b under (ξn)

∞
n=1

is equal to that under (ξ ′
n)

∞
n=1.

Let σ ′ be the strategy corresponding to (ξ ′
n)

∞
n=1. Consider a period t > m. By (iii),

we have
∏∞

n=t (1 − ξ ′
n) ≤ ∏∞

n=t (1 − ξn). Hence, by (iv), we obtain
∏t−1

n=1(1 − ξ ′
n) ≥∏t−1

n=1(1− ξn). This means that the probability of being in state x at period t is at least
as large under σ ′ as under σ . Thus, by (iii), we obtain Pxσ ′(at = b) > Pxσ (at = b).
Since this is true for all periods t > m, in view of Claim 2, σ ′ overtakes σ . ��

The following example, which is an adaptation of Example 4.1, shows that if the
MDP with reachability objective is not piecewise deterministic, then it can happen
that each pure strategy is overtaken by another pure strategy. As a consequence, The-
orem 4.1 cannot be extended to all MDPs.

Example 4.2 Consider the MDP with initial state x and reachability objective that is
depicted in Fig.3. In this MDP, the only choice of the decision maker is when to play
action c, if at all, and action c can be played at most once.
In this MDP, action c leads to the target state s∗ with probability 5/8, to state y with
probability 1/8 and to state x ′ with probability 1/4. It will be easier to think about
action c in the following way, which gives the same transition probabilities: After
playing action c, a lottery is executed: (1) with probability 1/2 the play follows the
upper-part of the arrow, and thus the play moves to state s∗ with probability 3/4 and to
state y with probability 1/8, and (2) with probability 1/2 the play follows the bottom-
part of the arrow, and thus the play moves to state s∗ with probability 1/2 and to state
x ′ with probability 1/2. Action c′ in state x ′ has a similar interpretation. Note that
this MDP is not piecewise deterministic, as each of the actions c and c′ leads to two
non-target states with a positive probability.

The pure strategies in thisMDP are a∞, c, ac, a2c, . . .. The strategy a∞ corresponds
to strategy a∞ in Example 4.1, and the strategy atc corresponds to the mixed strategy
in Example 4.1 that, in state x , recommends action a up to period t and the mixed
action ( 12 ,

1
2 ) at all periods after t . The reader can verify that a∞ is overtaken by c,

and each atc is overtaken by at+1c. That is, each pure strategy is overtaken by another
pure strategy.
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Fig. 3 The MDP in Example 4.2

5 Reachability Objectives: Generic MDPs

As shown in Sect. 4, an overtaking optimal strategymay fail to exist. In this section, we
show that this is due to non-genericity of the transition function: when transitions are
generic, an overtaking optimal strategy always exists. Generic transitions are natural
in various applications, where transitions are affected by random noise.

We call an MDP with reachability objective generic if (a) all transitions from states
that are not the target state 3 are positive: p(z | s, a) > 0 for every s 
= s∗, a ∈ A(s),
and z ∈ S, and (b) the second largest eigenvalue of A1, A2, . . . , AK are all different,
where K is the number of pure stationary strategies, and A j is the transition matrix
of the Markov chain on the state space S induces by the j’th pure stationary strategy,
for every j ∈ {1, 2, . . . , K }. These requirements involve only finitely many linear
equalities and inequalities. It follows that if one randomly chooses the transition func-
tion of the MDP from (�(S))

∑
s 
=s∗ |A(s)| according to some probability distribution

that is absolutely continuous w.r.t. the Lebesgue measure, then with probability 1 the
transition function is generic.

The main result of this section is the following theorem.

Theorem 5.1 In generic MDPs with reachability objective, there is a pure stationary
strategy that overtakes each other stationary strategy at each initial state.

The idea of the proof of Theorem 5.1 is as follows. Fix a state space S = {1, . . . , n},
where n ≥ 2, and let the target state be state s∗ = n. As above, we assumewithout loss
of generality that state n is absorbing. Every stationary strategy σ defines a transition
matrix Aσ . Under the strategy σ , the rate of absorption to state n is exactly λ2(Aσ ),
the second largest eigenvalue of Aσ . Thus, if λ2(Aσ ) < λ2(Aσ ′), then σ overtakes σ ′
for the reachability objective. As before, let A1, A2, . . . , AK be all transition matrices
that are induced by pure stationary strategies. Since the MDP is generic, the second
largest eigenvalues of these matrices differ, and therefore there is one of them, say, A1,
whose second largest eigenvalue is minimal. The matrix Aσ is in the convex hull of the

3 We can assume w.l.o.g. that state s∗ is absorbing.
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matrices A1, A2, . . . , AK , and we will prove that if Aσ 
= A1 then λ2(Aσ ) > λ2(A1).
This will imply that the pure stationary strategy that corresponds to the matrix A1
overtakes each other stationary strategy at each initial state. The proof of Theorem 5.1
consists of four steps.

Step 1Proving that the second largest eigenvalue determines the overtaking relation
between stationary strategies: When comparing two stationary strategies σA and
σB generating the respective transition matrices A and B, λ2(A) < λ2(B) implies
that σA overtakes σB at each initial state.
Step 2 Proving that the second largest eigenvalue of a transition matrix A, cor-
responding to a stationary strategy, is equal to the largest eigenvalue of the
(n − 1) × (n − 1) submatrix A′ that remains when we remove from A the column
and the row associated with the target state: λ2(A) = λ1(A′).
Step 3 Proving that for two positive square matrices A and B that differ only in
one row, the largest eigenvalue of their any convex combination cannot be lower
than the minimum between the largest eigenvalues of the two matrices: for every
α ∈]0, 1[we have λ1(αA+(1−α)B) ≥ min {λ1(A), λ1(B)}, and if λ(A) 
= λ(B)

then the inequality is strict.
Step 4 Proving that it suffices to consider only matrices that differ in one row.

Steps 1–4 imply that the pure stationary strategy that corresponds to the transition
matrixwithminimal second largest eigenvalue overtakes each other stationary strategy,
at each initial state.

Proof of Step 1: This is a slightly stronger version of Theorem 3 in [21]. 4 ��
Proof of Step 2: Let σ be a stationary strategy with an n × n transition matrix A, with
entry (i, j) being the probability under σ of moving from state i to state j . Since the
target state s∗ = n is absorbing and since the sum of entries in each row is equal to 1,
the largest eigenvalue of A is λ1(A) = 1 with eigenvector (0, 0, . . . , 0, 1).

Consider the submatrix A′ of A that arises when we delete the last column and the
last row (which correspond to the target state). Since the MDP is generic, the matrix
A′ is positive, hence by the Perron–Frobenius Theorem, the largest eigenvalue λ1(A′)
of the matrix A′ is a real number. As the sum of entries in each row of A′ is strictly
less than 1, we have λ1(A′) < 1.

The proof that λ1(A′) is the second largest eigenvalue of the matrix A follows from
the following two observations:

(i) Any eigenvalue of A′ is also an eigenvalue of A. Indeed, let μ be an eigenvalue
of A′ with right eigenvector (y1, . . . , yn−1).5 Then μ is an eigenvalue of A with
right eigenvector (y1, . . . , yn−1, 0).

(ii) If μ 
= 1 is an eigenvalue of A, then μ is also an eigenvalue of A′. Indeed, let
y = (y1, . . . , yn) be a right eigenvector of A corresponding toμ. Then, Ay = μy.

4 This theorem in [21] implies for every initial state s = 1, . . . , n−1 that if t ∈ N is large then Ps,σA (t∗ ≤
t) ≥ Ps,σB (t∗ ≤ t). However, their proof can be easily adapted to show thatPs,σA (t∗ ≤ t) > Ps,σB (t∗ ≤
t) for large t ∈ N, so that strategy σA overtakes strategy σB . Indeed, the inequalities (A.1) and (A.2) do not
only imply inequality (A.3), but they actually imply a strict inequality.
5 Recall that the same set of eigenvalues correspond both to right and left eigenvectors.
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This implies yn = μ · yn , which is only possible if yn = 0. Hence, μ is an
eigenvalue of A′ with eigenvector (y1, . . . , yn−1).

��
Proof of Step 3: The statement of Step 3 follows from the following theorem. ��
Theorem 5.2 Let A and B be two positive (all elements are positive) square matrices
of the same size that differ only in the first row.6 For every α ∈]0, 1[ define Mα :=
αA + (1 − α)B. Then, λ1(Mα) ≥ min {λ1(A), λ1(B)}, and, if λ1(A) 
= λ1(B), then
λ1(Mα) > min {λ1(A), λ1(B)}.
Proof of Step 4: Let A1, . . . , AK be all transition matrices that are induced by pure
stationary strategies. Since the MDP is generic, the second largest eigenvalues of
these matrices are all different. Assume λ2(A1) < λ2(Ai ) for all i = 2, . . . , K . Let σ
be the pure stationary strategy corresponding to A1.

Let τ be a stationary strategy, and let A be the transition matrix corresponding to
τ . For every r = 0, 1, . . . , n − 1 let Br be the collection of all matrices that coincide
with A in the first r rows and coincide with one of the matrices A1, A2, . . . , AK in
the other n − r rows. Note that B0 = {A1, A2, . . . , AK }. Using Step 2 together with
Step 3 inductively, we obtain that

λ2(A) ≥ min
B∈Bn−1

λ2(B) ≥ min
B∈Bn−2

λ2(B) ≥ · · · ≥ min
B∈B0

λ2(B). (2)

Moreover, if A /∈ B0, then at least one of the inequalities in Eq. (2) is strict.
Now assume that τ 
= σ . If A /∈ B0 then λ2(A) > minB∈B0 λ2(B) = λ2(A1),

whereas if A ∈ B0 then λ2(A) > λ2(A1) by the choice of A1. Thus, by Step 1, σ

overtakes τ at each initial state. ��
Remark 5.1 Let σ be a strategy as in Theorem 5.1, σ ′ 
= σ be a stationary strategy
and s be the initial state. One can compute a horizon T such that σ outperforms σ ′
beyond T , i.e., Psσ (t∗ ≤ t) > Psσ ′(t∗ ≤ t) for all t ≥ T , by using inequalities (A1)
and (A2) in [21].

6 Sufficient Conditions for Strong Overtaking Optimality

In a discounted MDP, if for every s ∈ S the strategy σs is an optimal strategy at the
initial state s, then the stationary strategy that plays at each state s themixed action that
σs plays at the initial period is also optimal. The next theorem aims at developing the
analogous result for strongly overtaking optimal strategies in MDPs with reachability
objective.

Theorem 6.1 Consider an MDP with reachability objective. Suppose that, for every
initial state s ∈ S, there is a strategy σs with the following properties:

6 Note that if A and B differ in several rows, then the statement is no longer true: for the 3×3−matrices A =
((98, 98, 1), (98, 1, 1), (1, 1, 1)) and B = ((1, 1, 1), (1, 1, 98), (1, 98, 98)) we have λ1(A) = λ1(B) ≈
158.86, while λ1

(
1
2 A + 1

2 B
)

= 100.
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(i) The strategy σs is strongly overtaking optimal at the initial state s.
(ii) Denote by αs the mixed action that σs uses at period 1 in state s. The strategy

σs weakly overtakes each strategy that uses a mixed action different from αs at
period 1 in the initial state s.

Let α be the stationary strategy that uses the mixed action αs at state s, for all s ∈ S.
Then, α is strongly overtaking optimal at each initial state.

Proof We will use a dynamic programming argument. Fix an initial state s ∈ S. For
each state z ∈ S, let Hs(z) denote the set of histories h such that (1) h has a positive
probability under σs , and (2) h ends in state z.

We show that for each h ∈ Hs(z) we have σs(h) = αz . Let h ∈ Hs(z). Suppose
by way of contradiction that σs(h) 
= αz . Let σ ′

s be the strategy such that (i) σ ′
s

follows σs outside the subgame that starts at h, and (ii) in the subgame that starts at
h, the continuation strategy σ [h] is replaced by σz . Then, for each period t that is
larger than the last period in the history h we have Pσ ′

s
(t∗ ≤ t) − Pσs (t

∗ ≤ t) =
Pσs (h) · [Pz,σz (t

∗ ≤ t) − Pz,σ [h](t∗ ≤ t)
]
. By (ii), σz weakly overtakes σ [h] for initial

state z. Therefore, the quantity Pz,σz (t
∗ ≤ t) − Pz,σ [h](t∗ ≤ t) is non-negative for all

large t and strictly positive for infinitely many t . Thus, the same holds for Pσ ′
s
(t∗ ≤

t) − Pσs (t
∗ ≤ t), and hence σs is weakly overtaken by σ ′

s . This is a contradiction to
(i).

Hence, each history h has the same probability under σs and under α. As σs is
strongly overtaking optimal at the initial state s, so is the strategy α. ��

7 Safety Objectives

The model of MDPs with safety objective is similar to the model of MDPs with
reachability objective, except that the decision maker’s objective is to reach the state
s∗ with as low a probability as possible.

Overtaking optimality. A strategy σ overtakes a strategy σ ′ at the initial state s if
there is T ∈ N such that Psσ (t∗ ≤ t) < Psσ ′(t∗ ≤ t) for all t ≥ T . A strategy σ is
overtaking optimal at the initial state s if there is no strategy that overtakes σ at that
initial state.

Strongovertakingoptimality.Astrategyσ weakly overtakes a strategyσ ′ at the initial
state s if there is T ∈ N such that for all t ≥ T we have Psσ (t∗ ≤ t) ≤ Psσ ′(t∗ ≤ t)
with strict inequality for infinitely many t . If σ overtakes σ ′ at the initial state s then
σ also weakly overtakes σ ′ at that initial state. A strategy σ is strongly overtaking
optimal at the initial state s if no strategy weakly overtakes σ at that initial state. A
strongly overtaking optimal strategy at the initial state s is also overtaking optimal at
that state.

Results. Theorem 4.1 remains valid for safety objectives. The proof requires the
following changes. (1) We can still assume that the MDP M has no state s 
= s∗
and action a ∈ A(s) with p(s∗ | s, a) = 1. Indeed, such an action can be deleted, and
if all actions in a state s are deleted, then we can delete the state s and replace each

123



Journal of Optimization Theory and Applications

transition to s by a transition to s∗. (2) Because now the decision maker prefers low
probabilities to state s∗, the payoffs in the auxiliary MDP M′ are defined to be the
opposite: u′(s, a) = log(p(w(s, a) | s, a)), .

Theorems 5.1 and 6.1 remain valid for safety objectives, with analogous proofs.
Similarly to Example 4.1, the following MDP with safety objective has no overtaking
optimal strategy: Take the MDP in Example 4.1 and replace b : 3

4 with b : 0 and d : 0
with d : 3

4 . In this MDP, b is still preferred over d.

8 Conclusions

It remains an open problem if generic MDPs with reachability objective admit a pure
stationary strategy that is strongly overtaking optimal (cf. Theorem 5.1). The difficulty
is that when we allow non-stationary strategies, the transition probabilities generally
cannot be described by a single transition matrix.

When using a stationary strategy, sometimes it is important to study the probability
distribution of the current state, at any period t , on condition that the state s∗ has not
been reached yet. This conditional distribution converges under some conditions to a
limit, called a quasi-stationary distribution. This convergence and its speed are subject
of study in the literature; see, e.g., [22].
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Appendix: The proof of Theorem 4.2.

We closely follow the proof of Theorem 1 (that [1] implies [4], page 219) in [6]. Fix
the initial state s.

Since we can add a constant to all payoffs, we can assume that v(s) = 0.
A sequence � = (s1, a1, s2, . . . , st , at , st+1) is called a loop if (1) s1, . . . , st are

distinct elements of S, (2) s1 = st+1, (3) ai ∈ A(si ) for all i = 1, . . . , t , and (4)
p(si+1 | si , ai ) = 1 for all i = 1, . . . , t . For a loop � = (s1, a1, . . . , st , at , st+1) let
φ(�) denote the sum of the payoffs along �, i.e., φ(�) = ∑t

n=1 u(st , at ). The number

123

http://creativecommons.org/licenses/by/4.0/


Journal of Optimization Theory and Applications

of loops is finite and therefore the following quantity is negative: δ = max{φ(�) :
� is a loop and φ(�) < 0}; the definition of δ is irrelevant if the set over which the
maximum is taken is empty.

Let σ be a Blackwell optimal strategy for the initial state s, and σ ′ be a pure strategy.
Let s1 = s, a1, s2, a2, . . . and s′

1 = s, a′
1, s

′
2, a

′
2, . . . be the sequences of states and

actions induced by σ and respectively by σ ′. Denote ut = u(st , at ) and u′
t = u(s′

t , a
′
t ).

The following two claims are proven in [6], page 220.

Claim 1: Suppose that sk = sk+m+1 for some k,m ∈ N. Then uk +· · ·+uk+m = 0.
Claim 2: Suppose that s′

k = s′
k+m+1 for some k,m ∈ N. Then either u′

k + · · · +
u′
k+m = 0 or u′

k + · · · + u′
k+m ≤ δ (recall that δ < 0).

Suppose bywayof contradiction that there isM ∈ N such thatuT (s, σ ′) ≥ uT (s, σ )

for all T ≥ M and the inequality is strict for an infinite sequence T1 < T2 < . . .,
where M < T1. Let q1 = 0 and qt = u1 + · · · + ut−1 for each t ≥ 1. Likewise, let
q ′
1 = 0 and q ′

t = u′
1 + · · · + u′

t−1 for each t ≥ 1. Due to our assumption about σ ′, we
have q ′

t − qt > 0 for each t = T1, T2, . . ..
We next argue that there existsμ > 0 such that q ′

t −qt ≥ μ for each t = T1, T2, . . ..
Indeed, suppose that no suchμ > 0 exists. Then, by taking a subsequence if necessary,
we can assume that the sequence {q ′

Tn
− qTn }n∈N is strictly decreasing: q ′

Tn
− qTn >

q ′
Tn+1

− qTn+1 for every n ∈ N. As is shown in [6], page 220, by claims 1 and 2 above,
this leads to q ′

Tn
− qTn < 0 for all sufficiently large n, which is a contradiction.

Denote by uβ(s, σ ) and uβ(s, σ ′) the expected β-discounted payoffs under σ and
σ ′. So,

uβ(s, σ )

1 − β
=

∞∑
t=1

β t−1ut =
∞∑
t=1

β t−1(qt+1 − qt )

=
∞∑
t=2

β t−2qt −
∞∑
t=1

β t−1qt =
∞∑
t=2

(β t−2 − β t−1)qt .

Likewise, uβ(s,σ ′)
1−β

= ∑∞
t=2(β

t−2 − β t−1)q ′
t . Take any β ∈]0, 1[ for which σ is β-

optimal for the initial state s. We use the notation D∗ := 2 · maxs∈S,a∈A(s) |u(s, a)|.
Then, q ′

t − qt ≥ −(t − 1)D∗, for every t ≥ 1. Note that by Property I, q ′
t − qt ≥ 0

for every t ≥ M . Hence, we obtain

0 ≥ uβ(s, σ ′) − uβ(s, σ )

1 − β
=

∞∑
t=2

(β t−2 − β t−1)(q ′
t − qt )

=
T1∑
t=2

(β t−2 − β t−1)(q ′
t − qt ) +

∞∑
k=1

Tk+1∑
t=Tk+1

(β t−2 − β t−1)(q ′
t − qt )

≥ −(1 − β)

T1∑
t=2

β t−2 · t · D∗ +
∞∑
k=1

Tk+1−1∑
t=Tk+1

(β t−2 − β t−1)(q ′
t − qt )
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+
∞∑
k=1

(βTk−2 − βTk−1)(q ′
Tk − qTk )

> (1 − β)

(
−(T1)

2D∗ +
∞∑
k=1

βTk−2μ

)
.

We deduce that
∑∞

k=1 βTk−2μ < (T1)2D∗ for every β sufficiently close to 1, which
is a contradiction, since limβ↑1

∑∞
k=1 βTk−2μ = ∞. ��

The proof of Theorem 5.2 Denote λ∗ = λ1(Mα). By the Perron–Frobenius theorem,
there exists a positive right eigenvector u = (u j ) j corresponding to λ∗ for the matrix
Mα . Let e j be the j’th unit vector. Note that u j is the j’th coordinate of u, while e j
is the j’th unit vector. For every j 
= 1 we have eTj A = eTj B, hence e

T
j Au = eTj Bu.

Since λ∗u j = λ∗eTj u = eTj Mαu = αeTj Au + (1 − α)eTj Bu, we deduce that e
T
j Au =

eTj Bu = λ∗u j for every j 
= 1. For j = 1, we have λ∗u1 = λ∗eT1 u = eT1 Mαu =
αeT1 Au + (1 − α)eT1 Bu. Assume without loss of generality that eT1 Au ≥ eT1 Bu, so
that eT1 Au ≥ λ∗u1 ≥ eT1 Bu. It follows that for every nonnegative vector v we have

vT Au ≥ λ∗vT u ≥ vT Bu. (3)

By the Perron–Frobenius theorem, there exists a positive left eigenvector vA for λ1(A),
and a positive left eigenvector vB for λ1(B). Substituting v = vA in the left-hand side
of Ineq. (3) and substituting v = vB in the right-hand side of Ineq. (3) we obtain

λ1(A)vTAu = vTA Au ≥ λ∗vTAu and λ1(B)vTBu = vTB Bu ≤ λ∗vTBu. (4)

Since vTAu and vTBu are positive reals, this implies that λ1(A) ≥ λ∗ ≥ λ1(B).
Suppose now that λ1(A) > λ1(B). Then necessarily eT1 Au > eT1 Bu, since, if the

two are equal, then therewould have been equality in Eq. (3), and thenwewould obtain
that λ1(A) = λ1(B). As all coordinates of vA and vB are positive, and in particular the
first coordinates are positive, there is a strict inequality in both inequalities in Eq. (4).

��
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