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1. Introduction

Jointly controlled lotteries are a technique that allows group members to reach a random joint decision in such a way 
that no member can affect the distribution of the final decision (see, e.g., Aumann and Maschler, 1995; Forges, 1995; Lehrer, 
1996; Lehrer and Sorin, 1997; Forges and Koessler, 2008, or Kalai et al., 2010). For example, if two people want to jointly 
selects a color, blue or green, each with probability 1

2 , in such a way that none of them can manipulate the choice, then 
they can each toss a fair coin and determine the selected color according to whether the outcomes of the two coins are 
the same (blue) or different (green). Similarly, if the two players want to jointly select the color with unequal probabilities, 
say, blue with probability 1

3 and green with probability 2
3 , they can each toss a fair dice, and select blue if the outcome of 

both dice is in the set {1, 2}, or if the outcome of both dice is in the set {3, 4}, or if the outcome of both dice is in the set 
{5, 6}, and select green otherwise. In both examples provided above, the probability measure of the randomization devices 
of the participants are not exogenously given, but are rather devised by the designer of the choice process to fit the desired 
probability measure that is to be implemented.

In this paper we study the problem, when the distribution of the randomization devices of the group members are 
exogenously given, and we allow the selection process to last more than one stage. Formally, for each i ∈ {1, 2, . . . , k} we 
are given a randomization device, which selects at every stage a letter from a given finite alphabet Ai according to a given 
probability measure Pi over Ai . A mechanism is characterized by a stopping time τ and a deterministic rule f , that dictates 
which letter in some finite alphabet J is selected based on the letters that were selected by the randomization devices up 
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to time τ . Given a probability measure ν over J , the goal is to devise a mechanism that is immune to deviations of some of 
the participants: even if k − 1 of the randomization devices become faulty and produce letters according to some arbitrary 
law that may depend on past choices of all devices, the distribution of the outcome of the mechanism is still ν .

We will provide two mechanisms for selecting an element of J , both of which depend on a parameter ε > 0. One 
mechanism has a bounded length and selects an element in J with a distribution ε-close to ν: as long as at least one 
randomization device is not faulty, the probability that each element j ∈ J is selected is ε-close to ν( j). The second mech-
anism may never terminate yet as long as no randomization device is faulty it is finite a.s. and selects each element j ∈ J
with probability exactly ν( j). Moreover, as long as at least one randomization device is not faulty, the probability that each 
element j ∈ J is selected does not exceed ν( j), and, in case the mechanism never terminates, the identity of the faulty 
devices is revealed by the information they produce. Thus, even if some (but not all) devices are faulty, no element in J is 
chosen with probability greater than the intended probability that it is chosen.

To demonstrate the usefulness of the result, we apply it to the study of undiscounted equilibria in stochastic games. 
Whether every multiplayer stochastic game admits an undiscounted ε-equilibrium for every ε > 0 is one of the main open 
problems in game theory to date; see Flesch et al. (1997), Solan (1999, 2000), Vieille (2000a, 2000b), Solan and Vieille
(2001), Flesch et al. (2007), Flesch et al. (2008, 2009), Simon (2012, 2016), and Solan and Solan (2017) for partial results, 
and Jaśkiewicz and Nowak (2017) for a recent survey. The class of games that we study in this paper is the class of positive 
recursive general quitting games. Those are quitting games in which (a) each player has a single quitting action and may 
have several continue actions, (b) the payoff if no absorption ever occurs is 0, and (c) the absorbing payoffs are nonnegative. 
This class of games was studied by Solan and Solan (2018), who showed that those games admit a sunspot ε-equilibrium 
for every ε > 0; that is, an ε-equilibrium in an extended game in which at every stage the players observe the outcome of a 
uniformly distributed random variable on [0, 1], which is independent of past signals and past play. Using jointly controlled 
lotteries with biased coins we will show that if at least two players have at least two continue actions, an undiscounted 
ε-equilibrium exists.

To date it is not known whether quitting games in which each player has a single quitting action and a single continue 
action admit undiscounted ε-equilibria. Our result shows that when players have enough flexibility in coordinating their 
play, an undiscounted ε-equilibrium does exist.

Biased coins are not prevalent in game theory, since usually it is assumed that players have all randomization means 
that they need. One exception is Gossner and Vieille (2002), who studied two-player zero-sum repeated games in which 
the randomization device of one of the players is a biased coin that is tossed once at the beginning of every stage. Gossner 
and Vieille (2002) showed that the player can do better than using at every stage the outcome of the toss performed at the 
beginning of that stage, and characterized the value of the game as a function of the distribution of the coin. In their model, 
the player need not use the information provided by the coin at the stage in which it is obtained, but rather may use this 
information in subsequent stages. In our model, in contrast, aggregating the random information is impossible, since the 
letter chosen by a faulty device may depend on past choices of the unfaulty devices.

Though jointly controlled lotteries with biased coins remind one of mediated talk (see, e.g., Lehrer, 1996 and Lehrer 
and Sorin, 1997) and cheap talk (see, e.g., Farrell and Rabin, 1996 and Aumann and Hart, 2003), there are some significant 
differences among the models. Indeed, while in mediated talk and cheap talk the players are free to select the messages 
they send out and the goal is to choose an action for each player, in our model, when unfaulty, the randomization devices 
choose messages according to a known stationary probability measure and the goal is to choose one outcome.

The paper is arranged as follows. In Section 2 we discuss jointly controlled lotteries with biased coins, and in Section 3
we apply the mechanism of jointly controlled lotteries to positive recursive general quitting games.

2. Jointly controlled lotteries with biased coins

In the Introduction we presented the problem of jointly controlled lotteries with biased coins for any number of ran-
domization devices. To simplify the presentation we will present the model and results for the case of two randomization 
devices; the definitions and constructions for any number of randomization devices follow the same lines.

2.1. On mechanisms

Let A1 and A2 be two finite sets, each containing at least two elements. The set of finite histories1 is H := ∪∞
t=0(A1 × A2)

t , 
and the set of infinite histories is H∞ := (A1 × A2)

N . An infinite history is denoted h = (at′
i )i=1,2,t′≥0. For every infinite 

history h = (at′
i )i=1,2,t′≥0 and t ≥ 0 we denote by ht = (at′

i )i=1,2,0≤t′≤t the prefix of h for the first t stages. The set H∞ is 
a measurable space when equipped with the product sigma-algebra. For every t ≥ 0 denote by F t the sigma-algebra over 
H∞ defined by all t-stage histories; it is the sigma-algebra spanned by the sets C(ht ) := {(ht , h) ∈ H∞ : h ∈ H∞} for every 
ht ∈ (A1 × A2)

t , where (ht, h) is the concatenation of the finite history ht and the infinite history h.

1 By conventions, the set (A1 × A2)0 contains only the empty history.
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A stopping time (for the filtration (F t)t≥0) is a function τ : H∞ → N ∪ {∞} such that for every t ∈ N the set {h′ ∈
H∞ : τ (h′) = t} is in F t . When τ is a stopping time, the sigma-algebra Fτ is the σ -algebra of all events that are “known 
at time τ ”; that it, the sigma-algebra generated by the collections of sets {A ∈ F t : τ (h) ≥ t ∀h ∈ A}, for t ∈ N.

The basic concept that we need is that of a mechanism, which describes how to generate an element from a set J given 
an infinite history.

Definition 2.1. A mechanism is a triplet M := (τ , J , f ) where

• τ is a stopping time w.r.t. the filtration (F t)t≥0.
• J is a finite set.
• f : H∞ → J is a function that is measurable w.r.t. the sigma-algebra Fτ .

Remark 2.2. To better digest the concept of mechanism, consider the following game theoretic interpretation. Each device 
is a player, the players are engaged in a repeated game, and would like to collectively select some equilibrium play out of 
| J | possible plays. The only means of communication between the players is through their actions. With this interpretation, 
Ai is the set of actions of player i, τ is the stage in which the selection process ends, and the function f dictates which 
equilibrium play is selected as a function of the players’ actions.

Let i ∈ {1, 2}. A (behavior) strategy for the i’s device is a function σi : H → �(Ai) that assigns a distribution over Ai to 
each finite history. The set of all strategies for the i’th device is denoted �i . A strategy is stationary if σi(ht) is independent 
of ht ∈ H . When σi is a stationary strategy, we denote by σi(ai) the per-stage probability that strategy σi selects the element 
ai , for each ai ∈ Ai .

Every pair of strategies (σ1, σ2) defines a probability measure Pσ1,σ2 over H∞ . We denote by Eσ1,σ2 the expectation 
operator that corresponds to the probability measure Pσ1,σ2 .

2.2. Strong secure implementability

We now present three properties of mechanisms: having finite length, being able to implement a given probability 
measure, and being able to implement the probability measure in a secure way.

Definition 2.3. Let T ∈ N. A mechanism M = (τ , J , f ) has length at most T if Pσ1,σ2 (τ ≤ T ) = 1 for every pair of strategies 
(σ1, σ2). A mechanism has finite length if it has length at most T for some T ∈ N.

Definition 2.4. Let ε ≥ 0 and let ν be a probability measure over some finite set J . The mechanism M = (τ , J , f ) and the 
pair of strategies (σ1, σ2) ∈ �1 × �2 ε-implement the distribution ν if

|Pσ1,σ2( f = j) − ν( j)| ≤ ε, ∀ j ∈ J . (1)

The mechanism M = (τ , J , f ) and the pair of strategies (σ1, σ2) ∈ �1 × �2 ε-implement the distribution ν in a strong secure 
way if for every i ∈ {1, 2} and every strategy σ ′

i ∈ �i , the mechanism M and the pair of strategies (σ ′
i , σ3−i) ε-implement 

the distribution ν .

Remark 2.5. Continuing the game theoretic interpretation of a mechanism presented in Remark 2.2, suppose that to sat-
isfy some incentive constraints, the probabilities by which the various equilibrium plays are chosen should be close to 
some given probability measure ν . Suppose also that until the selection of an equilibrium play is made, due to incentive 
constraints, each player i should play some given stationary strategy σi . The mechanism has finite length if the selection 
process always ends, whatever the players play. The mechanism and the pair of stationary strategies (σ1, σ2) ε-implement 
the distribution ν in a strong secure way if by deviating no player can significantly affect the probability by which each 
equilibrium play is chosen.

Our first result concerns the possibility of ε-implementing any distribution in a strong secure way given any pair of 
stationary strategies.

Theorem 2.6. Let A1 , A2 , and J be three finite sets, each of which contains at least two elements. Let σ1 (resp. σ2) be a stationary 
strategy that selects all elements in A1 (resp. A2) with positive probability, and let ν be any distribution on J . For every ε > 0 there 
is a mechanism M = (τ , J , f ) that has finite length and, together with the pair of stationary strategies (σ1, σ2), ε-implements ν in a 
strong secure way.

The intuition for the result is as follows. Suppose that A1 = A2 = {α, β}, and consider the two-player zero-sum strategic-
form game that appears in Fig. 1, where each player has two actions, α and β . The value of this game is 0, an optimal 
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Fig. 1. A strategic-form game with value 0

strategy for Player I is (σ1(α), σ1(β)), and an optimal strategy for Player II is (σ2(α), σ2(β)). Consider now the repeated 
game that is based on this strategic-form game, and denote by Y t the payoff at stage t , for each t ≥ 0. Since the value of 
the stage game is 0, as soon as Player I (resp. Player II) follows the stationary strategy σ1 (resp. σ2) for T stages, the sum ∑T

t=1 Y t is approximately normally distributed around 0, provided T is sufficiently large.
The variance d of the distribution of 

∑T
t=1 Y t depends on the players’ strategies, and, since players only know their own 

strategy and the play, this variance is not known by the players. However, the Martingale Central Limit Theorem (McLeish, 
1974) allows us to approximate d by the outcomes, and therefore, a proper normalization of 

∑T
t=1 Y t has approximately 

the standard normal distribution as soon as one of the players follows σ1 or σ2. The desired mechanism suggests itself: we 
divide the real line R into | J | disjoint intervals such that the probability under the standard normal distribution of the j’th 
interval is ν( j), and set f (h) = j if and only if the proper normalization of 

∑T
t=1 Y t(h) lies in the j’th interval. We now 

turn to the formal proof.

Proof. Assume w.l.o.g.2 that |A1| = |A2| = 2, and denote Ai = {α, β} for i ∈ {1, 2}. For every t ∈ N define a random variable 
Y t over H∞ as follows (see Fig. 1):

Y t :=

⎧⎪⎪⎨⎪⎪⎩
−σ1(β)σ2(β) if at = (α,α),

σ1(β)σ2(α) if at = (α,β),

σ1(α)σ2(β) if at = (β,α),

−σ1(α)σ2(α) if at = (β,β).

We observe that Eσ1,σ ′
2
[Y t ] = Eσ ′

1,σ2
[Y t] = 0, for every t ≥ 0 and every pair of strategies (σ ′

1, σ
′
2) ∈ �1 × �2.

For every real number C > 0 let τC be the stopping time

τC := min

{
t ∈ N :

t∑
k=1

(Y k)2 ≥ C

}
. (2)

Denoting by

c0 := min{σ1(α),σ1(β),σ2(α),σ2(β)} > 0, (3)

we obtain that the stopping time τC is bounded by C
(c0)4 . Denote ZC :=

∑τC
t=1 Y t
√

C
. The Martingale Central Limit Theorem 

(see, e.g., McLeish, 1974), implies that for each player i and each strategy σ ′
i ∈ �i of player i, under the pair of strategies 

(σ ′
i , σ3−i) the distribution of ZC converges weakly to the standard normal distribution as C goes to infinity. Moreover, the 

rate of convergence is independent of σ ′
i .

Let now I1, I2, · · · , I J be a partition of the real line R into J disjoint intervals such that the probability of the interval I j

under the standard normal distribution is ν( j), for each j ∈ J . Let C be sufficiently large such that, for all strategies σ ′
1 and 

σ ′
2 of the two devices,

|Pσ1,σ ′
2
(ZC ∈ I j) − ν( j)| < ε,

|Pσ ′
1,σ2

(ZC ∈ I j) − ν( j)| < ε.

For every infinite history h ∈ H∞ define f (h) to be the unique j ∈ J such that ZC (h) ∈ I j . It follows that the mechanism 
M = (τC , J , f ) together with the pair of stationary strategies (σ1, σ2) ε-implement ν in a strong secure way. �
2.3. Weak secure implementability

We now weaken the security requirement of the mechanism. The weaker condition does not require that the mechanism 
stops in finite time, but rather that it stops in finite time when the two randomization devices are not faulty, that as long as 
the mechanism stops, no element in J is selected with probability higher than it was intended, and that if the mechanism 
does not stop (that is, on the set τ = ∞), then the outputs of the faulty device reveal that it is faulty.

2 If the set Ai contains more than two elements, divide it arbitrarily into two subsets, and treat all elements that lie in the same subset as equivalent.
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Definition 2.7. Let ε ≥ 0 and let ν be a probability measure over J . The mechanism M = (τ , J , f ) and the pair of strategies 
(σ1, σ2) ∈ �1 × �2 ε-implement the distribution ν in a weak secure way if the following conditions hold:

(W.1) Pσ1,σ2 (τ < ∞) = 1 and M and (σ1, σ2) ε-implement the distribution ν .
(W.2) For every strategy σ ′

1 ∈ �1 we have Pσ ′
1,σ2

(τ < ∞ and f = j) ≤ ν( j), for every j ∈ J .
(W.3) For every strategy σ ′

2 ∈ �2 we have Pσ1,σ ′
2
(τ < ∞ and f = j) ≤ ν( j), for every j ∈ J .

(W.4) There are two events D1 and D2 such that
– D1 ∪ D2 ⊆ {τ = ∞}.
– For every strategy σ ′

2 ∈ �2 we have Pσ1,σ ′
2
(D1) = 0.

– For every strategy σ ′
1 ∈ �1 we have Pσ ′

1,σ2
(D2) = 0.

– For every strategy σ ′
1 ∈ �1 we have Pσ ′

1,σ2
(D1) + Pσ ′

1,σ2
({τ < ∞}) = 1.

– For every strategy σ ′
2 ∈ �2 we have Pσ1,σ ′

2
(D2) + Pσ1,σ ′

2
({τ < ∞}) = 1.

The events D1 and D2 in Definition 2.7 are used to reveal the identity of the faulty device: on the event Di device i is 
faulty, for i = 1, 2; indeed, this event occurs with probability 0 if device i is unfaulty, and it occurs whenever the mechanism 
does not stop and device i is faulty. Note that whereas strong security requires the stopping time τ to be uniformly bounded, 
weak security has no such restriction.

Remark 2.8. Continuing Remarks 2.2 and 2.5 about the game theoretic interpretation of mechanisms, we now allow the 
players to deviate in a way that makes the selection process infinite, yet we require that even if a player deviates, he cannot 
increase the probability of each outcome j above ν( j). This property is important for the following reason. If each outcome 
j leads to some utility for every player, then the expected utility of a player may increase when the player deviates. If the 
utility from being detected as a deviator is not higher than the utility from each outcome in J (for example, if a detected 
deviation leads to indefinite punishment), then as soon as no element j is ever chosen with probability greater than ν( j), 
by deviating no player can increase his expected utility.

Theorem 2.9. Let A1 , A2 , and J be three finite sets, each of which contains at least two elements. Let σ1 (resp. σ2) be a stationary 
strategy that selects all elements in A1 (resp. A2) with positive probability, and let ν be any distribution on J . There is a mechanism 
M = (τ , J , f ) that together with the pair of stationary strategies (σ1, σ2) 0-implement ν in a weak secure way.

Proof. Assume w.l.o.g. that |A1| = |A2| = 2, and denote Ai = {α, β} for i = 1, 2. Let (Zt)t∈N be a stochastic process with 
values in �( J ), adapted to the filtration (F t)t≥0, which satisfies the following properties:

(C.1) Z 0 = ν .
(C.2) Zt+1 depends deterministically on Zt , at

1, and at
2, for every t ≥ 0. Consequently, Zt+1 is a function of the t-stage 

history ht . We will therefore sometimes write Zt+1(ht) rather than Zt+1(h).
(C.3) Eσ1,σ2 [Zt+1 | Zt , at

2 = α] = Eσ1,σ2 [Zt+1 | Zt, at
2 = β] = Zt .

(C.4) Eσ1,σ2 [Zt+1 | Zt , at
1 = α] = Eσ1,σ2 [Zt+1 | Zt, at

1 = β] = Zt .
(C.5) For every (t −1)-stage history ht−1 ∈ H such that the support of Zt(ht−1) contains more than one element, the support 

of at least one of the distributions Zt+1(ht−1, α, α), Zt+1(ht−1, α, β), Zt+1(ht−1, β, α), and Zt+1(ht−1, β, β) is a strict 
subset of the support of Zt(ht−1).

Condition (C.3) states that whatever be the choice of Device 2 at stage t , as long as Device 1 follows σ1, the expected value 
of Zt+1 is equal to the value of Zt . Condition (C.4) is analogous. This implies in particular that the support of Zt+1(ht)

cannot contain elements that are not in the support of Zt(ht−1).
To show that such a process exists, let λ be a possible value of Zt . Conditions (C.3) and (C.4) determine three equalities 

that the four variables Zt+1(ht−1, α, α), Zt+1(ht−1, α, β), Zt+1(ht−1, β, α), and Zt+1(ht−1, β, β) should satisfy. One solution 
of these equalities is Zt+1(ht−1, a1, a2) = λ for every a1, a2 ∈ {α, β}. Since the number of conditions is smaller by one than 
the number of variables, the set of solutions is a line, hence there is a solution on the boundary of the set (�( J ))4, and 
therefore one can define Zt+1 in such a way that Conditions (C.2) and (C.5) hold.

Conditions (C.3) and (C.4) imply that the process (Zt)t∈N is a martingale under (σ1, σ2), hence it converges Pσ1,σ2 -a.s. to 
a random variable Z∞ . By Condition (C.5), under the stationary strategy pair (σ1, σ2), for every t ∈ N, the probability that 
the support of Zt+1 is strictly contained in the support of Zt (whenever the support of Zt contains at least two elements) 
is at least (c0)

2, where c0 is defined as in Eq. (3). It follows that Z∞ is a Dirac measure Pσ1,σ2 -a.s. Since the process (Zt)t∈N
is a martingale, it follows that for every j ∈ J we have Pσ1,σ2 (Z∞ = j) = Z 0( j) = ν( j). Setting τ = ∞ and M = (τ , J , Z∞)

we obtain that M 0-implements the distribution ν , and Condition (W.1) holds.
Condition (C.3) implies that the process (Zt)t≥0 is a martingale under (σ1, σ ′

2) for every strategy σ ′
2 ∈ �2, which implies 

that Condition (W.3) holds. Analogously, Condition (W.2) holds as well.
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We complete the proof by proving that Condition (W.4) holds. Denote by (̂at
1, ̂a

t
2) ∈ A1 × A2 an action pair such that the 

support of Zt+1(ht−1, ̂at
1, ̂a

t
2) is strictly contained in the support of Zt(ht−1). We note that under strategy σi we have

Pσi ,σ
′
3−i

(at
i = ât

i infinitely often) = 1, ∀σ ′
3−i ∈ �3−i .

For i ∈ {1, 2} define an event Di by

Di := {τ = ∞ and at
i = ât

i finitely many times}.
The event Di contains all histories in which the mechanism does not stop and device i refrains from choosing infinitely 
many times the action that leads to a decrease in the support of Zt . The reader can verify that Condition (W.4) in Defini-
tion 2.7 holds, and therefore the mechanism M 0-implements the distribution ν in a weak secure way. �
2.4. Discussion and open problems

We now discuss a variant of the mechanism described in the proof of Theorem 2.9 that has finite length. Fix T ∈ N, and 
consider the mechanism described in the proof of Theorem 2.9 with two exceptions. First, the mechanism terminates after 
T periods. Second, the output of the mechanism may be undefined. Specifically, if the support of Z T +1(hT ) contains a single 
element of J , then this is the output f (hT ) of the mechanism; otherwise we keep f (hT ) undefined. If T is sufficiently large, 
then when no device is faulty, with high probability the support of Z T +1 is a singleton. Hence the mechanism together with 
the pair of stationary strategies (σ1, σ2) ε-implement ν for some small ε = ε(T ). To define the events D1 and D2, denote by 
ki(α) the number of times that device i selects the letter α up to stage T . The set D1 contains all T -stage histories hT ∈ H

such that Z T +1(hT ) is not a singleton and 
∣∣∣ k1(α)

T − σ1(α)

∣∣∣ >

∣∣∣ k2(α)
T − σ2(α)

∣∣∣. The set D2 contains all T -stage histories for 

which Z T +1(hT ) is not a singleton and 
∣∣∣ k1(α)

T − σ1(α)

∣∣∣ ≤
∣∣∣ k2(α)

T − σ2(α)

∣∣∣. If T is sufficiently large and Z T +1(hT ) is not a 
singleton, then in the presence of one faulty device, with high probability the identity of the faulty device is correctly 
revealed.

The definitions of implementability make various assumptions: (a) the sets A1, A2, and J are finite, (b) the devices’ 
outputs are chosen according to given stationary laws, (c) the devices observe each other’s choice in every period, and 
(d) there is no external source of randomization. One can ask whether the results hold when one weakens any of these 
assumptions.

If the set J is infinite, then Theorem 2.6 still applies, because one can make J into a finite set by dropping all elements 
that have low probability and normalizing the distribution ν . That is, one defines the set J ′ to be a smallest subset of J
satisfying 

∑
j∈ J ′ ν( j) ≥ 1 − ε

2 and the probability measure ν ′ ∈ �( J ′) by ν ′( j) := ν( j)
ν( J ′) . A mechanism M = (τ , J ′, f ) and a 

pair of strategies (σ1, σ2) ∈ �1 × �2 that ε
2 -implement the distribution ν ′ in a strong secure way, also ε-implement the 

distribution ν in a strong secure way.

If one changes the definition of implementability to require that the ratio
Pσ1,σ2 ( f = j)

ν( j) is between 1 −ε and 1 +ε for every 
j ∈ J (instead of requiring that the difference between these two quantities is small, see Eq. (1)), then every distribution in 
�( J ) is ε-implementable in a strong secure way, but the mechanism need not have finite length.

If the laws of the outputs of the devices are not stationary but arbitrary, then the results hold as soon as the laws “contain 
enough joint randomness”. One sufficient condition is that, loosely speaking, with high probability there are sufficiently 
many stages in which at least two devices select each of at least two letters with probability uniformly bounded away from 
0.

An interesting problem is the characterization of the monitoring structures that allow for a jointly controlled lottery in 
the presence of partial monitoring.

3. Undiscounted ε-equilibrium in general quitting games

In this section we provide an application of jointly controlled lotteries with biased coins to the area of stochastic games. 
As mentioned in the introduction, whether every stochastic game admits an undiscounted equilibrium payoff is one of the 
most challenging open problems in game theory to date. We will use the tools developed in Section 2 to prove the existence 
of an undiscounted ε-equilibrium in a class of stochastic games that was termed positive recursive general quitting game in 
Solan and Solan (2018). A positive recursive general quitting game is a vector � = (I, (Ac

i )i∈I , u) where

• I = {1, 2, . . . , |I|} is a nonempty finite set of players.
• Ac

i is a nonempty finite set of continue actions, for each player i ∈ I . The set of all actions of player i is Ai := Ac
i ∪ {Q i}, 

where Q i is interpreted as a quitting action. The set of all action profiles is A := ×i∈I Ai , and the set of all action profiles 
in which at least one player plays a quitting action is A∗ := A \ (×i∈I Ac

i

)
.

• u : A∗ → [0, 1]I is a payoff function.
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The game proceeds as follows. At every stage t ∈ N, each player i ∈ I chooses an action at
i ∈ Ai . Let at = (at

i )i∈I be the action 
profile chosen at stage t . Denote by t∗ the first stage in which at least one player selects his quitting action; that is, the first 
stage t such that at ∈ A∗ . If no player ever selects his quitting action, then t∗ = ∞.

A (behavior) strategy of player i is a function σi :
(∪∞

t=0 At
) → �(Ai). A strategy profile is a vector of strategies σ = (σi)i∈I , 

one for each player. Every strategy profile σ induces a probability measure over the set of infinite histories A∞ . Denote by 
Eσ the corresponding expectation operator and by

γ (σ ) := Eσ

[
1{t∗<∞}u(at∗)

]
the (expected undiscounted) payoff under strategy profile σ . Note that the way a strategy is defined after the termination 
stage t∗ does not affect the payoff.

A mixed action profile x ∈ ×i∈I�(Ai) is nonabsorbing if under x all players play continue actions with probability 1, and 
it is absorbing otherwise.

Let ε ≥ 0. A strategy profile σ = (σi)i∈I is an ε-equilibrium3 if for every player i ∈ I and every strategy σ ′
i of player i,

γi(σ ) ≥ γi(σ
′
i ,σ−i) − ε.

A sunspot ε-equilibrium is an ε-equilibrium in an extended game �E that contains a correlation device, which sends a public 
signal st at the beginning of each stage t ∈ N. The random variable st is uniformly distributed in [0, 1], and independent of 
s1, · · · , st−1 and of the past actions played by the players. In particular, a (behavior) strategy for player i in the extended game 
�E is a measurable function ξi :

(∪∞
t=0([0,1] × A)t

) × [0, 1] → �(Ai). The payoff induced by a strategy profile ξ = (ξi)i∈I is

γ E(ξ) := Eξ

[
1{t∗<∞}u(at∗)

]
,

where Eξ is the expectation w.r.t. the probability measure induced by ξ over the space of infinite histories ([0, 1] × A)∞ in 
the game �E . The strategy profile ξ is a sunspot ε-equilibrium in the game � if γ E

i (ξ) ≥ γ E
i (ξ ′

i , ξ−i) − ε, for every player i ∈ I
and every strategy ξ ′

i of player i.
Solan and Solan (2018) proved that every positive recursive general quitting game admits a sunspot ε-equilibrium, for 

every ε > 0. Our main result in this section is that when at least two players have at least two continue actions, the game 
admits an ε-equilibrium, for every ε > 0.

Theorem 3.1. Let � = (I, (Ac
i )i∈I , u) be a positive recursive general quitting game that satisfies |I| ≥ 2, |Ac

1| ≥ 2, and |Ac
2| ≥ 2. Then 

for every ε > 0 the game admits an ε-equilibrium.

To prove Theorem 3.1 we describe the structure of the sunspot ε-equilibrium constructed in Solan and Solan (2018). 
In that paper, it was proven that for every positive recursive general quitting game � = (I, (Ac

i )i∈I , u) there exists a mixed 
action profile x = (xi)i∈I ∈ ×i∈I�(Ai) such that one of the following two alternatives holds for every ε > 0:

(A.1) The mixed action profile x is absorbing and a stationary 0-equilibrium.
(A.2) The mixed action profile x is nonabsorbing, and the game admits a sunspot ε-equilibrium ξ in which at every stage t

the players play the mixed action profile x, except of possibly one player it , whose identity is determined by the 
correlation device, who plays the mixed action (1 − ηt)xit + ηt Q it , where the random variable ηt has values in (0, ε)

and depends on the history before stage t and on it . Moreover, under ξ the play terminates with probability 1.

Thus, if Alternative (A.2) holds, then the players play mainly the stationary strategy profile x, and take turns in stopping 
the game: in each stage t the correlation device may designate one player it as the possible quitter, and that player stops 
the game with a history-dependent probability ηt . If the correlation device did not designate any player as the possible 
quitter, then all players follow x. The order in which the players are selected by the correlation device is random, depends 
on the device’s past choices, and is crafted so as to keep incentive constraints.

In Alternative (A.2) statistical tests are conducted to ensure that the players do not deviate from the prescribed strategy 
profile: the players verify that the distribution of continue actions played by each player i is close to xi . In Alternative (A.1) 
no statistical tests are required.

As mentioned above, in Alternative (A.2), at stage t the players play either the mixed action x or the mixed action 
((1 −ηt)xit +ηt Q it , x−it ). Since payoffs are bounded by 1 and ηt < ε, if some player, say player j, quits, his payoff is ε-close 
to u j(Q j, x− j), where u j(Q j, x− j) is the multilinear extension of u j . Since ξ is a sunspot ε-equilibrium, no player can gain 
more than ε by quitting. In particular, we can add a finite number of stages in which the players play the mixed action 
profile x without affecting the ε-equilibrium property of the strategy profile. In our construction, before every stage of the 
sunspot ε-equilibrium we add a large number of stages in which the players play the mixed action profile x, and these 
stages are used to implement a jointly controlled lottery by Players 1 and 2, which replaces the public correlation.

3 The concept that we define is that of undiscounted ε-equilibrium. Theorem 3.1 below holds for the stronger notion of uniform ε-equilibrium as well.
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Proof of Theorem 3.1. To prove the result we need to consider Alternative (A.2) only. Fix then ε > 0 and let ξ be a sunspot 
ε-equilibrium in the extended game �E in which the players play mainly some nonabsorbing mixed action profile x. We 
will divide the play into blocks of random size; block t will correspond to stage t of the implementation of ξ . All stages 
of the block except the last one will be used to perform a jointly controlled lottery by Players 1 and 2, which will mimic 
the correlation device; that is, in this lottery Players 1 and 2 will select an element it ∈ I ∪ {0} according to a probability 
measure that is close to that indicated by ξ for stage t , where 0 will mean that no player is designated to quit. In the last 
stage of the block the players will play as ξ plays in stage t , given the outcome of the jointly controlled lottery conducted 
in that block.

Formally, for each t ∈ N denote by kt the stage of the game in which block t starts, by ât the action profile that the 
players play in the last stage of block t (stage kt+1 − 1), and by it the player who is selected by Players 1 and 2 in block t
using the jointly controlled lottery mechanism of Theorem 2.6 (which will be described shortly in the context of the positive 
recursive general quitting game). Let T1 ∈ N be sufficiently large such that

Pξ

(
T1∏

t=1

(1 − ηt) > ε

)
< ε : (4)

under the sunspot ε-equilibrium ξ , with probability at least 1 −ε, the play terminates before stage T1 with high probability.
Assume first that both x1 and x2 are not pure. Let A1 (resp. A2) be the support of x1 (resp. x2). Let T2 be sufficiently 

large such that for every probability measure ν over J := I ∪ {0}, the jointly controlled lottery described in the proof of 
Theorem 2.6 for the ε

T1
-implementation of ν with the alphabets A1 and A2 and the probability measures P1 = x1 and 

P2 = x2 has length less than T2.
Let σ be the following strategy profile in the positive recursive general quitting game � that plays in blocks. For every 

t ∈ N, in block t the strategy profile is defined as follows.

(B.1) Consider the mechanism M = ( J , τ t, f ) described in the proof of Theorem 2.6 that ε
T1

-implements the probability 
measure ξ t (̂a1, · · · , ̂at−1, i1, · · · , it−1), where A1 = supp(x1), A2 = supp(x2), J = I ∪ {0}, P1 = x1, and P2 = x2.
In block t the players play the mixed action profile x until the game terminates (if some player quits) or until stage 
τ t of the block (stage kt + τ t of the game). Note that the length of this phase is uniformly bounded by T2 , even if one 
player deviates from the play described herein. Denote by ̂ it := f (akt

1 , akt

2 , · · · , akt+τ t

1 , akt+τ t

2 ) ∈ I ∪ {0} the outcome of 
the jointly controlled lottery described in Theorem 2.6.

(B.2) In the last stage of the block, stage kt + τ t + 1, the players follow the mixed action prescribed by the sunspot 
ε-equilibrium ξ at stage t , given the history (̂a1, · · · , ̂at−1, ̂i1, · · · , ̂it). Set kt+1 := kt + τ t + 1.

We thus defined a strategy profile σ in the general quitting game �. By Eq. (4) and since the difference between the 
distribution of the jointly controlled lottery at each block t and ξ(ht) is at most ε

T1
, a standard coupling argument shows 

that ‖γ (σ ) − γ E (ξ)‖∞ ≤ 3ε; that is, the expected payoff under σ is 3ε-close to the expected payoff under ξ .
We argue that no player can profit more than 7ε by deviating to a pure strategy. Fix then a player i ∈ I and a pure 

strategy σ ′
i of that player. Using the strategy σ ′

i we will define a strategy ξ ′
i in the game with correlation device and show 

that γi(σ
′
i , σ−i) ≤ γ E

i (ξ ′
i , ξ−i) + 3ε. Since ξ is a sunspot ε-equilibrium, it will follow that

γi(σ
′
i ,σ−i) ≤ γ E

i (ξ ′
i , ξ−i) + 3ε ≤ γ E

i (ξ) + 4ε ≤ γi(σ ) + 7ε,

as claimed.
Our goal now is to construct a strategy ξ ′

i in the game with correlation device and prove that γi(σ
′
i , σ−i) ≤ γ E

i (ξ ′
i , ξ−i) +

3ε. As described above, the strategy profile (σ ′
i , σ−i) defines a partition of the stages N into blocks.4 For each block t , 

the play defines an element ît ∈ I ∪ {0} that indicates if some player has to quit with low probability, and if so, his 
identity, and an action profile ât ∈ A, which is composed of the actions played at the last stage of block t by each 
player. Let ρt be the conditional probability that under (σ ′

i , σ−i) player i quits during the first τ t stages of block t , given 
î1, · · · , ̂it−1, ̂a1, · · · , ̂at−1. For every action ai ∈ Ai , let μt(ai) be the conditional probability that under (σ ′

i , σ−i) we have 
ât

i = ai , given ̂i1, · · · , ̂it−1, ̂it, ̂a1, · · · , ̂at−1. Let ξ ′
i be the strategy of player i that plays as follows at stage t:

• The quitting action Q i is played with probability ρt .
• For each ai ∈ Ai , the action ai is played with probability (1 − ρt)μt(ai).

Since under ξ−i and σ−i the designated player quits with probability at most ε at every stage, it follows that ‖γ (σ ′
i , σ−i) −

γ E (ξ ′
i , ξ−i)‖ ≤ 3ε, as claimed.

4 In fact, the partition concerns only the stages up to the termination stage.
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It is left to take care of the situation that one (or both) of the mixed actions x1 or x2 is pure. If the mixed action x1
is pure, then, since |Ac

1| ≥ 2, we can find a mixed action x′
1 ∈ �(Ac

1) that is not pure and ε-close to x1 in the l∞-norm. 
A similar statement holds for x2. In Step (B.1) we then change xi by x′

i for each player i ∈ {1, 2} whose mixed action xi is 
pure. The only effect that this change has is that if a player quits, then his payoff changes by at most 2ε. Consequently the 
strategy profile described above is an 11ε-equilibrium. �

There are various ways in which one can strive to extend the equilibrium existence result.

• Our method shows that jointly controlled lotteries with biased coins enable one to transform sunspot ε-equilibria into 
undiscounted ε-equilibria, in various settings of stochastic games. Can one extend the existence result to other classes 
of stochastic games that include more than one nonabsorbing state? To the characterization of the set of equilibrium 
payoffs in discounted repeated games with imperfect monitoring?

• One property of the class of general quitting games is that some players have two actions that induce the same tran-
sitions, for every given action profile of the other players. Is it true that an undiscounted ε-equilibrium exists in any 
stochastic game in which for every state s, every player i and every action ai of player i, there is an action a′

i �= ai that 
yields the same transition as ai at state s (for every action profile a−i of the other players)?
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