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Equilibrium in two-player non-zero-sum Dynkin games
in continuous time†
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We prove that every two-player non-zero-sum Dynkin game in continuous time admits
an 1-equilibrium in randomized stopping times. We provide a condition that ensures
the existence of an 1-equilibrium in non-randomized stopping times.

Keywords: Dynkin games; stopping games; equilibrium; stochastic analysis;
continuous time
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1. Introduction

Dynkin games [8] serve as a model of optimal stopping. These games were applied in

various set-ups, including wars of attrition (see, e.g. [12,16,23]), pre-emption games

(see, e.g. [11, Section 4.5.3]), duels (see, e.g. [2,6,17,29] and the survey by Radzik and

Raghavan [26]) and pricing of options (see, e.g. [4,9,13,14,18]).

The existence of equilibria (in non-randomized strategies) in Dynkin games has been

extensively studied when the payoffs satisfy certain conditions (see, e.g. [3,5,22] for the

zero-sum case, and [24,25] for the non-zero-sum case).

Without conditions on the payoff processes, Dynkin games may fail to have equilibria,

even in the one-player case (see Examples 4). Two ways to obtain a positive result are to

look for 1-equilibria and to allow the players to use randomized stopping times. As Example

5 shows, 0-equilibria in randomized strategies may fail to exist in two-player zero-sum

Dynkin games, as well as 1-equilibria in non-randomized strategies. The existence of an 1-

equilibrium in randomized strategies in two-player zero-sum Dynkin games, in its general

setting, has been settled only recently (see [27] for discrete time games, and [20] for

continuous time games). The existence of an 1-equilibrium in randomized strategies in non-

zero-sum games has been proven for two-player games in discrete time [28] and for games

in continuous time under certain conditions (see, e.g. [21]).

In this paper we prove that every two-player non-zero-sum Dynkin game in continuous

time admits an 1-equilibrium in randomized strategies for every 1 . 0. We further show
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how such an equilibrium can be constructed, and we provide a condition under which

there exists an 1-equilibrium in non-randomized strategies. Rather than using the Snell

envelope, as, e.g. in Hamadène and Zhang [15], our technique is to use results from zero-

sum games.

We note that three-player Dynkin games in continuous time may fail to admit an

1-equilibrium in randomized strategies, even if the payoff processes are constant [21,

Section 5.2]. Thus, our result completes the mapping of Dynkin games in continuous time

that admit an 1-equilibrium in randomized stopping times.

This paper is organized as follows. The model and the main results appear in Section 2.

In Section 3, we review known results regarding zero-sum games that are then used in

Section 4 to prove the main theorem.

2. Model and results

Let (V, A, P) be a probability space, and let F ¼ (Ft)t$0 be a filtration in continuous time

that satisfies ‘the usual conditions’. That is, F is right continuous, and F0 contains

all P-null sets: for every B [ A with P(B) ¼ 0 and every A # B, one has A [ F0.

All stopping times in the sequel are w.r.t. the filtration F.

Denote F1 U _t$0Ft. Assume without loss of generality that F1 ¼ A. Hence, (V, A,

P) is a complete probability space.

Let (Xi, Yi, Zi)i¼1,2 be uniformly bounded F-adapted real-valued processes, and let

(ji)i¼1,2 be two bounded real-valued F1-measurable functions.2 In the sequel we will

assume that the processes (Xi, Yi, Zi)i¼1,2 are right continuous.

Definition 1. A two-player non-zero-sum Dynkin game over (V, A, P, F) with payoffs

(Xi, Yi, Zi, ji)i¼1,2 is the game with player set N ¼ {1,2}, the set of pure strategies of each

player is the set of stopping times, and the payoff function of each player i [ {1, 2} is

giðl1; l2Þ U E Xiðl1Þ1{l1,l2} þ Yiðl2Þ1{l2,l1} þ Ziðl1Þ1{l1¼l2,1} þ ji1{l1¼l2¼1}

� �
;

ð1Þ

where l1 and l2 are the stopping times chosen by the two players, respectively.

In other words, the process Xi represents the payoff to player i if player 1 stops before

player 2, the process Yi represents the payoff to player i if player 2 stops before player 1,

the process Zi represents the payoff to player i if the two players stop simultaneously and

the function ji represents the payoff to player i if no player ever stops.

The game is zero-sum if X1 þ X2 ¼ Y1 þ Y2 ¼ Z1 þ Z2 ¼ j1 þ j2 ¼ 0.

In non-cooperative game theory, a randomized strategy is a probability distribution

over pure strategies, with the interpretation that at the outset of the game the player

randomly chooses a pure strategy according to the probability distribution given by the

randomized strategy, and uses it along the game. In the set-up of Dynkin games in

continuous time, a randomized strategy is a randomized stopping time, which is defined as

follows.

Definition 2. A randomized stopping time for player i is a measurable function

wi:[0, 1] £ V ! [0, þ1] such that the function wi(r,�):V ! [0, þ1] is a stopping time

for every r [ [0, 1] (see [1]).

R. Laraki and E. Solan2
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Here, the interval [0, 1] is endowed with the Borel s-field. For strategically equivalent

definitions of randomized stopping times, see Touzi and Vieille [30]. The interpretation of

Definition 2 is that player i chooses r in [0, 1] according to the uniform distribution, and

then stops at the stopping time wi(r,�). Throughout the paper, the symbols l, m and t stand

for stopping times, and w and c stand for randomized stopping times.

The expected payoff for player i that corresponds to a pair of randomized stopping

times (w1,w2) is

giðw1;w2Þ U

ð
½0;1�2

giðw1ðr;�Þ;w2ðs;�ÞÞdr ds; i ¼ 1; 2:

In the sequel we will also consider the expected payoff at a given time t. We therefore

define for every t $ 0 and every pair of randomized stopping times w1, w2 $ t:

giðw1;w2jF tÞUE Xiðw1Þ1{w1,w2}þYiðw2Þ1{w2,w1}þZiðw1Þ1{w1¼w2,1}þji1{w1¼w2¼1}jF t

� �
:

ð2Þ

A pair of randomized stopping times ðw*
1;w

*
2Þ is an 1-equilibrium if no player can profit

more than 1 by deviating from w*
i .

Definition 3. Let 1 $ 0. A pair of randomized stopping times ðw*
1;w

*
2Þ is an 1-equilibrium

if for every two randomized stopping times w1,w2 the following inequalities hold:

g1 w1;w*
2

� �
# g1 w*

1;w
*
2

� �
þ 1; ð3Þ

and

g2 w*
1;w2

� �
# g2 w*

1;w
*
2

� �
þ 1: ð4Þ

Because of the linearity of the payoff function, Equations (3) and (4) hold for every

randomized stopping times w1 and w2, respectively, as soon as they hold for non-

randomized stopping times.

We now provide two examples that show that 0-equilibria may fail to exist.

Example 4. We here provide a one-player Dynkin game with trivial filtration, which fails to

have a zeor-equilibrium. A one-player Dynkin game is given by a process X1 and a bounded

real-valued function j1. The payoff function is given by g1ðl1Þ ¼ E½X1ðl1Þ1{l1,1}þ

j11{l1¼1}�. For 1 $ 0, an 1-equilibrium (in non-randomized stopping times) is a stopping

time l*
1 that satisfies g1ðl

*
1Þ $ supl1

g1ðl1Þ2 1. Consider the one-player game with trivial

filtration, where X1 is a strictly increasing, non-negative and bounded function, and j1 ¼ 0.

Since X1 is strictly increasing and positive there are no 0-equilibria but there are 1-equilibria

for every 1 . 0: for every t such that X1ðtÞ $ limt!1X1ðtÞ2 1, the stopping times l1 ¼ t

(that stops at time t with probability 1) is an 1-equilibrium.

Example 5. We now provide an example of a two-player zero-sum game with trivial

filtration that has neither an 1-equilibrium in non-randomized stopping times nor a

0-equilibrium in randomized stopping times. Consider the two-player zero-sum games

Stochastics: An International Journal of Probability and Stochastic Processes 3
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were X1(t) ¼ Y1(t) ¼ 1 and Z1(t) ¼ 0 for every t $ 0, and j1 ¼ 0. It follows that X2(t) ¼

Y2(t) ¼ 21 and Z2(t) ¼ 0 for every t $ 0, and j2 ¼ 0.

Suppose by contradiction that the game has an 1-equilibrium ðl*
1; l

*
2Þ in non-

randomized stopping times. Since g2 ¼ 2g1, the 1-equilibrium condition (3) implies

that

g2 l*
1; l2

� �
$ g2 l*

1; l
*
2

� �
2 1;

for every stopping time l2 of player 2. Since g2ðl
*
1; l

*
1Þ ¼ 0 we deduce that

g2ðl
*
1; l

*
2Þ # 1. Similarly, the 1-equilibrium condition (4) implies that

g1ðl1; l
*
2Þ # g1ðl

*
1; l

*
2Þ þ 1;

for every stopping time l1 of player 1. For every stopping time l*
2 one has

supl1
g1ðl1; l

*
2Þ ¼ 1, and therefore g1ðl

*
1; l

*
2Þ $ 1 2 1. Provided that 1 , 1/2, there is

no pair of stopping times ðl*
1; l

*
2Þ for which g2ðl

*
1; l

*
2Þ # 1 and g1ðl

*
1; l

*
2Þ $ 1 2 1, so

that an 1-equilibrium in non-randomized stopping times does not exist.

We now argue that a 0-equilibrium in randomized stopping times does not exist as

well. Indeed, suppose by contradiction that ðw*
1;w

*
2Þ is a 0-equilibrium in randomized

stopping times. One has supw1
g1ðw1;w

*
2Þ ¼ 1, which implies that g1ðw

*
1;w

*
2Þ ¼ 1, and

therefore g2ðw
*
1;w

*
2Þ ¼ 21. However, for every randomized stopping time w1 there is a

randomized stopping time w2 such that g2ðw
*
1;w2Þ . 21, implying that ðw*

1;w
*
2Þ cannot be

a 0-equilibrium.

Our goal in this paper is to prove the existence of an 1-equilibrium in randomized

strategies in two-player non-zero-sum games, and to construct such an 1-equilibrium.

Suppose that the payoff processes are right continuous and that a player wants to stop at

the stopping time l, but he would like to mask the exact time at which he stops (e.g. so that

the other player cannot stop at the very same moment as he does). To this end, he can stop

at a randomly chosen time in a small interval [l, l þ d ], and since the payoff processes are

right continuous, he will not lose (or gain) much relative to stopping at time l. This leads

us to the following class of simple randomized stopping times that will be extensively used

in the sequel.

Definition 6. A randomized stopping time w is simple if there exist a stopping time l and

a Fl-measurable non-negative function d $ 0, such that for every r [ [0, 1] one has

w(r,�) ¼ l þ rd. The stopping time l is called the basis of w, and the function d is called

the delay of w.

In Definition 6, w(r,�) $ l and w(r,�) is Fl-measurable. By Dellacherie and Meyer [7,

§IV-56] w(r,�) is a stopping time for every r [ [0, 1]. Consequently, w is indeed a

randomized stopping time.

Definition 6 does not require that l is finite:3 on the set {l ¼ 1} we have w(r,�) ¼ 1

for every r [ [0, 1]. On the set {d ¼ 0}, the randomized stopping time w that is defined in

Definition 6 stops at time l with probability 1. On the set {d . 0} the stopping time is

‘nonatomic’ yet finite, and in particular for every stopping time m we have P({d . 0} >
{w ¼ m}) ¼ 0.

We now state our main results.

R. Laraki and E. Solan4
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Theorem 7. Every two-player non-zero-sum Dynkin game with right continuous and

uniformly bounded payoff processes admits an 1-equilibrium in simple randomized

stopping times for every 1 . 0.

Moreover, the delay of the simple randomized stopping time that constitutes the

1-equilibrium can be arbitrarily small.

Theorem 7 was proved by Laraki and Solan [20] for two-player zero-sum games.

Our proof heavily relies on the results of Laraki and Solan [20], and we use 1-equilibria in

zero-sum games to construct an 1-equilibrium in the non-zero-sum game.

Under additional conditions on the payoff processes, the 1-equilibrium is given in non-

randomized stopping times.

Theorem 8. Under the assumptions of Theorem 7, if Z1ðtÞ [ co{X1ðtÞ; Y1ðtÞ} and Z2ðtÞ [
co{X2ðtÞ; Y2ðtÞ} for every t $ 0, then the game admits an 1-equilibrium in non-

randomized stopping times for every 1 . 0.

Hamadène and Zhang [15] proved the existence of a 0-equilibrium in non-randomized

stopping times under stronger conditions than those in Theorem 8, using the notion of

Snell envelope of processes (see, e.g. [10] for more detail).

The rest of the paper is devoted to the proofs of Theorems 7 and 8. We will assume

w.l.o.g. that the payoff processes are bounded between 0 and 1.

3. The zero-sum case

In this section we summarize several results on zero-sum games, taken from Laraki

and Solan [20], that will be used in the sequel, and prove some new results on zero-sum

games.

For every t $ 0 denote

v1ðtÞ U ess 2 supw1$tess 2 infl2$tE½X1ðw1Þ1{w1,l2} þ Y1ðl2Þ1{l2,w1}

þ Z1ðw1Þ1{w1¼l2,1} þ j11{w1¼l2¼1}jF t�; ð5Þ

where the supremum is over all randomized stopping times w1 $ t, and the infimum is

over all (non-randomized) stopping times l2 $ t. This is the highest payoff that player 1

can guarantee in the zero-sum Dynkin game G1(t), where the payoffs are those of player 1,

player 1 is the maximizer, player 2 is the minimizer and the game starts at time t. Similarly,

the highest payoff that player 2 can guarantee in the zero-sum Dynkin game G2(t), where

the payoffs are those of player 2, player 2 is the maximizer, player 1 is the minimizer

and the game starts at time t is given by

v2ðtÞ U ess 2 supw2$tess 2 infl1$tE½X2ðl1Þ1{l1,w2} þ Y2ðw2Þ1{w2,l1}

þ Z2ðl1Þ1{l1¼w2,1} þ j21{l1¼w2¼1}jF t�: ð6Þ

The next lemma, which is proved in Laraki and Solan [20], states that v1(t)

(respectively, v2(t)) is in fact the value of the zero-sum games G1(t) (respectively, G2(t)).

This lemma is proved in Laraki and Solan [20] when Ft is the trivial s-algebra. Its proof

can be adapted to a general Ft (see the discussion in Appendix A).

Stochastics: An International Journal of Probability and Stochastic Processes 5
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Lemma 9.

v1ðtÞ ¼ ess 2 infc2$tess 2 supl1$tE½X1ðl1Þ1{l1,c2} þ Y1ðc2Þ1{c2,l1}

þ Z1ðl1Þ1{l1¼c2,1} þ j11{l1¼c2¼1}jF t� ð7Þ

and

v2ðtÞ ¼ ess 2 infc1$tess 2 supl2$tE½X2ðc1Þ1{c1,l2} þ Y2ðl2Þ1{l2,c1}

þ Z2ðc1Þ1{c1¼l2,1} þ j21{c1¼l2¼1}jF t�; ð8Þ

where the infimum in (7) is over all randomized stopping times c2 $ t for player 2, the

supremum in (7) is over all (non-randomized) stopping times l1 $ t for player 1, the

infimum in (8) is over all randomized stopping times c1 $ t for player 1 and the supremum

in (8) is over all (non-randomized) stopping times l2 $ t for player 2.

A stopping time w1 (respectively, c1) that achieves the supremum in (5) (respectively,

infimum in (8)) up to 1 is called an 1-optimal stopping time for player 1 in G1(t)

(respectively, G2(t)). Similarly, a stopping time w2 (respectively, c2) that achieves the

supremum in (6) (respectively, infimum in (7)) up to 1 is called an 1-optimal stopping time

for player 2 in G2(t) (respectively, G1(t)).

The proof of Laraki and Solan [20, Proposition 7] can be adapted to show that the value

process is right continuous (see Appendix A).

Lemma 10. The process (vi(t))t$0 is right continuous, for each i [ {1, 2}.

The following two lemmas provide crude bounds on the value process.

Lemma 11. For every t $ 0 and each i ¼ 1, 2 one has

min{XiðtÞ; YiðtÞ} # viðtÞ # max{XiðtÞ; YiðtÞ} on V:

Proof. We start by proving the left-hand side inequality for i ¼ 2. Let 1 . 0 be arbitrary,

and let d . 0 be sufficiently small such that

P sup
r[½0;d�

jX2ðtÞ2 X2ðt þ rÞj . 1

 !
# 1; ð9Þ

P sup
r[½0;d�

jY2ðtÞ2 Y2ðt þ rÞj . 1

 !
# 1: ð10Þ

Such d exists because the processes X2 and Y2 are right continuous.

Let w2 be the simple randomized stopping time w2(r,�) ¼ t þ rd, and let l1 $ t be any

non-randomized stopping time for player 1. The definition of w2 implies that the

probability that l1 ¼ w2 is 0: P(l1 ¼ w2) ¼ 0. Moreover, w2 , 1. Therefore

g2ðl1;w2jF tÞ ¼ E½X2ðl1Þ1{l1,w2} þ Y2ðw2Þ1{w2,l1}jF t�:

R. Laraki and E. Solan6
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By (9) and (10), and since payoffs are bounded by 1, this implies that

Pðg2ðl1;w2jF tÞ , min{X2ðtÞ; Y2ðtÞ} 2 1Þ # 21:

Because l1 is arbitrary, Equation (6) implies that

Pðv2ðtÞ , min{X2ðtÞ; Y2ðtÞ} 2 1Þ # 21:

The left-hand side inequality for i ¼ 2 follows because 1 is arbitrary.

The proof of the right-hand side inequality for i ¼ 2 follows the same arguments by

using the simple randomized stopping time w1(r,�) ¼ t þ rd. Indeed, for every stopping

time l2 for player 2 we then have

g2ðw1; l2jF tÞ ¼ E½X2ðw1Þ1{w1,l2} þ Y2ðl2Þ1{w1.l2}jF t�:

The same argument as above, using (8), delivers the desired inequality. The proof for i ¼ 1

is analogous. A

Lemma 12. For every t $ 0, one has

v1ðtÞ # max{Y1ðtÞ; Z1ðtÞ} on V;

v2ðtÞ # max {X2ðtÞ; Z2ðtÞ} on V:

Proof. We prove the Lemma for i ¼ 1. Let c2 ¼ t: player 2 stops at time t. By (7),

v1ðtÞ # ess 2 supl1$tg1ðl1;c2jF tÞ:

Because for every (non-randomized) stopping time l1 for player 1, g1(l1,c2jFt) is either

Y1(t) (if l1 . t) or Z1(t) (if l1 ¼ t), the result follows. A

Following Lepeltier and Maingueneau [22], for every h . 0 let m
h
1 and m

h
2 be the

stopping times defined as follows:

m
h
1 U inf{s $ 0 : X1ðsÞ $ v1ðsÞ2 h} ð11Þ

and

m
h
2 U inf{s $ 0 : Y2ðsÞ $ v2ðsÞ2 h}: ð12Þ

As the following example shows, the stopping timesm
h
1 andm

h
2 may be infinite. Consider

the following Dynkin game, where the payoffs are constants: X1 ¼ 0, Y1 ¼ Z1 ¼ 2 and

j1 ¼ 1. Then v1(t) ¼ 1 for every t, and m
h
1 ¼ 1, provided h [ (0, 1).

Observe that m
h
2 # m

h0

2 whenever h . h0. Moreover, because the processes X1, Y2, v1

and v2 are right continuous, we have

X1 m
h
1

� �
$ v1 m

h
1

� �
2 h; ð13Þ

and

Y2 m
h
2

� �
$ v2 m

h
2

� �
2 h: ð14Þ

Stochastics: An International Journal of Probability and Stochastic Processes 7
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For every t , m
h
1 , by the definition of m

h
1 and Lemma 11, we have

X1ðtÞ , v1ðtÞ2 h , v1ðtÞ # max{X1ðtÞ; Y1ðtÞ};

and therefore

Y1ðtÞ . X1ðtÞ; ; t , m
h
1 : ð15Þ

The analogous inequality for player 2 holds as well.

Lemma 13. Let 1,h . 0, let t be a stopping time, and let A [ Ft satisfy

PðAn{m
h
1 ¼ 1}Þ , 1. Then

E½v1ðtÞ1A� # E½j11A>{m
h

1
¼1}� þ 31þ

61

h
: ð16Þ

Proof. Let c2 ¼ 1: player 2 never stops. By (7),

v1ðtÞ # ess 2 supl1$tg1ðl1;c2jF tÞ: ð17Þ

Let l1 $ t be a stopping time for player 1 that achieves the supremum in (17) up to 1. Let

l01 be the following stopping time:

. On A > {l1 , 1}, l01 is an h/2-optimal stopping time for player 1 in G1(l1).

. On A > {l1 ¼ 1}, l01 ¼ 1.

It follows that

E½v1ðtÞ1A�# E½g1ðl1;c2jF tÞ1A�þ 1

¼ E½X1ðl1Þ1A>{l1,1} þ j11A>{l1¼1}�þ 1

, E½ðv1ðl1Þ2hÞ1A>{l1,m
h

1
¼1} þX1ðl1Þ1A>{l1,1}>{m

h

1
,1} þ j11A>{l1¼1}�þ 1

# E½ðv1ðl1Þ2hÞ1A>{l1,1} þ j11A>{l1¼1}�þ 31

# E½g1ðl
0
1;c2jF tÞ1A�2

h

2
E½1A>{l1,1}�þ 31

# E½g1ðl1;c2jF tÞ1A�2
h

2
E½1A>{l1,1}�þ 41;

where the second inequality holds by the definition of m
h
1 , the third inequality holds since

PðAn{m
h
1 ¼ 1}Þ , 1 and since payoffs are bounded by 1, and the last inequality holds

because l1 is 1-optimal.

This sequence of inequalities implies that

PðA > {l1 , 1}Þ #
61

h
;

and therefore

E½v1ðtÞ1A� # E½j11A>{m
h

1
¼1}� þ 31þ

61

h
;

as desired. A

By Lepeltier and Maingueneau [22], for each i ¼ 1, 2 the process vi is a submartingale

up to time m
h
i .

R. Laraki and E. Solan8
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Lemma 14. For every h . 0 the process ðv1ðtÞÞ
m
h

1

t¼0 is a submartingale: for every pair of

finite stopping times l , l0 # m
h
1 , one has v1ðlÞ # E½v1ðl

0ÞjF l� on V.

Lemma 14 implies that before time suph.0m
h
1 , player 1 is better off waiting and not

stopping. An analogue statement holds for player 2.

Lemmas 13 and 14 deliver the following result.

Lemma 15. Let h . 0. For every stopping time l1 that satisfies l1 # m
h
1 , one has

v1ðl1Þ # E v1 m
h
1

� �
1{m

h

1
,1} þ j11{m

h

1
¼1}jF l1

h i
:

Proof. Let 1 . 0 be arbitrary. By Lemma 14, for every t $ 0 one has

v1ðl1Þ # E½v1ðmin{m
h
1 ; t}Þ�:

Let t0 be sufficiently large such that Pðt0 # m
h
1 , 1Þ , 1. By Lemma 13 with t ¼ t0 and

A ¼ {t0 # m
h
1 },

E½v1ðt0Þ1{t0#m
h

1
}� # E j11{t0#m

h

1
¼1}

h i
þ 31þ

61

h
:

Therefore,

v1ðl1Þ # E½v1ðmin{m
h
1 ; t0}Þ�

¼ E v1ðm
h
1 Þ1{m

h

1
,t0} þ v1ðt0Þ1{t0#m

h

1
}

h i
# E v1ðm

h
1 Þ1{m

h

1
,1} þ j11{m

h

1
¼1}

h i
þ 51þ

61

h
:

The result follows since 1 is arbitrary. A

The proof of Laraki and Solan [20, Section 3.3] delivers the following result, which

states that each player i has a simple randomized 1-optimal stopping time that is based on

m
h
i , provided h is sufficiently small.

Lemma 16. For every i ¼ 1, 2, every 1,h . 0 and every positive Fm
h

i
-measurable

function di, there exists a simple randomized stopping time w
h
i with basis m

h
i and delay

at most di that satisfies

giðw
h
i ; l32ijFm

h

i
Þ $ viðm

h
i Þ2 12 h on V; ð18Þ

for every stopping time l32i $ m
h
i .

By Equation (15), before time m
h
1 one has X1 , Y1. When X1(t) # Z1(t) # Y1(t) for

every t, a non-randomized 1-optimal stopping time exists [22]. Laraki and Solan [19,

Section 4.1] use this observation to conclude the following.

Lemma 17. If Zi(t) [ co{Xi(t), Yi(t)} for every t $ 0 and each i ¼ 1, 2, then the simple

randomized stopping time w
h
i in Lemma 16 can be taken to be non-randomized (i.e. the

delay of both players is 0).

Stochastics: An International Journal of Probability and Stochastic Processes 9

D
ow

nl
oa

de
d 

by
 [

T
el

 A
vi

v 
U

ni
ve

rs
ity

] 
at

 0
0:

45
 0

9 
O

ct
ob

er
 2

01
2 



4. The non-zero-sum case

In this section we prove Theorems 7 and 8. Fix 1 . 0 once and for all.

Let d0 (respectively, d1 and d2) be a positive Ft-measurable function that satisfies the

following inequalities for each i [ {1, 2} and for the stopping time t ¼ 0 (respectively,

t ¼ m
h
1 and t ¼ m

h
2 ). Such d0 (respectively, d1 and d2) exists because the processes

(Xi, Yi, vi)i¼1,2 are right continuous.

P sup
r[½0;d0�

jXiðtÞ2 Xiðtþ rÞj . 1

 !
# 1; ð19Þ

P sup
r[½0;d0�

jYiðtÞ2 Yiðtþ rÞj . 1

 !
# 1; ð20Þ

P sup
r[½0;d0�

jviðtÞ2 viðtþ rÞj . 1

 !
# 1: ð21Þ

We divide the set V into six F0-measurable subsets. For each of these subsets we then

define a pair of randomized stopping times ðw*
1;w

*
2Þ, and we prove that, when restricted to

each set, this pair is a k1-equilibrium, for some 0 # k # 13. It will then follow that

ðw*
1;w

*
2Þ, when viewed as a randomized stopping time on V, is a 781-equilibrium.

The partition is similar to that in Laraki et al. [21], and only the treatment on the last subset

is different.

Denote by ci(t, 1) an 1-optimal stopping time of player i in the game G32i(t); thus, the

randomized stopping time ci(t, 1) is a punishment strategy against player 3 2 i, as it

ensures that his payoff will not exceed v32i(t) þ 1.

Part 1: The set A1 U {X1ð0Þ $ v1ð0Þ} > {X2ð0Þ $ Z2ð0Þ}.

We prove that when restricted to the set A1, the pair ðw*
1;w

*
2Þ that is defined as follows is

a 41-equilibrium:

. w*
1 ¼ 0: player 1 stops at time 0.

. w*
2 ¼ c2ðd0; 1Þ: If player 1 does not stop before time d0, player 2 punishes him in the

game G1(d0) that starts at time d0.

If no player deviates, the game is stopped by player 1, and the payoff is

gðw*
1;w

*
2jF 0Þ ¼ ðX1ð0Þ;X2ð0ÞÞ on A1:

We argue that player 2 cannot profit by deviating. Indeed, let l2 be any non-randomized

stopping time of player 2. Then on A1

g2ðw
*
1; l2jF 0Þ ¼ Z2ð0Þ1A1>{l2¼0} þ X2ð0Þ1A1>{l2.0} # X2ð0Þ ¼ g2ðw

*
1;w

*
2jF 0Þ;

and the claim follows.

We now argue that on A1, player 1 cannot profit more than 41 by deviating from w*
1.

Let l1 be any non-randomized stopping time of player 1. Then by the definition of w*
2,

R. Laraki and E. Solan10
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on A1

g1ðl1;w
*
2jF 0Þ # E½X1ðl1Þ1{l1,d0} þ ðv1ðd0Þ þ 1Þ1{d0#l1}jF 0�:

By (19), (21) and since X1(0) $ v1(0) on A1, it follows that on A1

Pðg1ðl1;w
*
2jF 0Þ . E½X1ð0Þ1{l1,d0} þ ðX1ð0Þ þ 1Þ1{d0#l1}jF 0� þ 1Þ # 21:

Since g1ðw
*
1;w

*
2jF 0Þ ¼ X1ð0Þ on A1, it follows that

PðA1 > {g1ðl1;w*
2jF 0Þ . g1ðw

*
1;w

*
2jF 0Þ þ 21}Þ # 21; ð22Þ

and the desired results follow.

Part 2: The set A2 U {Z2ð0Þ . X2ð0Þ} > {Z1ð0Þ $ Y1ð0Þ}.

We prove that when restricted to the set A2, the pair ðw*
1;w

*
2Þ that is defined as follows is

a 0-equilibrium:

. w*
1 ¼ 0: player 1 stops at time 0.

. w*
2 ¼ 0: player 2 stops at time 0.

If no player deviates, both players stop at time 0, and the payoff is

gðw*
1;w

*
2jF 0Þ ¼ ðZ1ð0Þ; Z2ð0ÞÞ on A2:

To see that player 1 cannot profit by deviating, fix an arbitrary non-randomized stopping

time l1 for player 1. On A2 one has

g1ðl1;w
*
2jF 0Þ ¼ Z1ð0Þ1{l1¼0} þ Y1ð0Þ1{l1.0} # Z1ð0Þ ¼ g1ðw

*
1;w

*
2jF 0Þ; ð23Þ

as desired. A symmetric argument shows that player 2 cannot profit by deviating either.

Part 3: The set A3 U {Y1ð0Þ . Z1ð0Þ} > {Y2ð0Þ $ v2ð0Þ}.

The case of the set A3 is analogous to Part 1: when restricted to A3, the pair of

randomized stopping times in which player 2 stops at time 0, and player 1 plays an

1-optimal stopping time c1(d0, 1) in the game G2(d0), is a 41-equilibrium.

Part 4: The set A4 U {X1ð0Þ $ v1ð0Þ} > {X2ð0Þ . Y2ð0Þ}.

We prove that when restricted to the set A4, the pair ðw*
1;w

*
2Þ that is defined as follows is

a 61-equilibrium:

. w*
1ðr;�Þ ¼ rd0: player 1 stops at a random time between time 0 and time d0.

. w*
2 ¼ c2ðd0; 1Þ: If player 1 does not stop before time d0, player 2 punishes him in

the game G1(d0) that starts at time d0.

If no player deviates, the game is stopped by player 1 before time d0, and by (19) the

payoff is within 21 of (X1(0), X2(0)):

PðA4 > {jgiðw
*
1;w

*
2Þ2 Xið0Þj . 1}Þ # 1: ð24Þ

Stochastics: An International Journal of Probability and Stochastic Processes 11
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The same argument4 as in Part 1 shows that

PðA4 > {g1ðl1;w
*
2jF 0Þ . g1ðw

*
1;w

*
2jF 0Þ þ 31}Þ # 31: ð25Þ

It follows that player 1 cannot profit more than 61 by deviating from w*
1.

We now argue that player 2 cannot profit more than 51 by deviating from w*
2. Fix a

non-randomized stopping time l2 for player 2. On A4 we have w*
1 # d0, and PðA4 > {w*

1 ¼

l2}Þ ¼ 0, and therefore

g2ðw
*
1; l2Þ ¼ E½X2ðw

*
1Þ1{w*

1
,l2} þ Y2ðl2Þ1{l2,w*

1
}jF 0� on A4:

By (19) and (20),

Pðg2ðw
*
1; l2Þ . E½ðX2ð0Þ þ 1Þ1{w*

1
,l2} þ ðY2ð0Þ þ 1Þ1{l2,w*

1
}jF 0�Þ # 21:

Because X2(0) . Y2(0) on A4 we have

Pðg2ðw
*
1; l2Þ . X2ð0Þ þ 1Þ # 21:

Together with (24) we deduce that

Pðg2ðw
*
1; l2Þ . g2ðw

*
1;w

*
2Þ þ 21Þ # 31;

and the claim follows.

Part 5: The set A5 U {X1ð0Þ $ v1ð0Þ}nðA1 < A2 < A3 < A4Þ.

We claim that P(A5) ¼ 0. Since X1(0) $ v1(0) on A5, and since A5 > A1 ¼ Y, it follows

that X2(0) , Z2(0) on A5. Since A5 > A2 ¼ Y, it follows that Z1(0) , Y1(0) on A5. Since

A5 > A3 ¼ Y, it follows that Y2(0) , v2(0) on A5. Since A5 > A4 ¼ Y, it follows that

Y2(0) $ X2(0) on A5. Lemma 11 then implies that

Y2ð0Þ , v2ð0Þ # max{X2ð0Þ; Y2ð0Þ} ¼ Y2ð0Þ on A5;

which in turn implies that P(A5) ¼ 0, as claimed.

The union A1 < A2 < A3 < A4 < A5 includes the set {X1(0) $ v1(0)}. Thus, when

restricted to this set, the game has a 71-equilibrium. By symmetric arguments, a 61-

equilibrium exists on the set {Y2(0) $ v2(0)}. We now construct a 131-equilibrium on the

remaining set, {X1(0) , v1(0)} > {Y2(0) , v2(0)}.

Part 6: The set A6 U {X1ð0Þ , v1ð0Þ} > {Y2ð0Þ , v2ð0Þ}.

Fix h . 0, and for each i [ {1, 2} let w
h
i be a simple randomized stopping time with

basis m
h
i and delay at most di that satisfies Equation (18) for every stopping time l32i $

m
h
i (see Lemma 16). Let c1ðm

h
2 þ d2; 1Þ (respectively, c2ðm

h
1 þ d1; 1Þ) be a simple

randomized 1-optimal stopping time for player 1 in the game G2ðm
h
2 þ d2Þ (respectively, in

the game G1ðm
h
1 þ d1Þ); that is a stopping time that achieves the infimum in (8) up to 1, for

t ¼ m
h
2 þ d2 (the infimum in (7) up to 1, respectively for t ¼ m

h
1 þ d1).

Set mh ¼ min{m
h
1 ;m

h
2 }. We further divide A6 into six Fmh -measurable subsets; the

definition of ðw*
1;w

*
2Þ is different in each subset, and is given in the second and third

columns of Table 1. Under ðw*
1;w

*
2Þ the game will be stopped at time mh or during a short

interval after time mh, if mh , 1, and will not be stopped if mh ¼ 1.
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We argue that when restricted to A6, the pair ðw*
1;w

*
2Þ is a 131-equilibrium. Note that

the roles of the two players in the definition of ðw*
1;w

*
2Þ are symmetric: w*

1 ¼ w*
2 on A63 and

A66, and the role of player 1 (respectively, player 2) in A61 and A64 is similar to the role of

player 2 (respectively, player 1) in A62 and A65. To prove that ðw*
1;w

*
2Þ is a 131-equilibrium,

it is therefore sufficient to prove that the probability that player 1 can profit more than 31

by deviating from w*
1 is at most 101.

We start by bounding the payoff g1ðw
*
1;w

*
2jFmh Þ (the bound that we derive appears on

the right-most column in Table 1), and by showing that

g1ðw
*
1;w

*
2jFmhÞ $ v1ðm

hÞ2 312 h on A6nA63: ð26Þ

We prove this in turn on each of the sets A61, . . . , A66:

. On A61 we have mh ¼ m
h
1, and the game is stopped by player 1 between times mh and

mh þ d1, so that by (19) we have

PðA61 > {g1ðw
*
1;w

*
2jFmh Þ , X1ðm

hÞ2 1}Þ # 1: ð27Þ

By (13) we have X1(mh) $ v1(mh) 2 h, and therefore (26) holds on A61.

. On A62 we have mh ¼ m
h
2 , and the game is stopped by player 2 between times mh and

mh þ d2, so that by (20) we have

PðA62 > {g1ðw
*
1;w

*
2jFmh Þ , Y1ðm

hÞ2 1}Þ # 1: ð28Þ

By (15) we have X1(mh) , Y1(mh) on A62, so that by Lemma 11 we have

Y1(mh) $ v1(mh). It follows that (26) holds on A62.

. On A63 no player ever stops, and therefore g1ðw
*
1;w

*
2jFmh Þ ¼ j1.

. On A64 player 2 stops at time mh, and therefore g1ðw
*
1;w

*
2jFmh Þ ¼ Y1ðm

hÞ. By

Lemma 12, on A64 we have

v1ðm
hÞ # max{Y1ðm

hÞ; Z1ðm
hÞ} ¼ Y1ðm

hÞ;

and therefore (26) holds on A64.

. On A65 player 1 stops at time mh, and therefore g1ðw
*
1;w

*
2jFmhÞ ¼ X1ðm

hÞ. By (13)

we have X1(mh) $ v1(mh) 2 h, and therefore (26) holds on A65.

Table 1. The randomized stopping times (w*
1;w

*
2) on A6 with the payoff to player 1.

Subset w*
1 w*

2 g1ðw
*
1;w

*
2Þ

A61 U A6 > {m
h
1 , m

h
2} w

h
1 c2(mh þ d1) $X1(mh) 2 21

A62 U A6 > {m
h
2 , m

h
1} c1(mh þ d2) w

h
2 $Y1(mh) 2 21

A63 U A6 > {m
h
1 ¼ m

h
2 ¼ 1} 1 1 ¼ j1

A64 U A6 > {m
h
1 ¼ m

h
2 , 1}

>{Z1ðm
h
1Þ , Y1ðm

h
1Þ}

c1ðm
h
1 þ d2; 1Þ mh ¼ Y1(mh)

A65 U A6 > {m
h
1 ¼ m

h
2 , 1}

>{Z2ðm
h
1Þ , X2ðm

h
1Þ}

mh c2(mh þ d1,1) ¼ X1(mh)

A66 U A6 > {m
h
1 ¼ m

h
2 , 1}

>{Y1ðm
h
1Þ # Z1ðm

h
1Þ}

>{X2ðm
hÞ # Z2ðm

hÞ}

mh mh ¼ Z1(mh)
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. On A66 both players stop at time mh, and therefore g1ðw
*
1;w

*
2jFmhÞ ¼ Z1ðm

hÞ. By

Lemma 12 on this set we have

v1ðm
hÞ # max{Y1ðm

hÞ; Z1ðm
hÞ} ¼ Z1ðm

hÞ;

and therefore (26) holds on A66.

Fix a stopping time l1 for player 1. To complete the proof of Theorem 7 we

prove that

PðA6 > {g1ðl1;w*
2Þ . g1ðw

*
1;w

*
2Þ þ 31}Þ # 101:

. On the set A6 > {l1 , mh} we have by the definition of m
h
1 , since mh # m

h
1 ,

by Lemma 15, and by (26),

g1ðl1;w
*
2jF l1

Þ ¼ X1ðl1Þ

, v1ðl1Þ2 h

# E½v1ðm
hÞ1A6>{l1,mh,1} þ j11A6>{l1,mh¼1}jF l1

�2 h

# g1ðw
*
1;w

*
2jF l1

Þ þ 31;

ð29Þ

where the last inequality holds by (26) and because the payoff of player 1 on A63

is j1.

. On the set A61 > {mh # l1} we have by the definition of w*
2

g1ðl1;w
*
2jFmh Þ ¼ E½X1ðl1Þ1{l1#mhþd1} þ ðv1ðm

h þ d1Þ þ 1Þ1{mhþd1,l1}jFmh �:

By (19), (21) and (13) we have

Pðg1ðl1;w
*
2jFmh Þ . X1ðm

hÞ þ 21Þ # 21:

By (27) we deduce that

Pðg1ðl1;w
*
2jFmhÞ . g1ðw

*
1;w

*
2jFmh Þ þ 31Þ # 31: ð30Þ

. On the set A62 > {mh # l1} we have by the definition of w*
2

g1ðl1;w
*
2jFmh Þ ¼ E X1ðl1Þ1{mh#l1,w*

2
} þ Y1ðw

*
2Þ1{w*

2
#l1}jFmh

h i
:

By (19), (20), since m
h
2 , m

h
1 on A62, and by (15),

P g1ðl1;w
*
2jFmhÞ.E ðY1ðm

hÞþ1Þ1{mh#l1,w*
2
}þðY1ðm

hÞþ1Þ1{w*
2
#l1}jFmh

h i� �
#21:

By (28) we deduce that

PðA62 > {g1ðl1;w
*
2jFmh Þ . g1ðw

*
1;w

*
2jFmh Þ þ 21}Þ # 31: ð31Þ

. On the set A63 > {m
h
2 # l1} we have mh ¼ l1 ¼ 1, so that

g1ðw
*
1;w

*
2jFmh Þ ¼ j1 ¼ g1ðl1;w

*
2jFmhÞ on A63 > {m

h
2 # l1}: ð32Þ
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. On the set A64 > {mh # l1} we have

g1ðl1;w
*
2jFmh Þ ¼ E Z1ðm

hÞ1{l1¼mh} þ Y1ðm
hÞ1{mh,l1}

� �
# Y1ðm

hÞ ¼ g1ðw
*
1;w

*
2jFmh Þ:

ð33Þ

. On the set A65 > {mh # l1} we have by the definition of w*
2

g1ðl1;w
*
2jFmhÞ ¼ E X1ðl1Þ1{mh#l1,mhþd1} þ ðv1ðm

h þ d1Þ þ 1Þ1{mhþd1#l1}jFmh

� �
:

By (19), (21) and (13) we have

PðA65 > {mh # l1} > {g1ðl1;w
*
2jFmh Þ . X1ðm

hÞ þ 21}Þ # 21:

Because g1ðw
*
1;w

*
2jFmh Þ ¼ X1ðm

hÞ on A65, we obtain

PðA65 > {mh # l1} > {g1ðl1;w
*
2jFmh Þ . g1ðw

*
1;w

*
2jFmhÞ þ 21}Þ # 21: ð34Þ

. On the set A66 > {mh # l1} we have

g1ðl1;w
*
2jFmh Þ ¼ Z1ðm

hÞ1{l1¼mh} þ Y1ðm
hÞ1{mh,l1}

# Z1ðm
hÞ ¼ g1ðw

*
1;w

*
2jFmh Þ:

ð35Þ

From (30)–(35) we deduce that on A6 > {mh # l1}

Pðg1ðl1;w
*
2jm

hÞ . g1ðw
*
1;w

*
2jm

hÞ þ 31Þ # 101: ð36Þ

Because (29) and (36) hold for every stopping time l1 for player 1, it follows that ðw*
1;w

*
2Þ

is a 131-equilibrium on A6, as desired.

Proof of Theorem 8. To prove that if Z1(t) [ co{X1(t), Y1(t)} and Z2(t) [ co{X2(t), Y2(t)}

for every t $ 0, then there is a pair of non-randomized stopping times that form an

1-equilibrium, we are going to check where randomized stopping times were used in

the proof of Theorem 7, and we will see how in each case one can use non-randomized

stopping times instead of randomized stopping times.

1. In Part 1 (and in the analogue part 3) we used a punishment strategy c1(d0, 1) that

in general is a non-randomized stopping time. However, by Lemma 17, when

Z2(t) [ co{X2(t), Y2(t)} for every t $ 0, this randomized stopping time can be taken

to be non-randomized.

2. In Part 4 we used, in addition to the punishment strategy c2(d0, 1), a simple

randomized stopping time for player 1. The set that we were concerned with in part 4

was the set A4 U {X1ð0Þ $ v1ð0Þ} > {X2ð0Þ . Y2ð0Þ}: Because Z2(0) [ co{X2(0),

Y2(0)}

X2ð0Þ $ Z2ð0Þ $ Y2ð0Þ:

But then the following pair of non-randomized stopping times is a 31-equilibrium

when restricted to A4:

. w*
1 U 0: player 1 stops at time 0.
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. w*
2 U c2ðd0; 1Þ: if player 1 does not stop before time d0, player 2 punishes him

(with a non-randomized stopping time; see the first item) in the game G1(d0).

3. In Part 6 randomization was used both for punishment (on A61, A62, A64 and A65)

and for stopping (on A61 and A62). As mentioned above, under the assumptions of

Theorem 8, for punishment one can use non-randomized stopping times. We now

argue that one can modify the definition of ðw*
1;w

*
2Þ on A61 and A62 so as to obtain a

non-randomized equilibrium. Because of the symmetry between A61 and A62, we

show how to modify the construction only on A61.

On A61 we have m
h
1 , m

h
2, so that by (15) we have Y2ðm

h
1Þ , X2ðm

h
2Þ. Because

Z2ðm
h
1Þ [ co{X2ðm

h
1Þ; Y2ðm

h
1Þ} it follows that Y2ðm

h
1Þ # Z2ðm

h
1Þ # X2ðm

h
2Þ. But then

the following pair of non-randomized stopping times is a 31-equilibrium on A61:

. w*
1 U m

h
1: player 1 stops at time m

h
1.

. w*
2 U c2ðm

h
1 þ d1; 1Þ: if player 1 does not stop before time m

h
1 þ d1, player 2

punishes him (with a non-randomized stopping time; see the first item) in the game

G1ðm
h
1 þ d1Þ. A

5. The result of Laraki and Solan

As mentioned earlier, Laraki and Solan [20] proved Theorem 7 for two-player zero-sum

Dynkin games. We need the stronger version that is stated in Lemma 9, where the payoff is

conditioned on the s-algebra Ft. It turns out that the arguments used by Laraki and Solan

[20] prove this case as well, when one uses the following Lemma instead of Lemma 4 in

Laraki and Solan [20].

Lemma 18. Let X be a right-continuous process. For every stopping time l and every

positive Fl-measurable function 1 there is a positive Fl-measurable and bounded function

d such that

jXðlÞ2 E½XðrÞjF l�j # 1; ð37Þ

for every stopping time r that satisfies l # r # l þ d.

Proof. Because the process X is right continuous, the function w 7! E½Xðlþ wÞjF l� is

right continuous at w ¼ 0 on V, and it is equal to X(l) at w ¼ 0. By defining

d0 ¼
1

2
sup{w . 0 : jXðlÞ2 E½Xðlþ wÞjF l�j # 1}

we obtain a positive Fl-measurable function such that (37) is satisfied for every stopping

time r,l # r # l þ d0. The proof of the Lemma is complete by settingd ¼ min{d0; 1}. A

This Lemma can also be used to adapt the proof of Proposition 7 in Laraki and

Solan [20] in order to prove Lemma 10, which states that the value process is right

continuous.

One can use Lemma 18 to improve some of the bounds given in Section 4. We chose

not to use this Lemma in the paper, so as to unify the arguments given for the various

bounds.
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Notes

1. Email: rida.laraki@polytechnique.edu.
2. Our results hold for the larger class of D payoff processes defined by Dellacherie and Meyer [7,

§II-18]. This class contains in particular integrable processes.
3. A statement holds on a measurable set A if and only if the set of points in A that do not satisfy the

statement has probability 0.
4. The additional 1 arises because in Part 1 we had g1ðw

*
1;w

*
2Þ ¼ X1ð0Þ, whereas in Part 4 we have

PðA4 > {g1ðw
*
1;w

*
2Þ , X1ð0Þ2 1}Þ # 1.
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