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Abstract This paper examines a notion of sporadic overtaking optimality in the context
of Markov decision problems (MDP). For the class of deterministic MDPs, we prove the
existence of pure stationary sporadic overtaking optimal strategies under both the discounted
and the average payoff evaluations. Moreover, we examine logical connections between
sporadic overtaking optimality and Blackwell optimality. In the class of nondeterministic
MDPs, we give examples that admit no sporadic overtaking optimal strategy and discuss a
number of alternative definitions of this concept.

Keywords Overtaking optimality · Sporadic overtaking optimality ·
Markov decision problems · Blackwell optimality

1 Introduction

In the literature on dynamic optimization problems with infinite horizon, a number of eval-
uation criteria have been examined. The most common ones are the evaluations by means
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of the discounted sum of payoffs and the long-term average payoffs. Under either type of
evaluation, optimal strategies are generically not unique. Moreover, optimality of the strat-
egy on the infinite horizon does not guarantee its optimality for finite horizons. In fact, it is
possible that a strategy that is optimal over the infinite horizon is outperformed by another
optimal strategy on every finite horizon. To take this point into account, various definitions
of overtaking optimality have been proposed. For an overview of some of these concepts, we
refer to [2,3,6,8,10–12].

In this paper, we focus on sporadic overtaking optimality as defined in Stern [10] in the
context ofMarkov decision problems.We only consider pure strategies. A strategy is sporadic
overtaking (SO) optimal if there is no other strategy that outperforms it on all sufficiently
long but finite horizons. SO optimality is a refinement of optimality: An SO optimal strategy
is always optimal on the infinite horizon. The converse need not hold.

One important feature of the definition of SO optimality is that it does not require the
strategy to outperform all other strategies on finite horizons. It only requires that the strategy
is not outperformed on all long finite horizons by any other strategy. SOoptimality is therefore
weaker than overtaking optimality and uniform overtaking optimality as in Stern [10] and
weaker than strong overtaking optimality as in Nowak and Vega-Amaya [7] or in Leizarowitz
[5]. See also Méder et al. [6], who delineate “not-outperformed” definitions of optimality
from “outperform-all” definitions of optimality.

In this paper, we study the existence of SO optimal strategies. Méder et al. [6] conjecture
that an SO optimal strategy always exists in the case of the discounted evaluation,1; however,
they also show that an approach to establishing existence using Zorn’s lemma runs into
difficulties. In this paper, we prove the conjecture for the class of deterministic MDPs for
both the discounted payoff and the average payoff evaluations. We construct an SO optimal
strategy explicitly for the discounted payoff evaluation. The idea is to split the play of the
MDP into two phases: In the first phase, the decisionmaker collects “good” payoffs, and in the
second phase, he maintains them by going through a loop of states and actions. The strategy
thus constructed is stationary and independent of the initial state.We show that, if the discount
factor is large enough, the same strategy is also SO optimal for the average payoff evaluation.

In the class of nondeterministic MDPs, we provide a counterexample to the existence
of SO discounted optimal strategies and a counterexample to the existence of SO average
optimal strategies.

Furthermore, we examine logical connections between overtaking optimality and Black-
well optimality.We show that a strategy is Blackwell optimal if and only if it is SO discounted
optimal for large discount factors. Furthermore, both of these conditions imply that the strat-
egy is SO average optimal. The converse does not hold.

The structure of the paper. In Sect. 2, we describe the model and provide the main definitions.
In Sect. 3, we state our main results. Sections 4 and 5 contain the proof of the main results. In
Sect. 6,we show that the existence result does not extend to nondeterministicMDPs. InSect. 7,
we discuss two extensions of the model: In Sect. 7.1, we examine alternative definitions of
SO optimality, and in Sect. 7.2, we examine SO optimality in randomized strategies.

2 The Model

Markov decision problems. A Markov decision problem, MDP for brevity, is given by [1] a
nonempty and finite set S of states, [2] for each state s ∈ S, a nonempty and finite set A(s)

1 In Méder et al. [6], SO optimal strategies are called repeatedly optimal.
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of actions, [3] for each state s ∈ S and each action a ∈ A(s), a payoff r(s, a) ∈ R, and [4]
for each state s ∈ S and each action a ∈ A(s), a probability distribution p(s, a) on the set S
of states.

An MDP is played at stages in N as follows: At stage 1, in a given initial state s1, the
decision maker chooses an action a1 ∈ A(s1). Then, the decision maker receives payoff
r(s1, a1), and subsequently state s2 ∈ S is drawn from the distribution p(s1, a1). At stage 2,
in state s2, the decision maker chooses an action a2 ∈ A(s2), receives payoff r(s2, a2), and
subsequently state s3 is drawn from p(s2, a2), and so on.

We say that an MDP is deterministic if for every state s ∈ S and every available action
a ∈ A(s), there is a state s′ ∈ S such that p(s′|s, a) = 1. Otherwise, the MDP is called
nondeterministic.

The history at stage t ∈ N is a sequence (s1, a1, . . . , st−1, at−1, st ) such that si ∈ S for
all i = 1, . . . , t , and ai ∈ A(si ) and p(si+1|si , ai ) > 0 for all i = 1, . . . , t − 1. We denote
by Ht the set of all histories at stage t and by H = ∪t∈NHt the set of all histories. Let s(h)

denote the final state of each history h ∈ H . Let H∞ be the set of all infinite histories, i.e.,
the set of sequences (s1, a1, s2, a2, . . . ) such that si ∈ S, ai ∈ A(si ), and p(si+1|si , ai ) > 0
for each i ∈ N.

A pure strategy σ is a map that, to each history h ∈ H , assigns an action σ(h) ∈ A(s(h)).
The interpretation is that σ recommends action σ(h) if history h arises.Wewill only consider
pure strategies (with the exception of Sect. 7.2), and therefore, the qualification pure is
henceforth omitted. Starting from the initial state s, a strategy σ induces a probabilitymeasure
on H∞, where H∞ is endowed with the sigma-algebra generated by the cylinder sets. We
denote the corresponding expectation operator by Esσ .

A strategy σ is called stationary if the recommendation of the action only depends on the
current state, i.e., σ(h) = σ(h′) whenever s(h) = s(h′). A stationary strategy can thus be
seen as an element of ×s∈S A(s).

Discounted Payoff and Discounted Optimality. For discount factor β ∈ [0, 1), initial state
s ∈ S, and strategy σ , the (normalized) β-discounted expected payoff is given by

uβ(s, σ ) = (1 − β)

∞∑

t=1

β t−1
Esσ (r(st , at )) ,

where st and at are random variables for the state and action at stage t .
The β-discounted value for initial state s is defined as

vβ(s) = sup
σ

uβ(s, σ ).

A strategy σ is called β-optimal for initial state s if uβ(s, σ ) = vβ(s). By the results of
Shapley [9] and Blackwell [1], for each β ∈ [0, 1) there exists a stationary strategy that is
β-optimal for every initial state. Moreover, there exists2 a discount factor α such that for any
initial state s, the set of β-optimal strategies is independent of β ∈ (α, 1). We refer to the

2 Let Aβ(s) denote the set of β-optimal actions in state s, that is, all actions a ∈ A(s) such that

vβ(s) = (1 − β)r(s, a) + β
∑

w∈S
p(w|s, a) · vβ(w).

The strategy σ is β-optimal if and only if σ(h) ∈ Aβ(s(h)) for each history h reached by the strategy σ with
positive probability. It is thus sufficient to show that there is α ∈ [0, 1) such that Aβ(s) = Aα(s) for all s ∈ S
and all β ∈ (α, 1). This follows from the fact that the function β �→ vβ(s) is semi-algebraic for every s ∈ S.
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smallest such discount factor α as the Blackwell discount factor of the MDP and we denote
it by β∗.

A strategy σ is called Blackwell optimal for the initial state s if it is β-optimal for the
initial state s for all β sufficiently close to 1. In view of the observation above, σ is Blackwell
optimal for the initial state s if and only if there exists β ∈ (β∗, 1) such that σ is β-optimal
for s.

For a discount factor β ∈ [0, 1), initial state s ∈ S, and strategy σ , the (normalized)
β-discounted expected payoff up to horizon T ∈ N is given by

uβ,T (s, σ ) = 1

1 + · · · + βT−1

T∑

t=1

β t−1
Esσ (r(st , at )) .

Average Payoff and Average Optimality. For initial state s ∈ S and strategy σ , the average
expected payoff is given by

u(s, σ ) = lim sup
T→∞

1

T

T∑

t=1

Esσ (r(st , at )).

The average value for initial state s is defined as

v(s) = sup
σ

u(s, σ ).

It is known (e.g., [8]) that for each s ∈ S

lim
β↑1 vβ(s) = v(s). (1)

A strategy σ is called average optimal for initial state s if u(s, σ ) = v(s). By Howard [4] and
Blackwell [1] such an optimal strategy always exist, even a stationary one that is independent
of the initial state.

For an initial state s ∈ S and a strategy σ , the average expected payoff up to horizon
T ∈ N is given by

uT (s, σ ) = 1

T

T∑

t=1

Esσ (r(st , at )).

Sporadic Overtaking Discounted Optimality.A strategy σ is called sporadic overtaking (SO)
β-optimal for initial state s, where β ∈ [0, 1) is a discount factor, if there is no strategy
σ ′ and finite horizon T̃ such that uβ,T (s, σ ′) > uβ,T (s, σ ) for every finite horizon T ≥ T̃ .
This means that, with respect to the β-discounted payoff, there is no strategy σ ′ which is
strictly better than σ on all long finite horizons. Equivalently, σ is SO β-optimal for initial
state s, if for every strategy σ ′ there exists an increasing sequence of finite horizons (Tn)n∈N
such that uβ,Tn (s, σ ) ≥ uβ,Tn (s, σ

′) for every n ∈ N. Méder et al. [6] conjectured that every
MDP admits an SO β-optimal strategy, for every initial state and every discount factor, and
provided an example that points to the difficulty of this existence problem.

Note that, for any initial state s, an SO β-optimal strategy σ is also β-optimal. Indeed,
take a strategy σ ′ that is β-optimal for the initial state s. Then, uβ,Tn (s, σ ) ≥ uβ,Tn (s, σ

′) for
an increasing sequence of finite horizons (Tn)n∈N. Hence, by taking the limit when n tends
to infinity, we obtain uβ(s, σ ) ≥ uβ(s, σ ′) = vβ(s).

The converse is not always true, as the following Example demonstrates.
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Example 1 Consider the following deterministic MDP with two states. The notation is as
follows. There are two states, denoted by x and y, with x being the initial state. In state x ,
the decision maker has two actions. Action a gives payoff 1 and keeps the play in state x ,
whereas action b gives payoff 0 and brings the play to state y. In state y, the only action is
c, which gives payoff 2 and keeps the play in state y.

x y

a : 1

b : 0

c : 2

Let β = 0.5. All strategies of the decision maker give a β-discounted payoff of 1, so
all strategies are β-optimal. Yet, the only SO β-optimal strategy is the one that always
chooses action a. Indeed, this strategy induces a β-discounted payoff of 1 up to any finite
horizon, whereas any other strategy induces a β-discounted payoff of strictly less than 1 for
all sufficiently large finite horizons.

As the example below shows, an SO β-optimal strategy need not be a maximizer of the
function uβ,T for any T ∈ N.

Example 2 We consider a deterministic MDP with two states, similar to that in Example 1:

x y

a : 0

b : 1

c : −3

Here, for β ∈ (0.5, 1), the only SO β-optimal strategy is to play action a all the time. This
strategy yields a discounted payoff 0 up to any horizon T . However, for every T ∈ N, playing
a for the first T − 1 stages and playing b at stage T yield a positive payoff up to horizon T .

Sporadic Overtaking Average Optimality.We define sporadic overtaking (SO) average opti-
mality analogously to the discounted case. A strategy σ is called SO average optimal for
initial state s, if there is no strategy σ ′ and finite horizon T̃ such that uT (s, σ ′) > uT (s, σ )

for every finite horizon T ≥ T̃ . Equivalently, σ is SO average optimal for initial state s, if
for every strategy σ ′ there exists an increasing sequence of finite horizons (Tn)n∈N such that
uTn (s, σ ) ≥ uTn (s, σ

′) for every n ∈ N.
Similarly to the discounted case, for any initial state s, an SO average optimal strategy σ

is also average optimal. Indeed, take a stationary strategy σ ′ that is average optimal for the
initial state s. Since σ ′ is stationary, uT (s, σ ′) converges to u(s, σ ′) as T tends to infinity
(cf., for example, [8]). By the SO average optimality of σ , we have uTn (s, σ ) ≥ uTn (s, σ

′)
for an increasing sequence of finite horizons (Tn)n∈N. Hence,

u(s, σ ) ≥ lim sup
n→∞

uTn (s, σ ) ≥ lim sup
n→∞

uTn (s, σ
′) = u(s, σ ′) = v(s).

The converse is not always true, as the following MDP demonstrates.
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Example 3 Consider the following MDP with two states:

x y

a : 1

b : 0

c : 1

The notation is just as before, and x is again the initial state. All strategies of the decision
maker give an average payoff of 1, so all strategies are average optimal. Yet, the only SO
average optimal strategy is the one that always chooses action a.

Note that, similarly to the discounted case, an SO average optimal strategy does not need
to be a maximizer of the function uT , for any T ∈ N.

3 Main Results

In this section, we state our main results. The first result establishes logical connections
between three optimality conditions, namelyBlackwell optimality, SO discounted optimality,
and SO average optimality. Recall the definition of Blackwell discount factor β∗ as the
smallest discount factor such that for any initial state s, the set of β-optimal strategies is
independent of β ∈ (β∗, 1).

Theorem 1 Given a deterministic Markov decision problem and a strategy σ , consider the
following four statements.

[1] The strategy σ is Blackwell optimal for the initial state s.
[2] The strategy σ is SO β-optimal for the initial state s for each β ∈ (β∗, 1).
[3] The strategy σ is SO β-optimal for the initial state s for some β ∈ (β∗, 1).
[4] The strategy σ is SO average optimal for the initial state s.

Statements [1], [2], and [3] are equivalent, and each of them implies [4].

We prove the above theorem in Sect. 4.
The following example shows that condition [4] does not imply [1]–[3].

Example 4 The initial state is x . Action a yields a payoff of 0 and keeps the game in state x ,
while action b yields a payoff of 1 and leads to state y. In state y, the only action is c, which
yields the payoff −1 and leads to state x .

x y

a : 0

b : 1

c : −1
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Always playing action a is an SO average optimal strategy. However, the only Blackwell
optimal strategy and the only SO β-optimal strategy, for any β ∈ [0, 1), are always playing
action b in state x .

Our second result establishes the existence of SOoptimal strategies in deterministicMDPs.

Theorem 2 Consider a deterministic Markov decision problem. For each discount factor
β ∈ [0, 1), there exists a stationary strategy that is SO β-optimal for each initial state.
Moreover, there exists a stationary strategy that is SO average optimal for each initial state.

Weprove the first part of Theorem 2 on the existence of a stationary SO discounted optimal
strategy in Sect. 5. The second part of Theorem 2 follows from the implication [1] ⇒ [4] in
Theorem 1 in conjunction with Blackwell’s [1] result on the existence of stationary strategies
that are Blackwell optimal for all initial states. Alternatively, the second part of Theorem 2
also follows from the implication [3] ⇒ [4] in Theorem 1 in conjunction with the first part
of Theorem 2.

In Sect. 6, we argue that the above existence results cannot be extended to nondeterministic
MDPs.

4 Proof of Theorem 1

Proof that [1] implies [2]. Let σ be a Blackwell optimal strategy for the initial state s. Sup-
pose that there exists a discount factor β ′ ∈ (β∗, 1) such that σ is not SO β ′-optimal for
s. Then there is a strategy σ ′ and a stage T̃ ∈ N such that uβ ′T (s, σ ) < uβ ′T (s, σ ′) for all
T ≥ T̃ . Taking the limit as T goes to infinity, we obtain uβ ′(s, σ ) ≤ uβ ′(s, σ ′). Since σ is
β ′-optimal for the initial state s, so is σ ′. In view of the definition of β∗ and by the choice of
β ′, this implies that σ ′ is Blackwell optimal for the initial state s. Therefore

uβ(s, σ ) = (1 − β)

∞∑

t=1

β t−1r(st , at ) = (1 − β)

∞∑

t=1

β t−1r(s′
t , a

′
t ) = uβ(s, σ ′)

for every β ∈ (β∗, 1), where s1 = s, a1, s2, a2, . . . are the sequence of states and actions
induced by σ , and s′

1 = s, a′
1, s

′
2, a

′
2, . . . are the analog sequences induced by σ ′. It follows

that
r(st , at ) = r(s′

t , a
′
t ), ∀t ∈ N. (2)

Indeed, the function

β �→ (1 − β)

∞∑

t=1

β t−1r(st , at ) − (1 − β)

∞∑

t=1

β t−1r(s′
t , a

′
t )

from the complex plain is holomorphic and has a radius of convergence at least 1. Its set of
zeroes has an accumulation point at 0, and therefore, this function is zero on the unit ball. In
particular, all its derivatives, which are k!(r(st , at ) − r(s′

t , a
′
t )), vanish. Equation (2) leads to

a contradiction since then uβ ′T (s, σ ) = uβ ′T (s, σ ′) for all T ≥ T ′.

Proof that [2] implies [3]. Obvious.

Proof that [3] implies [1]. Suppose the strategy σ is SO β-optimal for the initial state s for
some β ∈ (β∗, 1). As noticed earlier, σ is then β-discounted optimal for the initial state s. It
follows from the definition of β∗ that σ is Blackwell optimal for the initial state s.



Dyn Games Appl (2017) 7:212–228 219

Proof that [1] implies [4]. Without loss of generality, assume that v(s) = 0. A sequence
� = (s1, a1, s2, . . . , st , at , st+1) is called a loop if (1) s1, . . . , st are distinct elements of
S, (2) s1 = st+1, (3) ai ∈ A(si ) for all i = 1, . . . , t , and (4) p(si+1|si , ai ) = 1 for all
i = 1, . . . , t . For a loop � = (s1, a1, s2, . . . , st , at , st+1) let φ(�) denote the sum of the
payoffs along �:

φ(�) =
t∑

n=1

r(st , at ).

The number of loops is finite, and therefore, the following quantity δ is negative:

δ = max{φ(�) : � is a loop and φ(�) < 0} (3)

(the definition of δ is irrelevant if the set over which the maximum is taken is empty).
Suppose that the strategyσ is Blackwell optimal for the initial state s. Let s1, a1, s2, a2, . . .

be the sequence of states and actions induced by the strategy σ , where s1 = s. Denote
rt = r(st , at ).

Suppose that there exists a strategy σ ′ and M ∈ N such that uT (s, σ ) < uT (s, σ ′) for
all T ≥ M . We let s′

1, a
′
1, s

′
2, a

′
2, . . . be the sequence of states and actions induced by the

strategy σ ′, where s′
1 = s, and denote r ′

t = r(s′
t , a

′
t ).

We first state and prove two claims, and then come back to the proof of the implication.

Claim 1. Suppose that for some k,m ∈ N we have sk = sk+m+1. Then rk + · · · + rk+m = 0.

Claim 2. Suppose that for some k,m ∈ N we have s′
k = s′

k+m+1. Then either r ′
k + · · · +

r ′
k+m = 0 or r ′

k + · · · + r ′
k+m ≤ δ (recall that δ < 0).

Proof of claim 1. Let sk = sk+m+1 = z. Fix β ∈ (β∗, 1).We know that σ is β-optimal for the
initial state s and that it visits the state z at stage k. Hence, the sequence sk, ak, sk+1, ak+1, . . .

that σ generates starting with stage k onward is β-optimal from the initial state z. Thus we
have

vβ(s) = (1 − β)

∞∑

t=1

β t−1rt

and

vβ(z) = (1 − β)

∞∑

t=k

β t−krt .

It follows that

vβ(s) = (1 − β)

k−1∑

t=1

β t−1rt + βk−1vβ(z).

Taking the limits as β ↑ 1 and using (1), we obtain v(s) = v(z). Thus v(z) = 0. Similarly,
since σ visits z at stage k + m + 1, the sequence sk+m+1, ak+m+1, sk+m+2, ak+m+2, . . . is
also β-optimal for the initial state z. Thus

vβ(z) = (1 − β)

∞∑

t=k+m+1

β t−k−m−1rt .
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It follows that

vβ(z) = (1 − β)

k+m∑

t=k

β t−krt + βm+1vβ(z).

Rearranging we find that

vβ(z) =
(

1 − β

1 − βm+1

) k+m∑

t=k

β t−krt .

Taking the limit as β ↑ 1 and using (1), we obtain

v(z) = 1

m + 1
(rk + · · · + rk+m).

Since v(z) = 0, we obtain rk + · · · + rk+m = 0, as desired.

Proof of claim 2. Consider a strategy σ ′′ that coincides with σ ′ up to the stage k, after which
it repeats the sequence (s′

k, a
′
k, . . . , s

′
k+m, a′

k+m) ad infinitum. One can verify that the average

payoff w.r.t. σ ′′ for the initial state s is u(s, σ ′′) = 1
m+1 (r

′
k + · · · + r ′

k+m). Since u(s, σ ′′) ≤
v(s) = 0, we have r ′

k + · · · + r ′
k+m ≤ 0. Furthermore, the expression r ′

k + · · · + r ′
k+m can

be written as a sum φ(�1) + · · · + φ(�n) where each �i is a loop induced by σ ′. By (3), it
follows that the sum φ(�i ) of payoffs along each loop �i is either zero or is bounded above
by δ. It follows that the sum r ′

k + · · · + r ′
k+m is either 0 or is bounded above by δ.

Completion of the proof of the implication. Let q1 = 0 and qt = r1 + · · · + rt−1 for each
t ≥ 1. Likewise, let q ′

1 = 0 and q ′
t = r ′

1 + · · · + r ′
t−1 for each t ≥ 1. Due to our assumption

about σ ′, we have q ′
t − qt > 0 for each t ≥ M + 1. We next argue that there exists μ > 0

and such that
q ′
t − qt ≥ μ for each t ≥ M + 1. (4)

Suppose no such μ > 0 exists. Then there is a sequence M + 1 = t0 < t1 < · · · such that
{q ′

tn − qtn }n∈N is a strictly decreasing sequence, that is q ′
tn − qtn > q ′

tn+1
− qtn+1 for every

n ∈ N. Replacing the sequence t0, t1, . . . by a subsequence if necessary, we can assume that
the sequence {(stn , s′

tn ), n ∈ N} is constant: There are y, z ∈ S such that (stn , s
′
tn ) = (y, z) for

all n ∈ N. Take any n ∈ N. Since (stn , s
′
tn ) = (stn+1 , s

′
tn+1

), we know that rtn +· · ·+rtn+1−1 = 0
and that r ′

tn + · · · + r ′
tn+1−1 ≤ 0. Furthermore, the latter sum is either zero or is bounded

above by δ. Notice that

q ′
tn+1

− qtn+1 = q ′
tn +

tn+1−1∑

i=tn

r ′
i − qtn −

tn+1−1∑

i=tn

ri . (5)

Using the fact q ′
tn − qtn > q ′

tn+1
− qtn+1 and rtn + · · · + rtn+1−1 = 0, we conclude that

r ′
tn +· · ·+ r ′

tn+1−1 < 0. Therefore r ′
tn +· · ·+ r ′

tn+1−1 ≤ δ. Consequently using (5), we derive
q ′
tn − qtn + δ ≥ q ′

tn+1
− qtn+1 . Since this holds for every n ∈ N, and since δ < 0, we conclude

that q ′
tn − qtn < 0 for all n large enough, leading to a contradiction.
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Now,

uβ(s, σ )

1 − β
=

∞∑

t=1

β t−1rt

=
∞∑

t=1

β t−1(qt+1 − qt )

=
∞∑

t=2

β t−2qt −
∞∑

t=1

β t−1qt

=
∞∑

t=2

(β t−2 − β t−1)qt .

Likewise,

uβ(s, σ ′)
1 − β

=
∞∑

t=2

(β t−2 − β t−1)q ′
t .

Take any β ∈ (β∗, 1). Using the fact that σ is β-optimal for the initial state s and (4), we
obtain

0 ≥ uβ(s, σ ′) − uβ(s, σ )

1 − β

=
∞∑

t=2

(β t−2 − β t−1)(q ′
t − qt )

≥
M∑

t=2

(β t−2 − β t−1)(q ′
t − qt ) +

∞∑

t=M+1

(β t−2 − β t−1)μ

=
M∑

t=2

(β t−2 − β t−1)(q ′
t − qt ) + βM−1μ

Finally, taking the limit of the last inequality as β ↑ 1, we obtain 0 ≥ μ, a contradiction.

5 Proof of Theorem 2

In this section, we prove Theorem 2. Take a deterministic MDP. As argued in Sect. 3, we
only need to show that, for each discount factor β ∈ [0, 1), there exists a stationary strategy
that is SO β-optimal for each initial state.

Let β ∈ [0, 1). Our construction leads to a stationary SO β-optimal strategy with the
following structure: The strategy prescribes first to follow a path from the initial state to a
specifically chosen state, and afterward, the strategy prescribes to repeat a loop indefinitely.
The pair of the path and the loop is chosen such that (a) the pair maximizes the discounted
payoff, and (b) subject to part (a), the pair maximizes the discounted payoff along the path.

Infinite histories. Consider a state s ∈ S. Let Ws denote the set of states w ∈ S such
that there is a history that starts at s, ends at w, and only uses β-optimal actions. Further, let
Ls denote the set of states w ∈ Ws such that there is a loop starting at w which only uses
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β-optimal actions. Define L−
s to be the set of states w ∈ Ls such that vβ(w) ≤ vβ(w′) for

every w′ ∈ Ls . The reader can verify that the sets Ws , Ls , and L−
s are all nonempty.

Let �s be the collection of all pairs (hs, �s) such that

• hs = (s1, a1, . . . , sm, am, sm+1) is a history that satisfies

– s1 = s and sm+1 ∈ L−
s , and the states s1, . . . , sm+1 are all different,

– action ai is β-optimal in state si for all i ∈ {1, . . . ,m}.
• �s = (z1, b1, . . . , zk, bk, zk+1) is a loop that satisfies

– z1 = zk+1 = sm+1, and the states z1, . . . , zk are all different,
– action bi is β-optimal in state zi for all i ∈ {1, . . . , k},
– if �s visits a state that is also visited by hs , then from this state �s follows hs until

reaching sm+1. Formally, if zi = s j for some i ∈ {2, . . . , k} and j ∈ {1, . . . ,m},
then

(bi , zi+1, bi+1, . . . , zk+1) = (a j , s j+1, a j+1, . . . , sm+1).

The set �s is nonempty. Indeed, any path from s to a state in L−
s that uses only β-optimal

actions and any assignment of β-optimal actions to the states not on the path induce a pair
in �s . Moreover, each pair (hs, �s) ∈ �s induces an infinite history g(hs, �s), which starts
at the state s as follows: Follow the history hs until its final state, which is by definition the
first state of the loop, and from then on follow the loop �s repeatedly. Note that this infinite
history is stationary in the sense that, if a state is visited twice, the same action is being
prescribed. The main point is that hs ends in a state with a minimal discounted value in Ls .
Due to optimality, this implies that the discounted sum of the payoffs along hs is the highest
among all paths that lead to Ls .

Take an enumeration y1, . . . , yn of the set of states S. We recursively define a sequence
(h1, �1) ∈ �y1 , . . . , (hn, �n) ∈ �yn as follows. Take an arbitrary (h1, �1) ∈ �y1 . Suppose
that for some k < n, the sequence (h1, �1) ∈ �y1 , . . . , (hk, �k) ∈ �yk has been defined. We
define (hk+1, �k+1). Take an arbitrary element (h′

k+1, �
′
k+1) ∈ �yk+1 . We distinguish two

cases:
Case 1: The pair (h′

k+1, �
′
k+1) only uses states that are not used by any of the pairs

(h1, �1), . . . , (hk, �k). In this case, define (hk+1, �k+1) = (h′
k+1, �

′
k+1).

Case 2: Assume that the pair (h′
k+1, �

′
k+1) uses a state that is used by at least one of the

pairs (h1, �1), . . . , (hk, �k). In this case, let m be the smallest index such that (h′
k+1, �

′
k+1)

uses a state that is used by (hm, �m). Suppose that the first state of (h′
k+1, �

′
k+1) with this

property is state z (here, the states of h′
k+1 are considered before the states of �′

k+1). Let wm

denote the final state of hm , which is then also the first state of �m . Let h be the history that
follows (h′

k+1, �
′
k+1) until reaching state z and then switches to (hm, �m) until reaching state

wm . We argue that (h, �m) belongs to �yk+1 . All properties are easy to check. We only verify
that wm ∈ L−

yk+1
. Let w′

k+1 denote the final state of h
′
k+1. By the existence of the common

state z, we have w′
k+1 ∈ Wym . Since w′

k+1 ∈ Lyk+1 , we also obtain w′
k+1 ∈ Lym . Therefore,

by (hm, �m) ∈ �ym , we derive vβ(wm) ≤ vβ(w′
k+1). Consequently, wm ∈ L−

yk+1
as claimed.

Let (hk+1, �k+1) = (h, �m).
Definition of σ ∗: Now we define σ ∗ as follows: Starting with the initial state yk , follow

the infinite history g(hk, �k). By construction, σ ∗ is well defined and stationary. The strategy
σ ∗ is β-optimal, as it only uses β-optimal actions.

Proving that σ ∗ is SO β-optimal. Fix an arbitrary state s = yk . Let h∗ = hk and �∗ = hk
denote the corresponding history and loop, and let s∗ denote the final state of h∗.
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For simplicity, we assume w.l.o.g. that vβ(s) = 0. Let k denote the length of h∗, and letm
denote the length of �∗. Consider the infinite sequence of stages E = {k, k+m, k+2m, . . .}.
At these stages, the play according to σ ∗ is in state s∗. Let r∗

t denote the payoff at stage t
with respect to σ ∗. Because σ ∗ is β-optimal, we have for every t ∈ E

0 = vβ(s) = (1 − β)
(
r∗
1 + βr∗

2 + · · · + β t−2r∗
t−1

) + β t−1vβ(s∗).

Hence, for every t ∈ E

vβ(s∗) = −1 − β

β t−1

(
r∗
1 + βr∗

2 + · · · + β t−2r∗
t−1

)
. (6)

Take any strategy σ , and let rt and st denote the payoff and the state at stage t with respect
to σ . We prove that there exists an infinite subset E ′ of E such that for every t ∈ E ′

uβ t−1(s, σ
∗) ≥ uβ t−1(s, σ ). (7)

We can assume that σ is β-optimal; otherwise, this inequality holds for every sufficiently
large stage t ∈ E . Since there are finitely many states, there are an infinite subset E ′ of E
and a state z ∈ S such that st = z for every t ∈ E ′. Because σ is β-optimal, it follows that
z ∈ Ls .

For every stage t ∈ E ′, similarly to (6), we have

vβ(z) = −1 − β

β t−1

(
r1 + βr2 + · · · + β t−2rt−1

)
.

Since s∗ ∈ L−
s , we have vβ(s∗) ≤ vβ(z), and therefore, for every t ∈ E ′

−1 − β

β t−1

(
r∗
1 + βr∗

2 + · · · + β t−2r∗
t−1

) ≤ −1 − β

β t−1

(
r1 + βr2 + · · · + β t−2rt−1

)
.

This implies (7) for every t ∈ E ′, which proves that σ ∗ is SO β-optimal for the initial state
yk .

6 Nondeterministic MDPs

In this section, we describe two examples demonstrating that SO optimal strategies may fail
to exist in nondeterministic MDPs.

Example 5 Consider the followingMDPwith four states, in which only one of the transitions
is nondeterministic. The notation is as before, except for action c in state y that yields payoff 0
and fromwhich transition is not deterministic: The process remains in state y with probability
0.5 and moves to state z with probability 0.5.

x y z w

a : 0

b : 1 c : 0

pr. 0.5

pr. 0.5 d : −1

e : 0
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For every n ∈ N∪ {∞}, let σn be the strategy that chooses action a at all stages t < n and
chooses action b at stage n. For every horizon T ≥ n + 2, we have uT (x, σ∞) = 0 and

uT (x, σn) = 1

T
0.5T−n−1.

It follows in particular that σ∞ is not SO average optimal. Moreover, uT (x, σn) <

uT (x, σn+1) for all T ≥ n + 3, implying that the strategy σn is not SO average optimal.
Since this holds for each n ∈ N, the MDP has no SO average optimal strategy.

The intuition for this result is as follows: The strategy σ1 (playing action b at stage 1)
induces a positive average expected payoff at each finite horizon T , due to the fact that the
probability to remain in the state y up to stage T is positive. This payoff actually decays as
the horizon increases, because state w is visited from state y in two moves with probability
0.5. Waiting for 1 period in the state x increases the probability of being in state y at any
stage T ≥ 2 and thus induces a higher average expected payoff at each finite horizon T ≥ 2,
than moving to the state y immediately.

We slightly modify the example above to produce an example where there is no SO
discounted optimal strategy.

Example 6 Consider the followingMDPwith four states in which only one of the transitions
is nondeterministic, and let β ∈ [0, 1) be an arbitrary discount factor.

x y z w

a : 0

b : 1 c : 0

pr. 0.5

pr. 0.5 d : r

e : 0

Here the payoff r < 0 is chosen so that the strategy σ1 induces a β-discounted expected
payoff equal to 0. Thus r satisfies the equation

uβ(x, σ1) = (1 − β)
(
1 + r(β20.5 + β30.52 + · · · )) = 0.

Now for each T ≥ 3 we have

(1 + · · · + βT−1) · uβ,T (x, σ1) = 1 + rβ
T∑

k=3

(0.5β)k−2

= −rβ
∞∑

k=T+1

(0.5β)k−2

= −
(

rβ

1 − 0.5β

)
(0.5β)T−1.

The strategy σn could be thought of as implementing σ1 after n − 1 stages of delay. Hence
for each T ≥ n + 2, we have

uβ,T (x, σn) = βn−1uβ,T−n+1(x, σ1).
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Consequently

(1 + · · · + βT−1) · uβ,T (x, σn) = −
(

rβ

1 − 0.5β

)
βn−1(0.5β)T−n

= −
(

rβ

1 − 0.5β

)
βT−10.5T−n .

It follows in particular that uβ,T (x, σn) < uβ,T (x, σn+1) for each T ≥ n + 3, showing that
σn is not SO β-optimal. Since this holds for each n ∈ N, and since σ∞ is not SO β-optimal,
we conclude that the MDP has no SO β-optimal strategy.

7 Extensions

7.1 SO Optimality Based on Realized Payoffs

In the preceding section, we have seen that an SO optimal strategy may fail to exist in
nondeterministic MDPs. In this section, we discuss two alternative definitions based on the
comparison of realized, rather than expected, payoffs. We restrict ourselves to the case of
average payoffs. Similar definitions could be given for the case of discounted payoffs.

Consider anMDP, possibly a nondeterministic one.We define a relation≺ on strategies as
follows: σ ′ ≺ σ if there exists T ∈ N such that for every t ≥ T the distribution of r(s1, a1)+
· · ·+r(st , at ) inducedbyσ first order stochastically dominates the analog distribution induced
by σ ′. Notice that if σ ≺ σ ′, then ut (s, σ ) < ut (s, σ ′) for every t ≥ T . The converse is true in
deterministic MDPs but not in general. Consequently, the maximal elements of≺ are exactly
the SO optimal strategies when the underlying MDP is deterministic. In nondeterministic
MDPs, every SO optimal strategy is maximal with respect to≺, but not vice versa. Example 5
shows that a maximal element of ≺ need not exist. Indeed, in this example the sum of the
payoffs can only be 0 or 1, so that one distribution of total payoffs dominates another when
it has a higher expected utility.

We turn to yet another definition. We write σ ′ ≺∞ σ if there are sets P ⊆ H∞ and
P ′ ⊆ H∞ satisfying the following two properties: [1] With probability 1, σ induces an
infinite history in P , and with probability 1, σ ′ induces an infinite history in P ′; [2] for any
infinite histories (s1, a1, s2, a2, . . . ) ∈ P and (s′

1, a
′
1, s

′
2, a

′
2, . . . ) ∈ P ′, there is a horizon T

such that for all t ≥ T

r(s1, a1) + · · · + r(st , at ) > r(s′
1, a

′
1) + · · · + r(s′

t , a
′
t ).

The maximal elements of ≺∞ are the SO optimal strategies when the underlying MDP is
deterministic. In nondeterministic MDPs, maximality with respect to ≺∞ is unrelated to SO
optimality, as we argue below.

On the one hand, it is easy to see that maximality with respect to ≺∞ does not imply SO
optimality. Indeed, consider an MDP with three absorbing states x2, x1, and x−1, with the
payoffs 2, 1, and −1 respectively. There is also state x0 with two possible actions. Action
a leads with probability 0.5 to x2, and with probability 0.5 to x−1. Action b leads with
probability 0.5 to x1, and with probability 0.5 to x−1. Both actions are maximal with respect
to ≺∞, but only a is SO optimal.

On the other hand, SO optimality does not imply maximality with respect to ≺∞. Intu-
itively, under≺∞ it is very difficult to beat a strategy. It is therefore surprising that a maximal
element with respect to ≺∞ may fail to exist, as the example below demonstrates.
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Example 7 Consider the following MDP with three states and one nondeterministic tran-
sition. In state x of this MDP, action a yields payoff 0 and the process remains in state x ,
whereas action b first yields payoff 0 and subsequently payoff 1 with probability 0.5 and
payoff −1 with probability 0.5, before returning to state x .

x

y

z

a : 0
b : 0

pr. 0.5

pr. 0.5

1

−1

In this MDP, all strategies are SO average optimal. The relation ≺∞ has no maximal
element. Indeed, take any n ∈ N and consider the following strategy σn : Play action b until
the sum of the payoffs reaches n, and play action a in all subsequent stages. The crucial
feature of this strategy is that the sum of the payoffs eventually reaches n with probability 1.
The reason is that the sum of the payoffs is a symmetric random walk on the integers, as long
as action b is played, and it is well known that a symmetric random walk eventually reaches
any given integer value with probability 1. It is clear that σn ≺∞ σn+1. Since this is true for
each n, the relation ≺∞ has no maximal element.

7.2 SO Optimality in Randomized Strategies

Webriefly examine SOoptimalitywhen the decisionmakermay use randomized strategies. A
randomized strategy τ is a map that, to each history h ∈ H , assigns a probability distribution
τ(h) on the set of available actions A(s(h)). The interpretation is that τ recommends to
choose an action according to τ(h) if history h arises.

We show that deterministic MDPs do not always admit SO optimal strategies when ran-
domized strategies are allowed, so Theorem 2 does not extend to randomized strategies.

Example 8 Consider the following MDP with three states, in which the initial state is x .

x y z

a : 0

b : 1 c : −1

d : 0

Every pure strategy is SO average optimal. Indeed, for every pure strategy σ , the sum of
the payoffs is 0 for sufficiently large horizons: uT (x, σ ) = 0 for large T ∈ N. Now consider
the randomized strategy τp , for p ∈ (0, 1), that in state x always chooses action a with
probability p and action b with probability 1 − p. With respect to τp , for any p ∈ (0, 1),
the expected sum of the payoffs up to any stage T is positive: uT (x, τp) > 0 for all T . So,
in the SO sense, any τp is better than any pure strategy. In fact, τp′ is also better than τp if



Dyn Games Appl (2017) 7:212–228 227

0 < p < p′ < 1. In conclusion, this MDP does not admit SO average optimal strategies
when randomized strategies are allowed.

An example that shows that Theorem 2 does not extend to randomized strategies for SO
discounted optimality can be constructed along similar lines.

8 Concluding Remarks

In Sect. 3, we provided two different proofs for the second part of Theorem 2 on the existence
of a stationary strategy that is SO average optimal for all initial states. Both proofs make use
of results for the discounted evaluation.

The question naturally ariseswhether there is away to construct SO average optimal strate-
gies without the use of the discounted game. The SO discounted optimal strategy constructed
in the proof of Theorem 2 first follows a path h and then repeats a loop � ad infinitum. The
path h and loop � are chosen such that (a) the pair (h, �) maximizes the discounted payoff,
and (b) subject to part (a), it maximizes the discounted payoff along the path h.

In view of Theorem 1, the above strategy is also SO average optimal if the discount
factor is high enough. Thus, the path h and loop � have the property that (a’) the pair (h, �)

(or equivalently the loop �) maximizes the average payoff, and (b’) subject to part (a’), it
maximizes the sum of payoffs along the path h.

The converse is not necessarily true: It can be the case that a pair (h′, �′) of a path and a
loop satisfies (a’) and (b’), but they do not induce a strategy that is SO discounted optimal for
large discount factor. Indeed, as an example, suppose that �′ induces the sequence of payoffs
(0, 0, . . . ), while there is another loop with the same starting state that induces the sequence
of payoffs (1,−1, 1,−1, . . . ). Then �′ is not discounted optimal for any discount factor.

However, one can prove that if the pair (h′, �′) satisfies properties (a’) and (b’), then the
induced strategy is SOoptimal for the corresponding initial state. Notice that this construction
does not make use of the discounted payoffs.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Blackwell D (1962) Discrete dynamic programming. Ann Math Stat 33:719–726
2. Carlson DA, Haurie A, Leizarowitz A (1991) Infinite horizon optimal control. Springer, Berlin
3. Guo X, Hernández-Lerma O (2009) Continuous-time Markov decision processes. Springer, Berlin
4. Howard RA (1960) Dynamic programming and markov processes. MIT Press, Cambridge
5. Leizarowitz A (1996) Overtaking and almost-sure optimality for infinite Horizon Markov decision

processes. Math Oper Res 21:158–181
6. Méder Z, Flesch J, Peeters R (2012) Optimal choice for finite and infinite horizons. Oper Res Lett

40:469–474
7. Nowak AS, Vega-Amaya O (1999) A counterexample on overtaking optimality. Math Methods Oper Res

49:435–439
8. Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming. Wiley, New

York
9. Shapley LS (1953) Stochastic games. Proc Natl Acad Sci 39:1095–1100

10. Stern LE (1984) Criteria of optimality in the infinite-time optimal control problem. J Optim Theory Appl
44:497–508

http://creativecommons.org/licenses/by/4.0/


228 Dyn Games Appl (2017) 7:212–228

11. Zaslavski AJ (2006) Turnpike properties in the calculus of variations and optimal control. Springer, New
York

12. Zaslavski AJ (2014) Turnpike phenomenon and infinite horizon optimal control. Springer Optimization
and Its Applications, New York


	Sporadic Overtaking Optimality in Markov Decision Problems
	Abstract
	1 Introduction
	2 The Model
	3 Main Results
	4 Proof of Theorem 1
	5 Proof of Theorem 2
	6 Nondeterministic MDPs
	7 Extensions
	7.1 SO Optimality Based on Realized Payoffs
	7.2 SO Optimality in Randomized Strategies

	8 Concluding Remarks
	References




