
Int J Game Theory (2002) 31:91–121

Correlated equilibrium payo¤s and public signalling
in absorbing games

Eilon Solan* and Rakesh V. Vohrayz

*Department of Managerial Economics and Decision Sciences, Kellogg School of Management,
Northwestern University, and School of Mathematical Sciences, Tel Aviv University,
Tel Aviv 69978, Israel (e-mail: eilons@post.tau.ac.il)
y Department of Managerial Economics and Decision Sciences, Kellogg School of Management,
Northwestern University, 2001 Sheridan Road, Evanston IL 60208 (e-mail: r-vohra@nwu.edu)

Received: April 2001/Revised: June 4, 2002

Abstract. An absorbing game is a repeated game where some action combi-
nations are absorbing, in the sense that whenever they are played, there is a
positive probability that the game terminates, and the players receive some
terminal payo¤ at every future stage.

We prove that every multi-player absorbing game admits a correlated
equilibrium payo¤. In other words, for every e > 0 there exists a probability
distribution pe over the space of pure strategy profiles that satisfies the fol-
lowing. With probability at least 1� e, if a pure strategy profile is chosen ac-
cording to pe and each player is informed of his pure strategy, no player can
profit more than e in any su‰ciently long game by deviating from the recom-
mended strategy.

Key words: Stochastic games, Absorbing games, correlated equilibrium uni-
form equilibrium, public signalling

1. Introduction

There are many ways to formulate the notion of Nash equilibrium in undis-
counted stochastic games. The strongest of these is uniform e-equilibrium. A
strategy profile is a uniform e-equilibrium if for any n su‰ciently large, no
player could increase his expected average payo¤ in the first n periods by more
than e by deviating. A payo¤ vector is a uniform equilibrium payo¤ if it is the
limit (as e goes to 0) of the payo¤s that correspond to a sequence of uniform e-
equilibrium strategy profiles. Arguments in favor of this formulation of Nash
equilibria can be found in Aumann and Maschler (1995).

z We thank Jerome Renault and an anonymous referee who identified several inaccuracies in a
previous version of the paper, and suggested ways to overcome them.



Existence of uniform equilibrium payo¤s in multi-player undiscounted sto-
chastic games while suspected is still not proven. Progress on this question has
been slow and hard won. A major step was made by Mertens and Neyman
(1981) who proved that every two-player zero-sum stochastic game admits a
uniform value. Subsequently Vrieze and Thuijsman (1989) proved the existence
of a uniform equilibrium payo¤ in two-player non zero-sum absorbing games.
A decade and a half after the paper by Mertens and Neyman, Vieille (2000a,b)
proved the existence of a uniform equilibrium payo¤ in two-player non zero-
sum stochastic games. The argument is arduous and extending it to more than
two players appears di‰cult. Some progress in this direction is described in
Solan (1999) where existence of uniform equilibrium payo¤s is established for
three-player absorbing games, and in Solan and Vieille (2001b) where existence
of uniform equilibrium payo¤s is established for a class of multi-player quit-
ting games.

While Nash equilibrium is the most popular solution concept for a game
it is not the only one. For games in strategic form, Aumann (1974) proposes
the notion of correlated equilibria, which are probability distributions over the
space of strategy profiles, such that if a strategy profile is chosen according to
this distribution, no player can profit by not following the strategy chosen for
him.

For finite games in strategic form, correlated equilibria have a number of
appealing properties. They are computationally tractable. Existence is verified
by checking a system of linear inequalities rather than a fixed point. The set of
correlated equilibria is closed and convex. Aumann (1987) argues that it is the
solution concept consistent with the Bayesian perspective on decision making.
Nor does one need to assume that the correlation device is a deux et machina
in the game. In Foster and Vohra (1998) it is argued that players can use the
history of past plays as a correlation device. Finally, our colleague Roger
Myerson has been quoted as saying:

‘If there is intelligent life on other planets, in a majority of them, they
would have discovered correlated equilibrium before Nash equilibrium.’

An equivalent formulation of correlated equilibria for games in strategic
form is to consider an extended game that includes a correlation device. The
device chooses a signal for each player before start of play, and reveals to
each player the signal chosen for him. The game then proceeds as before, but
each player may base his choice of strategy on the signal he received. In this
formulation, a uniform correlated e-equilibrium is a uniform e-equilibrium in
an extended game. A uniform correlated equilibrium payo¤ is a limit, as e
goes to 0, of the payo¤s that correspond to a sequence of uniform correlated e-
equilibria. It is this form of correlated equilibrium that is the focus of the
paper.

An absorbing game is a repeated game where some of the action combi-
nations are absorbing, in the sense that whenever they are played, the game
terminates with positive probability, and the players receive some terminal
payo¤ at every future stage. We show that every absorbing game admits a
uniform correlated equilibrium payo¤.1 The proof uses the ideas in Solan

1 This generalizes Solan and Vohra (2001) which considers quitting games, a special case of ab-
sorbing games.
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(1999). First an auxiliary game is defined with non-absorbing payo¤s that
di¤er from those in the original game. Then we consider the limit of dis-
counted stationary equilibria in this auxiliary game. The asymptotic proper-
ties of this sequence suggest the form that a uniform correlated equilibrium
must take.

Another generalization of correlated equilibrium for sequential games in-
volves a correlation device that sends to each player a signal before the start of
each round. The signals can depend on the history of past signals but not on
past play. This way the correlation device is independent of the play. In con-
trast with the problem of existence of uniform equilibrium payo¤s, existence
of a uniform correlated equilibrium of this kind was proved for every multi-
player stochastic game with finitely many states and actions by Solan and
Vieille (2001a).

Another related result is Nowak (1994), which studies multi-player sto-
chastic games with measurable state space, compact action spaces and the
average payo¤ criterion, that satisfy the assumption of uniform geometric er-
godicity. Nowak proves in this model the existence of stationary correlated
equilibrium with public signalling; that is, at every stage all players observe
a public signal, which is drawn at every stage according to the same distri-
bution.

There are two additional aspects in the paper that may interest the reader.
First, the approach that we take in solving the problem is a development of
the approach introduced in Solan (1999), of studying the asymptotic behavior
of a sequence of discounted equilibrium in a modified game. Solan (1999) de-
fined the daily payo¤ of each player in the auxiliary game as the minimum
between his original daily payo¤ and his min-max level. This definition is
not su‰cient for our purposes, and we have to see what are the necessary
properties needed for the approach to work. Thus, the proof here illumi-
nates the properties of the modified payo¤ function that are required for this
approach.

Second, some of the results we prove here can be used in the study of
equilibria in multi-player stochastic games (see the results in section 9.2).

We start in section 2 with some examples that illustrate the main ideas the
proof relies on. We then provide the model and the main result in section 3. In
section 4 we present some preliminary results; we study how players can use
their actions to transmit information, and we claim that in every absorbing
game there exists a mixed action profile that satisfies one of a set of desirable
properties. In the following four sections we prove that if those desirable
properties hold, the game admits a correlated equilibrium payo¤. The proof of
the claim appears in section 9.

2. Examples and main ideas

We provide a series of examples that illustrate the main ideas of the proof.
A quitting game is a sequential game where each player has two actions: to

quit (Q) or to continue (C ). The game continues as long as all players decide
to continue. The moment any player decides to quit, the game terminates. The
terminal payo¤ depends on the subset of players that quit at the terminating
stage. If the game continues forever, the payo¤ to the players is some fixed
payo¤ vector. Quitting games are a special case of absorbing games.
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2.1. Example 1

Consider first, the following three-player quitting game that was studied by
Flesch et al. (1997).

C Q
C Q C Q

C 0; 0; 0 0; 1; 3* 3; 0; 1* 1; 1; 0*

Q 1; 3; 0* 1; 0; 1* 0; 1; 1* 0; 0; 0*

In this game player 1 chooses a row, player 2 a column, and player 3 a
matrix. Every absorbing entry, which corresponds to at least one player quit-
ting, is denoted with an asterisk. Flesch et al. prove that the following profile
is a uniform equilibrium.

. At stage 3nþ 1, the players play 1
2
C þ 1

2
Q;C;C

� �
.

. At stage 3nþ 2, the players play C; 1
2
C þ 1

2
Q;C

� �
.

. At stage 3nþ 3, the players play C;C; 1
2
C þ 1

2
Q

� �
.

Here n ¼ 0; 1; . . . : The corresponding uniform equilibrium payo¤ is ð1; 2; 1Þ.
In a quitting game each pure strategy can be associated with an element

t A NW fyg that specifies the first period in which the player quits. If t ¼ y,
it means that the player never quits. A profile of pure strategies would be a
tuple ða1; a2; a3Þ where aj is the period in which player j quits.

The uniform equilibrium that Flesch et al. identify corresponds to a prob-
ability distribution p ¼ pð1Þ n pð2Þ n pð3Þ over the space of pure strategy pro-
files given by

pðiÞð3nþ iÞ ¼ 1=2n En ¼ 0; 1; 2; . . . ; i ¼ 1; 2; 3:

Note that neither this distribution nor the uniform equilibrium payo¤ are
symmetric. In fact, Flesch et al. prove that the game possesses no symmetric
uniform equilibrium payo¤, even though the payo¤ matrix is symmetric.

The probability distribution p that is defined by

pð1;y;yÞ ¼ pðy; 1;yÞ ¼ pðy;y; 1Þ ¼ 1=3 ð1Þ

is a uniform correlated equilibrium with payo¤

ð4=3; 4=3; 4=3Þ ¼ 1

3
ð1; 3; 0Þ þ 1

3
ð0; 1; 3Þ þ 1

3
ð3; 0; 1Þ:

Our interpretation of the equilibrium is that a correlation device chooses
one of the players uniformly at random (the chosen one) and is told to quit in
the first stage. The other two players are told never to quit. Suppose player 1 is
informed that he was chosen. Notice that if player 1 alone disobeys the in-
structions by never quitting his payo¤ will be 0. If player 1 quits at some later
stage, this does not increase his payo¤.

Consider now a player not chosen, say, player 3. He does not know the
identity of the chosen one; its as likely to be player 1 as it is player 2. So, if he
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follows his instructions to play C, his expected payo¤ will be 1.5. On the other
hand, if player 3 quits in the first round, his expected payo¤ will be 1/2. He
cannot know whether he can profit by deviating and quitting at the first stage,
and therefore he should not deviate.

The construction described above is sensitive to two things. The first is the
incentives that the chosen player has to not quitting at stage 1. The second is
the payo¤ to an unchosen player from two players quitting at the same stage.
If this were large enough, in our example above, player 3 would want to quit
at the first stage.

The second of these can be accomodated by masking the stage at which the
chosen player quits. For example, the chosen player is told to quit in each
stage with probability e > 0. Now player 3 is ignorant of who the first player is
to quit as well as the stage at which they will quit. In fact with high probability
any stage that player 3 chooses to quit in, he will be the only player to be
quitting. The joint probability distribution p consistent with this formulation
is:

pðn;y;yÞ ¼ pðy; n;yÞ ¼ pðy;y; nÞ ¼ eð1� eÞn�1=3 En A N: ð2Þ

Dissuading the chosen player from quitting at a stage other than that pre-
scribed by the device, or continuing indefinitely, is more di‰cult. The next
example shows that this is a real possibility.

2.2. Example 2

Consider a slight modification of Example 1, where only the non-absorbing
payo¤s are changed.

C Q
C Q C Q

C 2; 2; 0 0; 1; 3* 3; 0; 1* 1; 1; 0*

Q 1; 3; 0* 1; 0; 1* 0; 1; 1* 0; 0; 0*

The correlated equilibrium proposed for the first example does not apply
here. Players 1 and 2 get higher payo¤s in the non-absorbing entry. Thus, if
player 1 is the chosen one, why should he quit? The other two players don’t
know that he is the chosen one. To deal with this possibility we will ensure
that one of the unchosen players can punish player 1 for his deviation. The
idea is to instruct the unchosen players to play C for a certain number of
rounds and then play Q. To force compliance by player 1, the payo¤ to player
1 by continuing forever should be at most 1.

In this example each player i has a single punisher – a player j0 i that by
quitting yields player i a low payo¤. Player 1 is the punisher of player 3,
player 2 is the punisher of player 1 and player 3 is the punisher of 2. A simple
modification of the previous equilibrium scheme suggests itself: the device
chooses a player uniformly at random to quit at the first stage, and informs his
punisher that he should quit at the second stage if the chosen one has not quit
at the first stage.
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The flaws are obvious. First, the punisher knows who the chosen one is,
and might profit by quitting on the first period too. This problem does not
arise in this example. Second, the player who is neither the chosen one nor the
punisher receives some information too. If player 3 is neither the chosen one
nor the punisher, he can deduce that player 1 is the chosen one. Therefore
player 3 would rather quit at the first stage.

To avoid these flaws the device must inform the punisher while masking
the identity of the chosen one. One way of doing this is described below.

Define the following joint probability distribution over the space of pure
strategy profiles. A player i is chosen with the uniform distribution. W.l.o.g.
assume that player 1 is the chosen one. Denote by ðn1; n2; n3Þ a pure strat-
egy profile. Since player 1 is the chosen one, n1 is uniformly distributed in
f1; . . . ;Mg, where M > 1=e2. Player 2 is the punisher of 1, so n2 is uniformly
distributed in fM þ 1; . . . ; 2Mg. Finally, n3 ¼ n2 þ 1.

Let us verify that with high probability no player can profit by not quitting
at the stage recommended by the device.

The chosen player knows that he was chosen, since his quitting stage is at
most M, whereas the quitting stages of the other two exceed M. If the chosen
player does not quit, he will be punished and get 0. Moreover, the probability
he will correctly guess the quitting stage of his punisher is low. Hence he has
no reason to disobey the recommendation. With high probability the punisher
and the third player received a signal in fM þ 1; . . . ; 2Mg. In this case, the
conditional probability that each is a punisher is 1/2, so they have no reason
to deviate also. Thus, this joint probability distribution is a uniform correlated
e-equilibrium, provided e is su‰ciently small.

2.3. Example 3

Absorbing games can be viewed as quitting games where the players have
more than one ‘quitting’ action and more than one ‘continue action’. Thus a
player may be able to punish two di¤erent players with di¤erent ‘quitting’
actions. For example, player i punishes player j1 with a quitting action Q1 and
he punishes player j2 with a quitting action Q2. If the correlation device in-
structs him to use Q1 instead of Q2, he is in a position to infer the identity of
the chosen one. This problem is solved by assuming that the game is generic,
i.e. the payo¤s in all the entries are di¤erent. We then consider only punishing
actions which maximize the payo¤ of the punisher amongst his quitting ac-
tions. When a player has two continue actions then, by playing one or the
other continue actions in various stages, he can send public signals to the other
players. This feature can be used to construct a correlated equilibrium di¤er-
ent from the one constructed before. This is illustrated in our next example.

We modify example 2 by adding one more action, C2, for player 1.

C Q
C Q C Q

C 2; 2; 0 0; 1; 3* 3; 0; 1* 1; 1; 0*

Q 1; 3; 0* 1; 0; 1* 0; 1; 1* 0; 0; 0*

C2 2; 2; 0 0; 4; 4* 0; 4; 4* 0; 4; 4*
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Any correlated equilibrium payo¤ of Example 2 is also a correlated equi-
librium payo¤ here. We use this example to illustrate the use of public sig-
nalling in constructing correlated equilibria.

To describe the correlated equilibrium profiles it will be convenient to use a
correlation device that sends signals to the players in an arbitrary signal space.
It is easily verified that the signal space that we use is equivalent to the space
of strategy profiles.

Since there are only 3 players, the construction below could be simplified,
but we present the construction for an arbitrary number of players.

The correlation device does the following.

1. The device chooses a player i uniformly at random. This player is informed
that he should quit in the first M stages, where M A N is su‰ciently large.

2. The device chooses a verification key v, uniformly from the set f1; . . . ;Mg.
3. The device chooses an encryption key k, uniformly from the set f1; . . . ;Mg.
4. Each player j0 i receives v.
5. If i0 1, player 1 receives k, and all other players receive k þ i modM.

The players play as follows in the first M stages.

6. Each player j0 i continues in all M stages.
7. Player i chooses at random a stage t A f1; 2; . . . ;Mg. He continues in all

stages but t, and quits at stage t.

If no player quit in the first M stages, the identity of i is revealed.

8. If i0 1, player 1 publicly announces v. Recall that player 1 knows v if and
only if he was not chosen.

One possible way for player 1 to publicly announce an integer v A f1; . . . ;Mg
requires M 2 stages and is described below. Players 2 and 3 play C in all the
M 2 stages. Player 1 plays C2 in one of the stages ðv� 1ÞM; . . . ; vM � 1, and
C in all other M 2 � 1 stages.

If player 1 chooses the stage in which he plays C2 at random, and if M is
su‰ciently large, no player can profit too much by deviating. If M is su‰-
ciently large, the chance that player 1 can correctly guess v when he is the
chosen one is arbitrarily small.

Call v 0 the actual message sent by player 1. If v 0 0 v, player 1 is declared
the deviator, and is punished. If v 0 ¼ v, with high probability player 1 is not
the chosen one. The play then proceeds as follows.

9. If i0 1 player 1 publicly announces k.

Now all players except player 1 can calculate the identity of the chosen
one. Note that when there are only three players, once player 1 has correctly
announced v, player j0 i; 1 can deduce the identity of the chosen one.

Now that the identity of the chosen one was revealed, he should be pun-
ished by his punisher.

10. In one of the next M stages, the punisher ji, provided ji0 1, quits, and
punishes player i.
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11. If after M stages no one has punished the chosen one, player 1 deduces
that he is the punisher, so he quits in one of the subsequent M stages.

3. The model and the main result

In this section we introduce notation and state the main result.

Definition 3.1. A multi-player absorbing game G is given by ðI ; ðAi; ri; uiÞi A I ;wÞ
where:

. I is a non-empty finite set of players.

. Ai is a non-empty finite set of actions available for player i. Let A ¼ Ui A I A
i.

. ri : A! R for i A I . For every a A A, riðaÞ is the daily (non-absorbing) payo¤
for player i.

. w : A! ½0; 1. For every a A A, wðaÞ is the probability the game is absorbed
if the action combination a is played by the players.

. ui : A! R for i A I . Given the game was absorbed by action combination
a A A, uiðaÞ is the constant payo¤ player i receives at every future stage.

The game is played as follows. At every stage n A N each player i A I
chooses, independently of his opponents, an action ain A A

i. The action com-
bination an ¼ ðainÞi A I determines a daily payo¤ rðanÞ and a probability of ab-
sorption wðanÞ. With probability 1� wðanÞ the game continues to the next
stage, and with probability wðanÞ the game is absorbed, and the players re-
ceive the absorbing payo¤ uðanÞ at every future stage. We assume standard
monitoring and perfect recall, so at every stage all the moves played upto that
stage are known to all players.

For every finite set K, DðKÞ is the set of all probability distributions over
K. For every m A DðKÞ and every k A K , m½k is the probability of k under m.
For every subset K 0 of K, m½K 0 ¼

P
k AK 0 m½k. We identify each k A K with

the probability distribution in DðKÞ that gives weight 1 to k.
Denote X i ¼ DðAiÞ and X ¼ Ui A I X

i, the set of mixed-action profiles. For
every subset LJ I of players, we denote AL ¼ Ui AL A

i and A�L ¼ Ui BL A
i.

Each action ai A Ai is identified with the probability distribution in X i that
gives weight 1 to ai.

Let Hn ¼ An be the space of all histories of length n, and H ¼ 6
nb0

Hn be
the space of all finite histories.

A (behavioral) strategy for player i is a function s i : H ! X i. A profile
is a vector of strategies, one for each player. A stationary strategy can be
identified with an element xi A X i, and a stationary profile with a vector
x ¼ ðxiÞi A I A X . The mixed extension of w to X is still denoted by w. A mixed
action profile x A X will be called absorbing if wðxÞ > 0 and non-absorbing
otherwise. For every x A X , every a A A and every i A I , xi½ai is the per-stage
probability to play ai according to xi, and x½a ¼

Q
i A I x

i½ai is the per-stage
probability that action combination a is played under x.

A strategy s i of player i is pure if s iðhÞ A Ai for every finite history h A H.
A profile s ¼ ðs iÞ is pure if each s i is pure. Let S i denote the space of pure
strategies of player i, and S ¼ Ui A I S

i the space of pure strategy profiles.
We endow S i with the s-algebra generated by finite cylinders: for

every n and every vector of actions ~aiai ¼ ðaiðhÞÞ A ðAiÞH0WH1W���WHn , the set
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fs i AS i j s iðhÞ ¼ aiðhÞ; Eh AH0 W � � �WHng is measurable. S is endowed with
the product s-algebra.

Every profile s induces a probability measure over the space of infinite
plays. We denote by Es the corresponding expectation operator. In particular,
every profile s defines an expected payo¤ during the first n stages:

gnðsÞ ¼ Es
1

n
ðrða1Þ þ rða2Þ þ � � � þ rðayÞ þ 1y<nðn� yÞuðayÞÞ

� �
;

where y denotes the absorption stage.

Definition 3.2. Let e > 0. A payo¤ vector g A RjI j is a (uniform) correlated e-
equilibrium payo¤ if there exists a positive integer n0 A N and a probability
measure pe over S such that for every player i A I and every measurable
function f : S i ! S i,

Epe ½g inðsÞb g i � ebEpe ½g inðs�i; f ðs iÞÞ � 2e; Enb n0:

The probability measure pe is a (uniform) correlated e-equilibrium.

A payo¤ vector g A RjI j is a (uniform) correlated equilibrium payo¤ if it is
the limit, as e goes to 0, of correlated e-equilibrium payo¤s.
The payo¤ vector g A RjI j is a (uniform) equilibrium payo¤ if it is a corre-

lated equilibrium payo¤, and for every e > 0 the probability measure pe is a
product measure pe ¼ 1

i A I p
i
e, where each p

i
e is a probability measure overS

i.

Intuitively, a probability measure pe over S is a correlated e-equilibrium if
there is only a small probability under pe that given the pure strategy chosen
for him, a player can profit a lot by disobeying the recommendation.

The main result of the paper is:

Theorem 3.3. Every multi-player absorbing game admits a correlated equilib-
rium payo¤.

We assume w.l.o.g. that 0a r; ua 1, and that every player has at least two
actions: jAijb 2 for every i A I . Since payo¤s are bounded, if for every e > 0
there exists a correlated e-equilibrium then a correlated equilibrium payo¤ ex-
ists. Moreover, if p is a correlated e-equilibrium for some absorbing game, it is
a correlated 3e-equilibrium for any game where the payo¤s di¤er by at most e.
In particular, we may assume w.l.o.g. that the function u is generic; that is, for
every player i A I and every two action combinations a; b A A, uiðaÞ0 uiðbÞ.

As every three player absorbing game admits an equilibrium payo¤, we as-
sume throughout the paper that jI j > 3 (we will only use the fact that jI jb 3).

3.1. Correlation devices

It will be more convenient to consider an equivalent formulation of correlated
equilibria using correlation devices.

Definition 3.4. A correlation device is a pair D ¼ ðS; pÞ where S ¼ Ui A I S
i is a

measurable space of signals and p A DðSÞ is a probability distribution.
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Given a correlation device we define an extended game GðDÞ as follows. A
signal s ¼ ðsiÞi A I A S is chosen according to p (which is common knowledge).
Each player i is informed of si. The game now proceeds as the original game,
but each player can use his private signal to choose an action at every stage.

In this formulation, g is a correlated e-equilibrium payo¤ of G if and only
if there is a probability distribution p over S such that g is an e-equilibrium
payo¤ of GðDÞ, where D ¼ ðS; pÞ. This formulation is more general than the
one we presented above, but it is more convenient to work with. In our con-
struction, the signal space S is (equivalent to) the space of pure strategy pro-
files S.

The information available to each player i at stage n is an element of
S i �Hn�1. Thus, a strategy for player i in the extended game is a function
s i : S i �H ! X i. All previous definitions (e.g. profiles, induced payo¤ ) can
be analogously defined for the extended game.

4. Preliminaries

4.1. On exits and individual rationality

Definition 4.1. The real number vi A R is the (uniform) min-max value of player
i if for every e > 0 there exists a positive integer n0 A N such that for every
profile s�i there exists a strategy s i of player i that satisfies:

g inðs�i; s iÞb vi � e Enb n0;

and there is a profile s�ie of Infig such that for every strategy s i of player i,

g inðs�ie ; s iÞa vi þ e Enb n0:

The profile s�ie is an e-min-max punishment profile against player i.

Thus, players Infig can reduce the payo¤ of i to vi, but they cannot reduce it
any more.

Existence of the min-max value was proved by Mertens and Neyman
(1981) for two-player stochastic games, and by Neyman (2002) for multi-
player stochastic games. Moreover, Neyman (2002) proves that the min-max
value is the limit, as the discount factor goes to zero, of the discounted min-
max values.

Remark: In our construction, a deviator is punished with the min-max value
and not the max-min value. There are two reasons for that. First, we would
like to reduce the amount of correlation needed by the players. Second, results
that are proven here might be useful in the study of equilibrium payo¤s in
multi-player stochastic games.

The multi-linear extension of r to X is still denoted by r. Define an exten-
sion of u to X by

uiðxÞ ¼
X
a AA

x½awðaÞuiðaÞ=wðxÞ

whenever wðxÞ > 0, and uiðxÞ ¼ 0 otherwise. Note that wðxÞuiðxÞ is multi-
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linear, but ui is not multi-linear; it is the expected absorbing payo¤ if the
players play the mixed action x (given absorption occurs with positive proba-
bility).

Definition 4.2. Let g A RN be a payo¤ vector. A mixed action combination x is
individually rational for g if g i b vi for all for i A I and for every action ai A Ai,

g i b uiðx�i; aiÞ:

Usually, deviations can be followed by punishment with the min-max level,
hence one gets a stronger definition of individual rationality (see Solan (1999)).
In our context players may not know the identity of the deviator, hence the
deviator may deviate several times without being detected.

In absorbing games it is sometimes the case that absorption requires co-
ordinated action on the part of a group of two or more players. For every
non-absorbing mixed action x A X we will be interested in the minimal sub-
sets of players who can force the game to be absorbed with positive proba-
bility. In other words sets LJ I and vectors of actions aL A AL such that
wðx�L; aLÞ > 0, but wðx�L 0

; aL
0 Þ ¼ 0 for every proper subset L 0 of L.

Definition 4.3. Let x A X be a non-absorbing profile. An exit (w.r.t. x) is a vector
aL A AL such that (i) qHLJ I , (ii) wðx�L; aLÞ > 0, and (iii) wðx�L 0

; aL
0 Þ ¼ 0

for every proper subset L 0 of L.

If L ¼ fig, a singleton, denote the exit simply by ai, and call it a unilateral exit
of player i. If jLjb 2 the exit is a joint exit. Denote by EðxÞ the set of all exits
w.r.t. x.

4.2. Signalling

Since players do not have an explicit signalling device, they rely on their strat-
egy choices to signal information. To construct an equilibrium where players
will signal to each other one must ensure that no player has the incentive to
deviate during a signalling phase.

Definition 4.4. Let x A X be a non-absorbing profile. Player i A I is a signaller
w.r.t. x if either (i) jsuppðxiÞjb 2, or (ii) there is ai B suppðxiÞ such that
wðx�i; aiÞ ¼ 0.

We claim that if i is a signaller w.r.t. x then for every finite message set M
and every e > 0 there exists a vector of strategies of player i, s i ¼ ðs imÞm AM , a
positive integer n0 and a partition P ¼ ðPmÞm AM of Hn0 such that

. ks imðhÞ � xiky < e for every finite history h with length at most n0 and every
m AM.

. Px�i ;s imðPmÞ > 1� e for every m AM.

. wðx�i; s imðhÞÞ ¼ 0 for every finite history h with length at most n0.

Thus, the players can associate with each message a unique set of non-
absorbing histories. If the realized history at stage n0 is h A Hn0 , and if Pm is
the unique element in P that contains h, all players understand that message
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m was sent. The first condition is needed to make deviations during the sig-
nalling phase non-profitable. The second condition ensures that with high
probability m was the message the signaller intended to transmit. The third
condition ensures that if all players follow the signalling mechanism, absorp-
tion does not occur during the signalling phase.

To prove the claim, fix an e > 0. Choose n1 > 1=e2 and n0 ¼ jMjn1.
If (i) in Definition 4.4 holds, let yi A X i such that e=2 < kxi � yik < e and

suppðxiÞ ¼ suppðyiÞ. If (ii) in Definition 4.4 holds, let yi ¼ 1� e
2

� �
xi þ e

2
ai.

Define s im as follows. At all stages ðm� 1Þn1 a j < mn1, play yi, and at all
other stages play xi.2,3

The definition of Pm is as follows. Pm contains all histories h such that the
average of the realized play of player i at stages ðm� 1Þn1; . . . ;mn1 � 1 is e=4-
close to yi, and for every l0m, the average of the realized play of player i
at stages ðl � 1Þn1; . . . ; ln1 � 1 is e=4-close to xi. If n1 is su‰ciently large the
second condition holds. The histories that are not in any Pm have low proba-
bility under every s im, hence can be included in any of the sets in the partition.

Note that s im depends on the message set M, as well as on xi and e. M, xi

and e also determine the number of periods n0 required to transmit a message.
From now on, whenever we specify in a profile that a signaller i sends a mes-
sage m, we mean that player i plays for n0 stages the strategy s im, and any
other player j0 i plays the mixed action x j . It will be clear from the context
which mixed action profile x is to be used.

During the signalling period, players who are not signallers may deviate in
two ways. Either they can alter the frequency with which they play actions in
suppðxiÞ, or they can play actions outside suppðxiÞ. The second type of devi-
ation is detected immediately and can be punished with the min-max value. If
x is individually rational for the expected payo¤ of the players conditioned on
the message sent, this type of deviation can be deterred. The first type of de-
viation does not change the message that is sent, since P depends only on the
actions of the signaller.

We conclude this section with a definition of weak-signallers:

Definition 4.5. Let x be a non-absorbing profile that admits one signaller i1. A
player i2 0 i1 is a weak-signaller w.r.t. x if he is not a signaller, and there exist
ai1 A Ai1 and ai2 B suppðxi2Þ such that wðx�i1 ; ai1Þ ¼ wðx�i1; i2 ; ai1 ; ai2Þ ¼ 0.

Since i2 is not a signaller w.r.t. x, wðx�i2 ; ai2Þ > 0.
A weak-signaller cannot transmit information, since he is not a signaller.

However, as we show later, with the help of the signaller he can transmit in-
formation.

4.3. Classification of non-absorbing profiles

Here we divide non-absorbing stationary profiles into four groups, according
to the way information can be transmitted.

2 Lotteries made at each stage are independent of the outcome of previous lotteries.
3 In Example 3 we used a di¤erent mechanism for signalling: Player 1 had an action a1 B suppðx1Þ
such that wðx�1; a1Þ ¼ 0, and he played that action at most once during some pre-specified time
interval to transmit information. Since we do not know how to replicate this construction if (i) in
Definition 4.4 is satisfied, we chose the present construction.
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Definition 4.6. A non-absorbing profile x is isolated if it admits no signallers. It
is semi-isolated if it admits exactly one signaller, but no weak signallers. It is
weak if it admits exactly one signaller and at least one weak signaller.

No appellation is assigned to non-absorbing profiles that admit at least two
signallers. We refer to isolated profiles also as isolated actions, to emphasize
that they are pure action combinations. If x is semi-isolated, and if player i is
the unique signaller it admits, we say that i is the signaller at x.

For example, consider the following two-player absorbing games where
each player has 2 actions, and only the absorbing structure is given (an aster-
isked entry means that the probability of absorption is positive, and a non-
asterisked entry means that the probability of absorption is 0):

Game 1 Game 2 Game 3
L R L R L R

T � T T

B � � B � � B �

In game 1, ðT ;LÞ is an isolated profile. In game 2, any convex combina-
tion of ðT ;LÞ and ðT ;RÞ is semi-isolated. In game 3, ðT ;LÞ and ðB;RÞ are
weak, as is any convex combination of ðT ;LÞ and ðT ;RÞ which gives posi-
tive probability to ðT ;LÞ, and any convex combination of ðT ;RÞ and ðB;RÞ
which gives positive probability to ðB;RÞ. The profile ðT ;RÞ admits two sig-
nallers.

It is easy to see that the support of any isolated action is disjoint from the
support of any semi-isolated or weak profile, and that the support of any semi-
isolated profile is disjoint from the support of any weak profile.

If x and y are semi-isolated, then either suppðxÞ and suppðyÞ are disjoint,
or they have the same signaller, and any convex combination bxþ ð1� bÞy is
also semi-isolated. In particular, there are disjoint sets B1; . . . ;BK that form the
maximal supports of semi-isolated profiles: the support of any semi-isolated
profile is contained in some Bk, and for each k there is some semi-isolated
profile whose support is Bk. We call each set Bk a maximal semi-isolated set.
In game 2, K ¼ 1 and B1 ¼ fðT ;LÞ; ðT ;RÞg.

If x is non-absorbing and EðxÞ contains a joint exit, then x admits at least
two signallers. If x is isolated, semi-isolated or weak, EðxÞ includes only uni-
lateral exits.

4.4. The punishment level

In this section we define the punishment level of player i at a mixed action
profile x. Roughly speaking, this is the lowest payo¤ players Infig can inflict
on player i when everyone is supposed to follow mainly x.

For every non absorbing profile x, denote

giðxÞ ¼ max
ai AAi jwðx�i ;aiÞ>0

uiðx�i; aiÞ: ð3Þ
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By convention, the maximum over an empty set is �y. This is the best ab-
sorbing payo¤ player i can get if players Infig play x�i. Let biðxÞ be an action
that maximizes the expression in (3). It is arbitrary if giðxÞ ¼ �y.

Note that biðxÞ is independent of xi. Moreover, since the game is generic,
if x�i is a pure action then biðxÞ is uniquely determined. Thus, if x is semi-
isolated with signaller i then biðxÞ is uniquely determined.

Define for every isolated action or semi-isolated profile x the punishment
level (by absorption) player j can inflict on player i by

pij ðxÞ ¼
uiða�j; b jðaÞÞ x ¼ a is an isolated action

uiðx�j; b jðxÞÞ x is semi-isolated with signaller j

mind j0x j u
iðx�j; d jÞ x is semi-isolated with signaller not j

8<
:

If x is semi-isolated with signaller j, and there is no action d j A A j such that
wðx�j; d jÞ > 0, pij ðxÞ ¼ þy.

In our construction, on the equilibrium path, if a player uses a unilateral
exit, he uses an exit that maximizes his absorbing payo¤. In particular, if x is
isolated, or semi-isolated with signaller j, the only unilateral exit player j may
use is b jðxÞ. The definition of pij ðxÞ captures the idea that if x is isolated, or
semi-isolated with signaller j, then player j does not know the identity of the
deviator, hence only the action b jðxÞ can be used for punishment. If x is semi-
isolated with signaller not j, then our mechanism will reveal the identity of the
deviator to j, hence j can choose the action that punishes the deviator the
most.

Define the punishment level (by absorption) of player i at x by

piðxÞ ¼ min
j0i

pij ðxÞ: ð4Þ

This definition captures the idea that one can choose (through an appropriate
definition of a correlation device) the player who punishes the deviator the
most.

Player i is punishable at x if piðxÞa giðxÞ. In this case, let jiðxÞ be the
punisher of player i at x; that is, a player j that attains the minimum in the
right hand side of (4). Observe that since there are at least three players, and
since each player has at least two actions, piðxÞ is always finite (for isolated
or semi-isolated x).

The next Lemma claims that for every maximal semi-isolated set Bk and
every i A I , the function pi : DðBkÞ ! ½0; 1 is quasi-concave.

Lemma 4.7. Let Bk be a maximal semi-isolated set, and let i be the signaller at
Bk. Then the function p

i : DðBkÞ ! ½0; 1 is quasi-concave.

Proof: Since the minimum of quasi-concave functions is quasi-concave, it is
su‰cient to prove that for every j0 i and every d j B suppðx jÞ, the function
f : DðBkÞ ! ½0; 1 defined by f ðxÞ ¼ uiðx�j; d jÞ is quasi-concave. Since the
ratio of two linear functions is quasi-concave, the result follows. 9

Corollary 4.8. Let Bk be a maximal semi-isolated set, and let i be the signaller at
Bk. There exists a concave function p̂p

i : X i ! ½0; 1 that satisfies: (i) p̂piðxÞ ¼ vi

when x A DðBkÞ and piðxÞb vi, and (ii) p̂piðxÞ < vi otherwise.
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Proof: Let C ¼ fx A DðBkÞ j piðxÞb vig. By Lemma 4.7 the function pi is
quasi-concave, hence C is convex. Since payo¤s are non negative, the function
p̂piðxÞ ¼ vi � ð1� dðx;CÞÞ, where dðx;CÞ is the Euclidean distance between x
and C, satisfies the requirements. 9

Our next goal is to combine the punishment level and the daily payo¤
function to a single continuous concave function.

Lemma 4.9. For every i A I there exists a continuous function ~rri : X ! ½0; 1
that is concave in xi for every fixed x�i A X�i, and that satisfies:

~rriðxÞ ¼

piðxÞ x is isolated

piðxÞ x is semi-isolated with signaller not i

p̂piðxÞ x is semi-isolated with signaller i

minfriðxÞ; vig x is weak or admits two signallers

8>>><
>>>:

ð5Þ

Proof: Fix a player i A I . Let B0 HA be the set of all isolated actions, and
BKþ1 HA be the set of all non absorbing action profiles that are neither
isolated nor contained in any maximal semi-isolated set. For every k ¼
0; 1; . . . ;K þ 1, let B�i

k be the projection of Bk on A�i:

B�i
k ¼ fa�i A A�i j ðfa�ig � AiÞXBk0qg:

Define B 0
k ¼ B�i

k � Ai. Observe that the sets B�i
k , k ¼ 0; 1; . . . ;K þ 1 are dis-

joint, and therefore so are B 0
k, k ¼ 0; 1; . . . ;K þ 1.

We first define the function ~rri only for mixed action profiles x such that
suppðxÞJB 0

k, for some k. We then extend ~rri to all X.
Let x be a mixed action profile such that suppðxÞJB 0

k, for some k ¼
0; 1; . . . ;K þ 1. Define

~rriðxÞ ¼

piðx�i; yiÞ k ¼ 0; ðx�i; yiÞ A Bk
piðx�i; yiÞ 1a kaK ; ðx�i; yiÞ A Bk,

and i is not the signaller at Bk

p̂piðxÞ 1a kaK ; x A B 0
k; i is the signaller at Bk

minfriðxÞ; vig k ¼ K þ 1; x A B 0
k:

8>>>>><
>>>>>:

ð6Þ

Observe that (6) agrees with (5) for every mixed action profile x such that

suppðxÞJ6Kþ1

k¼0
Bk, and that for every k and every fixed x�i A DðB�i

k Þ, the
function ~rriðx�i; xiÞ is concave in xi.

We now extend ~rri to X. For every x A X and every k ¼ 0; 1; . . . ;K þ 1, let
pk : X ! DðB 0

kÞ be the projection function:

pkðxÞ½a ¼
x½a
x½B 0

k
; Ea A B 0

k:

The projection is defined arbitrarily if x½B 0
k ¼ 0. Note that since B 0

k ¼
B�i
k � Ai, x½B 0

k ¼ x�i½B�i
k . Note also that ~rrikðpkðxÞÞ is already defined for

every x such that x½B 0
k > 0.
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Fix d A ð0; 1=2Þ. Since the sets B 0
k, k ¼ 0; 1; . . . ;K þ 1, are disjoint, and

since d < 1=2, if x�i½B�i
k  > 0 and x�i½B�i

l  > 0 then k ¼ l. Define for every
x A X

~rriðxÞ ¼
XKþ1

k¼0

1x�i ½B�i
k
b1�d

x�i½B�i
k  � ð1� dÞ

d
~rriðpkðxÞÞ:

Observe that at most one term in this summation is non zero.
The extended function ~rri is a sum of finitely many continuous functions,

hence continuous, and it clearly agrees with (5) on 6Kþ1

k¼1
DðB 0

kÞ. For every

fixed x�i A X�i, 1x�i ½B�i
k
b1�d

x�i ½B�i
k
 � ð1�dÞ
d

is independent of xi, hence ~rriðx�i; xiÞ
is concave in xi. 9

4.5. A classification result

For every x A X and every probability distribution m A DðEðxÞÞ we define the
expected absorbing payo¤ given by m to be

uðmÞ ¼
X

aL AEðxÞ
m½aLwðx�L; aLÞuðx�L; aLÞ

� X
aL AEðxÞ

m½aLwðx�L; aLÞ:

Recall that if EðxÞ contains joint exits then x admits two signallers.

Proposition 4.10. For every absorbing game there is a mixed action profile
x A X and a probability distribution m A DðEðxÞÞ that satisfy one of the follow-
ing conditions.

1. x is absorbing, x is individually rational for uðxÞ, and uiðxÞ ¼ uiðx�i; aiÞ for
every player i and every action ai A suppðxiÞ such that wðx�i; aiÞ > 0.

2. x is non absorbing, and x is individually rational for rðxÞ.
3. x is non absorbing, suppðmÞ contains a single exit, which is unilateral, and x
is individually rational for uðmÞ.

4. (a) x is non absorbing, (b) x is individually rational for uðmÞ, (c) for every
player i, if ai A suppðmÞ, then uiðx�i; aiÞ ¼ giðxÞb vi, and one of the fol-
lowing conditions holds:

d) (i) x is isolated, and (ii) for every player i A I , m½EðxÞXAi > 0 implies
that i is a punishable player at x.

d 0) (i) x is semi-isolated with signaller i0, and (ii) for every player i0 i0,
m½EðxÞXAi > 0 imply that i is a punishable player at x.

d 00) x is either weak, or admits at least two signallers.

Since the proof of this Proposition is involved, it is deferred to Section 9.
It is well known that if condition 1 (resp. 2, 3) holds, then uðxÞ (resp. rðxÞ,

uðmÞ) is an equilibrium payo¤. Thus, given Proposition 4.10, to prove Theo-
rem 3.3 it su‰ces to show that if 4 holds, the game admits a correlated equi-
librium payo¤. Moreover, we will see that in this case, uðmÞ is a correlated
equilibrium payo¤.
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In the next section we sketch the construction of equilibrium payo¤s in the
first three cases. In the following three sections we show how to construct a
correlated equilibrium payo¤ if the three cases (4.d), (4.d 0), (4.d 00) that appear
in condition 4 Proposition 4.10 hold.

5. Cases 1, 2 and 3

If either one of the first three cases of Proposition 4.10 hold, an equilibrium
payo¤ exists. We will construct for each of the cases an e-equilibrium profile;
namely, a correlated e-equilibrium with a trivial correlation device that sends
no messages. The construction is known and standard, and the interested
reader is referred to Vrieze and Thuijsman (1989), Solan (1999) or Vieille
(2000b) for more details.

Assume that the conditions of Case 1 are satisfied. The players play the
stationary profile x, and monitor their opponents for deviations. If the players
follow the stationary profile x the expected payo¤ is uðxÞ. There are deviations
of two types: (i) player i may play an action not in suppðxiÞ, and (ii) player i
may alter the frequency in which he plays actions in suppðxiÞ. Deviations of
the first type are detected immediately, and can be punished at the min-max
level. Since x is individually rational for uðxÞ, such deviations are not profit-
able. Deviations of the second type cannot be detected immediately, but since
uiðxÞ ¼ uiðx�i; aiÞ whenever wðx�i; aiÞ > 0 and ai A suppðxiÞ, those deviations
are not profitable as well. Player imay nevertheless profit if there exists yi A X i

such that (a) suppðyiÞH suppðxiÞ, (b) wðx�i; yiÞ ¼ 0, and (c) riðx�i; yiÞ >
uiðxÞ. Indeed, instead of playing the mixed action xi at each stage, he plays
the mixed action yi. To deter this type of deviations, players should verify at
each stage n that the distribution of the realized actions of each player i up to
stage n is approximately xi. The first player to fail this test, is punished at his
min-max level.

Assume that the conditions of Case 2 are satisfied. The players play as in
Case 1 the stationary profile x, and monitor their opponents for deviations. If
the players follow the stationary profile x the expected payo¤ is rðxÞ. The two
types of deviations mentioned for Case 1 apply here too, and they can be de-
terred as above.

Assume that the conditions of Case 3 are satisfied. Let ai be the
unique unilateral exit in suppðmÞ. The players play the stationary profile
ðx�i; ð1� hÞxi þ haiÞ, where h > 0 is su‰ciently small, while monitoring their
opponents for deviations. If the players follow this profile the game will be
eventually absorbed, and the expected average payo¤ is uðmÞ. Deviations are
deterred as in the previous two cases.4

6. Case 4.d: Isolated actions

In this section we consider case 4.d of Proposition 4.10. Thus, we assume that
x ¼ a is isolated.

4 Actually, uðmÞ is an equilibrium payo¤ even when the unique exit in suppðmÞ is a joint exit. As
this case is covered by case 4.d 00, we do not solve it here.
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Recall that biðaÞ is the unique action of player i that maximizes the ex-
pression uiða�i; d iÞ over d i 0 ai, that player i is punishable at a if giðaÞ ¼
uiða�i; biðaÞÞbminj0i u

iða�j; b jðaÞÞ ¼ piðaÞ, and that player jiðaÞ is the pun-
isher of i at a.

The next lemma follows from Solan and Vohra (2001, section 4.2). Since
the game is generic, this Lemma resolves case 4.d.

Lemma 6.1. If there is a probability distribution n A DðIÞ that satisfies (i)
n½i � > 0 implies that i is punishable at a, and (ii)

P
i A I n½i �u jða�i; biðaÞÞb g jðaÞ

for every j A I , then the game admits a correlated equilibrium payo¤.

Sketch of Proof: Fix e > 0. Assume first that wða�i; biðaÞÞ ¼ 1 for every
player i.

Define the following mechanism, where M A N is su‰ciently large.

1. A quitter i is chosen according to n.
2. Player i receives a positive integer d, uniformly distributed in f1; 2; . . . ;Mg.
3. The punisher of i at a, player j ¼ jiðaÞ receives the positive integer M þ d 0,

where d 0 is uniformly distributed in f1; 2; . . . ;Mg.
4. Each other player i 0 0 i; j receives the positive integer M þ d 0 þ 1.

Define now the following strategy s i for each player i:

. If you received the signal c (which is a positive integer), play ai in all stages
but stage c, in which you play biðaÞ.

It is easy to check that if the players follow the strategy profile s ¼ ðs iÞ
then the expected payo¤ is

P
i A I n½i �uða�i; biðaÞÞ.

We now verify that if M is su‰ciently large, no player can gain too much
by deviating.

First, if M is su‰ciently large, the probability a player correctly guesses d
(if he is not i) or d 0 (if he is i) is low. Since player i is punishable, he cannot
profit to much by deviating.

Second, if M is su‰ciently large, then, with high probability, no player
j0 i knows whether he is the punisher or not. Therefore, if a player j0 i
plays some action b j 0 a j before stage d, js expected payo¤ is

u jða�j; b jÞa u jða�j; b jðaÞÞa g jðaÞa
X
i A I

n½i �u jða�i; biðaÞÞ:

In particular, no player j0 i can gain too much by deviating.
If wiða�i; biðaÞÞ is strictly less than 1, even if the ‘designated quitter’ plays

the action biðaÞ at stage d the game can continue. Once he plays biðaÞ, his
identity is revealed to everyone. Since some players may get a low payo¤ if the
game is actually terminated by the designated quitter, a new designated quit-
ter must be chosen. As signals are sent only before start of play, this player
needs to know in advance that, if the game is not terminated by the first
quitter, he should do the job.

Thus, in this case the correlation device chooses an infinite sequence of
quitters and punishers, which are chosen independently according to the pro-
cedure explained above, so that every player receives an infinite sequence of
positive integers.
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The players play in rounds; at round k, if the game was not already ab-
sorbed, the players play as explained above using the kth signal from the in-
finite sequence.

If some player i plays the action biðaÞ in one of the first M stages of the
round, everyone treat him as if he was the designated quitter, and continue to
the next round. Note that if i is not the kth designated quitter, only the kth
designated quitter knows of i ’s deviation, but he has no way to transmit this
information to the other players.5

If no player i played the action biðaÞ in the first M stages of the round, the
identity of the punisher j is revealed at the punishment stage. From that stage
on, the punisher plays ð1� hÞa j þ hb jðaÞ, where h > 0 is su‰ciently small,
while all other players play a�j. The punisher punishes with small probability
at every stage, to mask the punishment stage.

One can verify that if h is small compared to mini AN wða�i; biðaÞÞ > 0, this
mechanism is a correlated e-equilibrium. 9

7. Case 4.d 0: Semi-isolated profiles

In this section we consider case 4.d 0 of Proposition 4.10, and prove that uðmÞ is
a correlated equilibrium payo¤.

Since x is semi-isolated, m is supported by unilateral exits. Let e > 0 be
su‰ciently small, and let i0 be the signaller at x.

We define the following mechanism, that is performed in rounds, and de-
pends on the parameters h A ð0; 1Þ, K1;K2 A N.

Coordination phase

1. The correlation device chooses for every t A N an element Yt A f0gWEðxÞ,
where PðYt ¼ 0Þ ¼ 1� h and PðYt ¼ aiÞ ¼ hm½ai�. Define for every t A N

it ¼
0 Yt ¼ 0

i Yt A Ai

�

2. For every t A N and every ai A EðxÞ, the device chooses an integer ktðaiÞ A
f1; 2; . . . ;K2g according to the uniform distribution.

3. Each player i A I receives, for every t such that it ¼ i, both Yt and ktðYtÞ.
4. Each player i A I such that i0 it receives fktða jÞ; j0 i; t A Ng.
5. For every t A N the device chooses a verification key vt A f1; 2; . . . ;K2g,

and an encryption key et A f1; 2; . . . ; jI jg according to the uniform distri-
bution.

6. The signaller i0 receives the sequence fet; t A Ng, and, for every t such that
it 0 i0, he receives vt as well.

7. Each player i0 i0 receives fvt; t A Ng, and fet þ it mod jI j; t A Ng.
8. All choices of the device are done independently.

If it 0 0 then player it has to use the exit Yt at the tth round. If it ¼ 0, no
player will use any unilateral exit.

5 At the cost of a more complicated correlation device one can ensure that this type of deviation is
not profitable. For more details, see the construction in section 7.
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The mechanism proceeds in rounds. Each round consists of two phases, a
quitting phase, which lasts for K2 stages, and a revelation phase. We now ex-
plain the structure of round t.

Quitting Phase

9. For K2 stages each player i0 it plays x
i.

10. If it0 0, player it chooses a stage t0 A fktðYtÞ; ktðYt þ 1Þ; . . . ; ktðYt þ K1Þg
according to the uniform distribution. He plays Yt at stage t0 of the round,
and xit at all other stages.

If this mechanism is followed then the expected payo¤ if Yt 0 0 is uðmÞ. If h is
su‰ciently small, the expected payo¤ of every player j0 i along the round,
given his information, is approximately uðmÞ.

There are four types of deviations possible from this procedure. (i) Player it
may play an action ait 0Yt. (ii) Player it may not play the action Yt at all. (iii)
Player it may play (at least) twice the action Yt. (iv) Player i0 it may play
some action ai.

Let us see which of those deviations can be detected by the players. Since
player it does not know ktðaitÞ for ait 0Yt, while players i0 it do know it,
the chances that player it can correctly guess ktðaitÞ are small, provided K2 is
much large than K1. Deviation (i) can therefore be detected with high proba-
bility. For the same reason, deviation (iv) can be detected with high proba-
bility. Deviation (iii) can be detected once player it plays Yt for the second
time. Since x is individually rational for uðmÞ, these three types of deviations
are not profitable, provided a deviator is punished by his min-max level upon
deviation.

To deter deviation (ii), the identity of it should be revealed, so that he can
be punished. If no player used any unilateral exits in the first K2 stages of
round t, a revelation phase takes place.

RevelationBPunishment phase

11. The signaller i0 publicly transmits vt and et.

By transmitting vt, the signaller i0 proves that he is not it; if K2 is su‰ciently
large than the chance that he can correctly guess vt is low. After the revelation
phase, all players but player i0 know the identity of it (unless i0 ¼ it, in which
case i0 is also aware of that). If i0 is the deviator, he can be punished at his
min-max level. If it 0 i0 and the punisher of it is j0 i0, then player j has to
punish it.

12. If the punisher j of it is not i0, for 1=h2 stages,6 player j plays
ð1� hÞx j þ hd j, where d j A A j is the action that minimizes uiðx�j; a jÞ
among all actions a j such that wðx�j; a jÞ > 0 and h is su‰ciently small. In
those stages, player i0 plays x

i0 , and every player j 0 0 j; i0, plays x
j 0 .

This ends the description of round t.

6 Whenever we refer to a non-integer number s of stages, it should be understood as the smallest
integer larger than s.
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Absorption need not occur during the last 1=e2 stages of the round for
three reasons: (i) Player it was supposed to be punished, but by the luck of the
draw, player j did not punish him. This event occurs with low probability,
provided h is su‰ciently small. (ii) it ¼ 0, and no player was supposed to be
punished. (iii) Player i0 is the punisher of player it.

In the first two cases the players continue to the next round. However, if i0
is the punisher of it, then i0 should play his punishing action. Recall that the
punishing action of i0 is b

i0ðxÞ, so that, if all other players never use a unilat-
eral exit, i0 will eventually play bi0ðxÞ, thereby punishing it, without knowing
who it is. Thus, if i0 is the punisher of it, in all subsequent rounds each player
j 0 0 i0 stops following the above procedure, and plays the mixed action x j 0 .

The only complication that may arise is if i0 is the punisher of it, but
m½bi0ðxÞ� ¼ 0. Observe that if the players follow the above mechanism then
absorption eventually occurs, and the expected payo¤ is uðmÞ. Thus, if for
1=h2 subsequent rounds no player has used any exit in EðxÞ, player i0 under-
stands that he is the punisher, and plays at every subsequent stage the mixed
action ð1� hÞxi0 þ hbi0ðxÞ.7

It is straightforward to verify that no player can profit too much by devi-
ating, provided h is chosen su‰ciently small and K1 and K2 su‰ciently large.

8. Case 4.d 00: Other non-absorbing profiles

In this section we deal with weak profiles and non-absorbing profiles that ad-
mit at least two signallers. In these cases the identity of the chosen one can be
revealed to every player, so that he can be punished with his min-max level,
rather than by single punishments. We will prove that uðmÞ is a correlated
equilibrium payo¤.

8.1. x admits at least two signallers

In this section we assume that x admits at least two signallers. In particular,
EðxÞ may contain joint exits.

It is well known (see, e.g. Vieille (2000b) or Solan (1999)) that joint exits
can be controlled by the players. To control unilateral exits the device chooses
whether any player should use a unilateral exit, and if so who it is. The sig-
nallers will then reveal the identity of the chosen player. Since there are at
least two signallers, the identity is revealed to everyone, and if the chosen
player does not use a unilateral exit, he can be punished. If one of the signal-
lers misreports, the report of the other signaller is still consistent with the re-
alized play. So such a deviation can be detected by the players.

Our construction here is similar to the one presented in Case 4.d 0. We de-
scribe here only the relevant changes.

Let i1 and i2 be two distinct signallers. The coordination phase is similar to
that presented in Case 4.d 0, with the following exception. The device chooses a
verification key and an encryption key independently for the two signallers at

7 It can be shown that if m½bi0 ðxÞ� ¼ 0 then there is a player j0 i0 who can punish it, so that this
case essentially need not arise.
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every stage. The verification and encryption keys are handled in an analogous
way to that in Case 4.d 0.

Let d A ð0; eÞ be su‰ciently small. For every aL A suppðmÞ define dðaLÞ ¼
ðdm½aL�=wðx�L; aLÞÞ1=jLj.

Define a strategy s i in rounds. Recall that K1 and K2 are two su‰ciently
large integers. The first K2 stages of the round are devoted to unilateral exits
in EðxÞX suppðmÞ, as done in Case 4.d 0. Let E 0 be the set of all joint exits in
EðxÞX suppðmÞ. Each one of the following jE 0j stages corresponds to one joint
exit aL in E 0. At the stage that corresponds to the joint exit aL each player
i B L plays xi, and each player i A L plays ð1� dðaLÞÞxi þ dðaLÞai.

In the revelation phase both signallers execute step 11 as described in Case
4.d 0.

If the players follow s ¼ ðs iÞ then the game will eventually be absorbed.
Moreover, provided that d is su‰ciently small, there exists h A ð0; 1Þ such that
the probability that the game is absorbed through the exit aLk

k is approxi-
mately m½aLk

k �, thereby the expected payo¤ for the players is approximately
uðmÞ.

There are several ways players may deviate from this procedure. (i) A
player could play an action that has probability 0 under this procedure. Such
a deviation is detected immediately, and can be punished at the min-max
level. By condition 4.b of Proposition 4.10 such a deviation is not profitable.
(ii) Player i may play an action ai A suppðmÞ when he is not supposed to, or
not play it when he is supposed to. If i deviates in this way, and the game is
not terminated, his deviation is detected after the revelation phase, and can be
punished at the min-max level. As in (i), it is not profitable. (iii) Player i may
alter the frequency with which he plays di¤erent actions in suppðxiÞ, or with
which he perturbs to aik in stages that correspond to a joint exit. To deter this
kind of deviations, we add standard statistical tests (see, e.g., Solan (1999) or
Vieille (2000b)). (iv) A signaller, say i1, can signal an incorrect signal at some
round. Since he does not know vt

a j for a
j 0Yt, if he sends an incorrect verifi-

cation key, this key does not correspond to the key the other players possess,
and his deviation can be identified. If he sends an incorrect encryption key,
trying to frame an innocent player, the report of the other signaller coincides
with the realized play. Thus this deviation is detectable as well.

8.2. x is weak

In this section we assume that x is weak; that is, x admits one signaller i0 and
at least one weak signaller i1. Since x is weak, EðxÞ contains only unilateral
exits.

We will see that the identity of the designated quitter can be revealed to
everyone. The construction is similar to the construction presented in section
7. The signaller i0 can reveal the identity of the designated quitter to everyone.
However, i0 will be ignorant of the identity of the designated quitter. We
then append a phase in which the weak signaller reveals the identity of the
designated quitter to i0. Afterwards, the designated quitter is punished by
his min-max value. Here we will explain how the weak signaller i1, with the
help of the signaller, reveals the identity of the designated quitter to the sig-
naller.

Fix e > 0. Let ai0 A Ai0 and ai1 B suppðxi1Þ be two actions that satisfy
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wðx�i0 ; ai0Þ ¼ wðx�i0; i1 ; ai0 ; ai1Þ ¼ 0:

The device chooses jI j di¤erent numbers t1 < t2 < � � � < tjI j in the range
f1; . . . ;Tg with the uniform distribution,8 where T is su‰ciently large so that
PðtjI j < T � 1=eÞ > 1� e. To each member of fi0; i1g who is not the designated
quitter, the device sends these numbers.

Next, the revelation phase is modified. After player i0 sends the verification
key and the encryption key, player i0 either reveals that he is the designated
quitter, or reveals the identity of the designated quitter i to every player j0 i0.
Player i1 now has to reveal the identity of the designated quitter to i0, assum-
ing i0 is not the deviator.

For simplicity, number the following T stages by f1; 2; . . . ;Tg. In those
stages the players play as follows.

. Each player j0 i0; i1 plays x
j.

. If i0 is not the designated quitter, he plays ai0 at every stage tk, k ¼
1; 2; . . . ; jI j. At all other stages he plays xi0 .
. If i1 is not the designated quitter, he plays ai1 at stage ti, and xi1 at all other
stages.

Since wðx�i0 ; ai0Þ ¼ wðx�i0; i1 ; ai0 ; ai1Þ ¼ 0, if the players follow the revelation
phase the game is not absorbed.

If i1 is not the designated quitter, he knows t1; . . . ; tjI j and therefore reveals
the identity of the designated quitter to i0. If, on the other hand, i1 is the des-
ignated quitter, he does not know t1; . . . ; tjI j. If he ever plays the action ai1 ,
with high probability it will be in a stage di¤erent than t1; . . . ; tjI j, and his
identity as the designated quitter be revealed. If he never plays the action ai1 ,
he is declared the deviator.

It is easy to verify that no player can profit too much by any type of devi-
ation.

9. Proof of Proposition 4.10

The goal of this section is to prove Proposition 4.10. Our approach is similar
in spirit to that of Solan (1999). We first introduce an auxiliary game that is
‘close’ in some sense to the original absorbing game. By studying the asymp-
totic behavior of a sequence of discounted equilibria of the auxiliary game, we
establish the existence of a mixed action x and a probability distribution over
EðxÞ that satisfy one of the su‰cient conditions listed in Proposition 4.10.

9.1. Definition of an auxiliary game

In Solan (1999) an auxiliary game is defined by changing the non-absorbing
payo¤ of the original game. For every discount factor l A ð0; 1Þ the auxiliary
game is shown to admit a stationary l-discounted equilibrium xl. Moreover,

8 That is, every increasing sequence of jI j numbers in this range has the same probability to be
chosen.
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the limit of the l-discounted min-max values of the auxiliary game is equal to
the min-max value of the original game. It is then proved that if there is no
uniform e-equilibrium where the players play the limit stationary strategy
x0 ¼ liml!0 xl and statistically check for deviations of their opponents, then
there exists a probability distribution m over the exits Eðx0Þ such that x0 is
individually rational for uðmÞ. We cannot apply this result directly to our case
since we require the m to satisfy an additional punishability condition. Never-
theless it is still possible to execute something similar.

For every discount factor l A ð0; 1Þ we define an auxiliary discounted game
Glð~rrÞ. The payo¤ to player i in Glð~rrÞ associated with a strategy profile s is:

~gg ilðsÞ ¼ Es l
Xy
n¼1

ð1� lÞn�1ð1nay~rr
iðxnÞ þ 1n>yu

iðxyÞÞ
 !

where ~rri is given by Lemma 4.9, xn is the mixed-action prescribed by s at
stage n, and y is the stage of absorption. That is, the absorbing game with
non-absorbing payo¤ ~rr, but at stage n if the game is not yet absorbed, instead
of getting the payo¤ rðanÞ the players get the payo¤ ~rrðxnÞ.

Lemma 9.1. The game Glð~rrÞ admits a stationary equilibrium.

Proof: By Lemma 4.9, for every player i A I the function ~rri is continuous and
concave in xi for every fixed x�i A X�i.

It is well known (see, e.g., Vrieze and Thuijsman (1989) or Solan (1999))
that for every player i, every discount factor l A ð0; 1Þ and every stationary
profile x

~gg ilðxÞ ¼
l~rriðxÞ þ ð1� lÞwðxÞuiðxÞ

lþ ð1� lÞwðxÞ : ð7Þ

Since the denominator is strictly positive, ~gg il is continuous.
We now show that for every player i A I and every fixed x�i A X�i,

the function ~gg ilðx�i; xiÞ : X i ! ½0; 1� is quasi-concave; that is, for every c A R,
the set fxi A X i j ~gg ilðx�i; xiÞb cg is convex. Let x�i A X�i, xi; yi A X i,
b A ½0; 1� and c A R be fixed. Denote x ¼ ðx�i; xiÞ, y ¼ ðx�i; yiÞ and z ¼
bxþ ð1� bÞy. We assume that ~gg ilðxÞ; ~gg ilðyÞb c, and prove that ~gg ilðzÞb c.
By assumption, l~rriðxÞb cðlþ ð1� lÞwðxÞÞ � ð1� lÞwðxÞuiðxÞ and l~rriðyÞb

cðlþ ð1� lÞwðyÞÞ � ð1� lÞwðyÞuiðyÞ. By the multi-linearity of w and wu,
and the concavity of ~rriðx�i; �Þ, l~rriðzÞb cðlþ ð1� lÞwðzÞÞ � ð1� lÞwðzÞuiðzÞ.
By (7), ~gg ilðzÞb c.

By Theorem 4.4.1 in Mertens, Sorin and Zamir (1994), the game Glð~rrÞ
admits a stationary equilibrium, as desired. 9

By Lemma 9.1 for every discount factor l the game Glð~rrÞ admits a sta-
tionary equilibrium xl. ~gglðxlÞ is the corresponding discounted equilibrium
payo¤. By taking a subsequence, we assume w.l.o.g. that the limits x0 ¼
liml!0 xl and ~gg0 ¼ liml!0 ~gglðxlÞ exist, and that for every i A I , the support,
suppðxi

lÞ, is independent of l. In the sequel we will assume using the same
reasoning that other limits we take exist.
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Recall that for every discount factor l A ð0; 1Þ and every profile x

~gglðxÞ ¼ alðxÞ~rrðxÞ þ ð1� alðxÞÞuðxÞ;

where alðxÞ ¼ l=ðlþ ð1� lÞwðxÞÞ. We define a0 ¼ liml!0 alðxlÞ.
Note that if y is an absorbing profile and ðylÞ are stationary profiles such

that yl ! y then liml!0 alðylÞ ¼ 0 and liml!0 ~gglðylÞ ¼ uðyÞ.
For every exit aL A Eðx0Þ define

xl½aL� ¼
Y
i AL

xi
l½ai�

Y
i BL

xi
l½xi

0�:

This is the per-stage probability that the game is absorbed through aL if the
players play xl. xl induces a probability distribution over Eðx0Þ as follows:

ml½aL� ¼ wðx�Ll ; aLÞxl½aL�
� X

bL AEðx0Þ
wðx�Ll ; bLÞxl½bL�:

This is the conditional probability that the game is absorbed by the exit aL

when the players follow xl, given that an exit in Eðx0Þ is used.
We define for every aL A Eðx0Þ

m0½aL� ¼ lim
l!0

ml½aL�:

Then m0 is a probability distribution over Eðx0Þ.
One can verify that (Solan 1999, Lemma 6.6)

lim
l!0

uiðxlÞ ¼
X

aL AEðx0Þ
m0½aL�uiðx�L0 ; aLÞ ¼ uiðm0Þ:

It follows that

~gg0 ¼ a0~rrðx0Þ þ ð1� a0Þuðm0Þ: ð8Þ

We first prove that if player i has some action ai that is absorbing against
x�i0 , then his absorbing payo¤ by using ai cannot exceed ~gg i0.

Lemma 9.2. If ai A Ai satisfies wðx�i0 ; aiÞ > 0 then uiðx�i0 ; aiÞa ~gg i0.

Proof: Since wðx�i0 ; aiÞ > 0 it follows that liml!0 alðx�il ; aiÞ ¼ 0. Therefore

~gg i0 ¼ lim
l!0

~gg ilðxlÞb lim
l!0

~gg ilðx�il ; aiÞ ¼ uiðx�i0 ; aiÞ: 9

Lemma 9.3. Let i A I . If x0 is either isolated or semi-isolated with signaller not
i, then ~gg i0 b piðx0Þ. In particular, if a0 < 0 then uiðm0Þb ~gg i0.

Proof: We prove the result when x0 is isolated. The proof when x0 is semi-
isolated with signaller not i is similar.

By the definition of ~rri, ~rriðx0Þ ¼ piðx0Þ. If a0 ¼ 1, the result follows by (8).

Correlated equilibrium payo¤s and public signalling in absorbing games 115



If a0 < 1 then m0 is supported by unilateral exits. By the definition of
the punishment level, uiðx�j0 ; b jðx0ÞÞb piðx0Þ for every j0 i. Recall that
~gg i0 ¼ liml!0 g

i
lðxlÞb liml!0 g

i
lðx�il ; xi

0Þ. By (8), the right hand side is a convex
combination of ~rriðx0Þ and uiðx�j0 ; b jðx0ÞÞ, j0 i. The first claim follows. The
second claim now follows by (8). 9

In the rest of the section we study the asymptotic properties of the sequence
ðxlÞl!0.

9.2. The limit of the discounted equilibrium payo¤s

In the present section we compare various quantities to the min-max value.

Lemma 9.4. For every isolated action a and every player i A I ,
maxfpiðaÞ; giðaÞgb vi.

Proof: Consider the following profile of players Infig:

1. Each player k A Infi; jiðaÞg plays ak.
2. Player jiðaÞ, the punisher of i at a, plays ð1� hÞa jiðaÞ þ hb jiðaÞðaÞ, where

h A ð0; 1Þ.

The best that player i can do against that profile is (up to h) maxfpiðaÞ; giðaÞg.
Thus, players Infig can bound the payo¤ of i from above by maxfpiðaÞ; giðaÞg,
and therefore his min-max value cannot exceed that number. 9

A similar argument proves the following.

Lemma 9.5. For every semi-isolated profile x with signaller i0, and every player
i0 i0, maxfpiðxÞ; giðxÞgb vi.

Lemma 9.6. Let B ¼ Ui A I B
i be the support of a maximal semi-isolated profile

with signaller i0. Assume that gi0ðxÞ < vi0 for any semi-isolated x such that
suppðxÞJB.9 Denote by a�i0 the unique action combination of Infi0g in B.
Then

max
y i0 ADðBi0 Þ

minfri0ða�i0 ; yi0Þ; pi0ða�i0 ; yi0Þgb vi0 :

Before proving the Lemma, we define the max-min value, and recall a re-
sult due to Neyman (2002). The real number vi is the max-min value of player
i if for every e > 0 there exists a positive integer n0 A N and a strategy s i of
player i such that g inðs�i; s iÞb vi � e for every profile s�i and every nb n0,
and for every strategy t i of player i there is a profile s�i of players Infig such
that g inðs�i; t iÞb vi � e for every nb n0.

Neyman (2002) proves that in a two player zero-sum stochastic games with
finitely many states and actions, if each player is restricted to use strategies

9 Recall that gi0 ðxÞ depends only on x�i0 , and is independent of xi0 .
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such that the mixed action chosen at every stage is in some fixed convex,
compact and semi-algebraic subset of the set of mixed actions, then the min-
max value and the max-min value coincide.

Proof: Let c ¼ maxyi0 ADðBi0 Þminfri0ða�i0 ; yi0Þ; pi0ða�i0 ; yi0Þg.
Fix d; h > 0 su‰ciently small. Let G 0 be a game similar to G, but (i) in G 0

every player i0 i0 can only use strategies that at every stage choose the
action ai with probability at least 1� h, and (ii) for every action combination
b�i0 A A�i0 , if there are at least two distinct players j in Infi0g such that
b j 0 a j then wðb�i0 ; bi0Þ ¼ 1 and ui0ðb�i0 ; bi0Þ ¼ 2 for every bi0 A Ai0 .10 That
is, if at least two players in Infi0g play an action that di¤ers from that in-
dicated by a�i0 , the game is absorbed, and the absorbing payo¤ of player i0 is
high.

Let ûui0 be the max-min value of player i0 in G 0.
We will show that cb ûui0 b vi0 , thereby proving the result.
We first show that ûui0 b vi0 .
By collapsing players Infig into a single player and using Neyman (2002),

the max-min value of player i0 in G
0, is equal to the min-max value of player i0

in G 0, provided players Infi0g can correlate their actions. In particular, there
exists a correlated profile t�i0 such that (i) at every stage, each t chooses a with
probability at least ð1� hÞjI j�1 > 1� jI jh, and (ii) for every strategy s i0 of
player i0, the expected payo¤ of player i0 under ðs i0 ; t�i0Þ is at most ûui0 þ h in
every su‰ciently long game.

Since if at least two players j in Infi0g play an action di¤erent than a j the
game is absorbed, and the absorbing payo¤ is 2, which is strictly more than
ûui0 þ h, there exists a profile t�i0 that satisfies (i) and (ii), and such that the
overall probability that at some stage more than one player j0 i0 plays an
action di¤erent than a j is 0.

We now define a non-correlated profile ~tt�i0 that approximates t�i0 . For
every finite history h, every player i0 i0 and every d i 0 ai, define ~tt iðhÞ½d i� ¼
t�i0ðhÞ½a�i; i0 ; d i�; that is, player i plays d i with the same probability that
ða�i; i0 ; d iÞ should have occurred according to t�i0 . We set ~tt iðhÞ½ai� ¼
1�

P
d i0a i ~tt iðhÞ½d i�b 1� jI jh.

Observe that under ~tt�i0 at every stage each action d j 0 a j is played with
probability at most jI jh. In particular, under ~tt�i0 the overall probability that
at some stage at least two players j0 i0 play an action other than a j is at
most hjI j2jI j�1.

It follows that by playing ~tt�i0 in G 0 (though this profile is not permissible
in G 0), players Infi0g bound the payo¤ of i0 from above by ûui0 þ Kh, where
K > 0 is some constant.

Since in G payo¤s do not exceed the payo¤s in G 0, by playing ~tt�i0 in G
players Infi0g bound the payo¤ of i0 from above by ûui0 þ Kh. Since h is
arbitrary, ûui0 b vi0 .

We now prove that cb ûui0 .
Let s i0 be any strategy of player i0 in G 0, and define the process ðx i0n Þn AN

as the mixed action played by player i0 at stage n. To simplify the proof,
we assume that s i0 never chooses actions that are not in Bi0 : for every
ai B Bi0 and every mixed action x�i0 such that xi½ai�b 1� h for every i0 i0,

10 The absorbing payo¤ of players Infi0g is irrelevant.
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wðx�i0 ; xi0Þ > 0 and, if h and d are su‰ciently small, ui0ðx�i0 ; xi0Þ <
gi0ðxÞ þ d < vi0 a ûui0 , so that such actions can only reduce the expected payo¤
of player i0.

We will now define a strategy profile t�i0 such that the expected payo¤
to player i0 under ðs i0 ; t�i0Þ is below c. By the simplifying assumption, the
value of x i0n is in DðBi0Þ a.s. By the definition of c, either ri0ða�i0 ; x i0n Þa c or
pi0ða�i0 ; x i0n Þa c (or both).

If ri0ða�i0 ; x i0n Þa c, each player i0 i0 plays a
i.

If pi0ða�i0 ; x i0n Þa c, denote by j the punisher of i0 at x
i0
n , and let d j 0 a j

satisfy u jða�i0; j; x i0n ; d jÞ ¼ pi0ða�i0 ; x i0n Þ. Player j plays ð1� hÞa j þ hd j, while
each player i0 i0; j plays a

i.
Thus, under ðs i0 ; t�i0Þ, at every stage, either the game is absorbed with

probability 0, and the non absorbing payo¤ is at most c, or the game is ab-
sorbed with probability bounded away from 0, and the expected absorbing
payo¤ is at most c.

It follows that the expected payo¤ of player i0 under ðs i0 ; t�i0Þ is at most
cþ d in every su‰ciently long game, as desired. 9

Lemma 9.7. ~gg i0 b vi for every player i A I .

One way of proving the lemma would be to show that for every l A ð0; 1Þ
the min-max value of player i in Glð~rrÞ, vilð~rrÞ, exists and liml!0 v

i
lð~rrÞb vi.

This would yield a stronger result than needed. This approach is taken in
Solan (1999), where ~rri was defined as minfri; vig, and it was proven that
liml!0 v

i
lðminfr; vgÞ ¼ vi. Since pi is incomparable to vi, we cannot invoke

Solan’s result to prove the Lemma.

Proof: Fix a player i A I . In the sequel we use the fact that xl converge to a
limit x0, and that ~gg

i
0 ¼ liml!0 ~gg

i
lðxlÞ.

We have four cases, that correspond to isolated actions, semi-isolated ac-
tions with signaller i, semi-isolated actions with a signaller that is not i, and a
case that deals with all other possibilities.

Assume that there exists ai A Ai such that a ¼ ðx�i0 ; aiÞ is an isolated profile.
By Lemma 9.2, ~gg i0 b giðaÞ. Lemma 9.3 implies that ~gg i0 b piðaÞ. The result fol-
lows by Lemma 9.4.

Assume that there exists ai A Ai such that ðx�i0 ; aiÞ is a semi-isolated profile
with signaller which is not i. Similar arguments, using Lemma 9.5, show that
~gg i0 b vi.

Assume that there exists ai A Ai such that x ¼ ðx�i0 ; aiÞ is a semi-isolated
profile with signaller i. If giðxÞb vi the result follows by Lemma 9.2. Assume
then that giðxÞ < vi.

By Lemma 9.6 there is yi A DðBiÞ such that piða�i; yiÞb vi, so that
~rriða�i; yiÞ ¼ vi and ui0ða�j; i; yi; d jÞb vi for every j0 i and every d j 0 a j. In
particular, by (8),

~gg i0 ¼ lim
l!0

~gg ilðxlÞb lim
l!0

~gg ilðx�il ; yiÞb vi:

Last, assume that there is no action ai A Ai such that one of the first
three cases hold. If there exists an action ai A Ai such that wðx�i0 ; aiÞ > 0 and
uiðx�i0 ; aiÞb vi the result follows by Lemma 9.2.
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Otherwise, by the definition of the min-max value, the set Di ¼
fai A Ai jwðx�i0 ; aiÞ ¼ 0 is not empty. For each j0 i set D j ¼ suppðx j

0Þ.
Fix h; d > 0 su‰ciently small. The functions ~rr and r are continuous over

X. Moreover, ~rr ¼ minfr; vg on D ¼ Uj A I DðD jÞ. Hence, if h is su‰ciently
small, ~rr jðxÞbminfr jðxÞ; v jg � d for every j A I and every x A X such that
dðx;DÞa h. It follows from Solan (1999, Eq. (30)) that for every l su‰ciently
small there exists xi A suppðDiÞ such that ~gg ilðx�il ; xiÞb vi � 2d. Therefore
~gg i0 b liml!0 ~gg

i
lðx�il ; xiÞb vi � 2d. Since d is arbitrary, the result follows. 9

9.3. Asymptotic analysis

In the present section we prove that x0 satisfies one of the conditions of Propo-
sition 4.10.

The following corollary follows easily from the definition of individual
rationality and Lemmas 9.7 and 9.2.

Corollary 9.8. x0 is individually rational for ~gg0.

Lemma 9.9. If x0 is absorbing then condition 1 in Proposition 4.10 holds.

Proof: Since x0 is absorbing, ~gg0 ¼ uðx0Þ. By Corollary 9.8, x0 is individually
rational for ~gg0 ¼ uðx0Þ.

By Lemma 9.2, for every player i A I ,

uiðx0Þ ¼
X
a i AAi

xi
0½ai�wðx�i0 ; aiÞuiðx�i; aiÞ=wðx0Þa uiðx0Þ;

hence uiðx�i; aiÞ ¼ uiðx0Þ whenever ai A suppðxi
0Þ with wðx�i0 ; aiÞ > 0. 9

Lemma 9.10. If a0 ¼ 1 then either condition 2 or condition 3 of Proposition 4.10
hold.

Proof: Since a0 ¼ 1, ~gg0 ¼ ~rrðx0Þ and x0 is non-absorbing. By Corollary 9.8, x0
is individually rational for ~gg0 ¼ ~rrðx0Þ. We have three cases:

1. x0 ¼ a is an isolated action.
2. x0 is a semi-isolated profile.
3. None of the first two cases hold.

Consider the last case first. We show that condition 2 of Proposition 4.10
holds.

By the definition of ~rri, ~gg i0 ¼ ~rriðx0Þ ¼ minfriðx0Þ; viga riðx0Þ for every i A I .
By Corollary 9.8 x0 is individually rational for rðx0Þ, as desired.

Assume now that x0 ¼ a is an isolated action. We show that condition 3
of Proposition 4.10 holds, with suppðmÞ ¼ b jðaÞ, for any j A I .

By the definition of ~rri at isolated actions, by Corollary 9.8 and Lemma
9.2, piðaÞ ¼ ~rriðaÞ ¼ ~gg i0 b giðaÞ for every i A I . But this implies that for every
j0 i, uiða�j ; b jðaÞÞb piðaÞb giðaÞ. By Lemma 9.4, uiða�j; b jðaÞÞb vi for
every i; j A I . The claim follows.

Correlated equilibrium payo¤s and public signalling in absorbing games 119



Assume now that x0 is a semi-isolated profile with signaller i0. We show
that condition 3 of Proposition 4.10 holds, with suppðmÞ ¼ b jðaÞ, for any
j0 i0.

By Lemma 9.2 and the definition of ~rriðx0Þ, giðx0Þa ~gg i0 ¼ ~rriðx0Þ ¼ piðx0Þa

uiðx�j0 ; b jðx0ÞÞ for every i0 i0 and every j0 i. By Lemma 9.5 piðx0Þb vi for
every i0 i0. For player i0 we have, by Lemma 9.7, v

i0 a ~gg i00 ¼ ~rri0ðx0Þ, so that
by the definition of ~rri0ðx0Þ, ~gg i00 ¼ ~rri0ðx0Þ ¼ vi0 . Since ~rri0ðx0Þ ¼ p̂pi0ðx0Þ, it fol-
lows that pi0ðx0Þb vi0 . This implies, by Lemma 9.2, that gi0ðx0Þa ~gg i00 ¼
vi0 a pi0ðx0Þa ui0ðx�j0 ; b jðx0ÞÞ for each j0 i0. As in the case of isolated ac-
tions, the claim follows. 9

Assume now that x0 is non-absorbing, but a0 < 1. We prove that condition
4 of Proposition 4.10 holds. Since a0 < 1, xl is absorbing for every l su‰-
ciently small.

If player i has a unilateral exit ai that receives a positive probability under
m0, then his absorbing payo¤ by using it is ~gg i0.

Lemma 9.11. If ai A Eðx0Þ and m0½ai� > 0 then uiðx�i0 ; aiÞ ¼ ~gg i0 b vi.

The lemma is proved in Solan (1999, proof of Theorem 4.5, Step 8). Note
that if ai A Eðx0Þ then wðx�i0 ; aiÞ > 0, and that by Lemma 9.2, uiðx�i0 ; aiÞa ~gg i0.
Since the function ~rr is not multi-linear this lemma is not an immediate conse-
quence of Lemma 9.2 and (8).

Lemmas 9.11 and 9.2 imply that condition 4.c in Proposition 4.10 holds.

Lemma 9.12. If x0 is non-absorbing and neither isolated nor semi-isolated, and
a < 1 then condition 4.b in Proposition 4.10 holds.

Proof: Since x0 is neither isolated nor semi-isolated, it is either weak or admits
two signallers.

By Corollary 9.8 it is su‰cient to show that uiðm0Þb ~gg i0 for every i A I .
Since x0 is neither isolated nor semi-isolated, ~rr

iðx0Þa vi a ~gg i0, and in par-
ticular (8) implies that uiðm0Þb ~gg i0 b vi, as desired. 9

We now confine our attention to the case when x0 ¼ a is an isolated action,
or x0 is a semi-isolated action. Recall that in these cases Eðx0Þ includes only
unilateral exits.

Lemma 9.13. If x0 ¼ a is an isolated action and a < 1 then conditions 4.b and
4.d.ii in Proposition 4.10 hold.

Proof: Condition 4.b holds by (8), Corollary 9.8 and Lemma 9.3.
Since Eðx0Þ contains only unilateral exits, and since the game is generic,

Lemma 9.11 implies that if bi is a unilateral exit of player i w.r.t. a and
m0½bi� > 0 then bi ¼ biðaÞ. By Lemmas 9.11 and 9.3, if m0½biðaÞ� > 0 then i is
punishable. 9

Lemma 9.14. If x0 is a semi-isolated profile and a < 1 then conditions 4.b and
4.d 0.ii in Proposition 4.10 hold.

Proof: Let i0 be the unique signaller at x0. The proof that condition 4.d 00
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holds, as well as the proof that uiðmÞb ~gg i0 for i0 i0, is similar to the proof
provided in Lemma 9.13.

To see that ui0ðmÞb ~gg i00 , use (8), Lemma 9.7 and the fact that ~rr
i0ðx0Þa vi0 .

9
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