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Abstract We provide a computable algorithm to calculate uniform ε-optimal
strategies in two-player zero-sum stochastic games. Our approach can be used
to construct algorithms that calculate uniform ε-equilibria and uniform cor-
related ε-equilibria in various classes of multi-player non-zero-sum stochastic
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1 Introduction

Stochastic games model dynamic interactions in which the environment changes
in response to the behavior of the players. These games were introduced in
Shapley [20] (1953), who proved the existence of the discounted value and of
stationary discounted optimal strategies in two-player zero-sum games with fi-
nite state and action spaces. This existence result was later generalized to the
existence of a stationary discounted equilibrium in multi-player games (Fink,
1964). Bewley and Kohlberg (1976) proved that the limit of the discounted
values exists. Mertens and Neyman (1981) proved the existence of uniform
ε-optimal strategies in two-player zero-sum games: for every ε > 0 each of
the two players has a strategy that guarantees the discounted value, up to ε,
for every discount factor sufficiently close to 0. The limit of the discounted
values is termed the uniform value. Thus, the players can play well, and ap-
proximately obtain the uniform value, even if they do not know their discount
factor, provided their discount factor is sufficiently low.
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Computing the discounted or the uniform value of a stochastic game is
a difficult problem. Linear programming methods were used to calculate the
discounted and uniform value of several classes of stochastic games, see Filar
and Vrieze (1996). However, Parthasarathy and Raghavan (1981) provides
a game in which all the data are rational (including the discount factor),
but the discounted value is irrational. Therefore it is not clear whether linear
programming methods, which successfully calculate the value of general two-
player zero-sum matrix games, can be used to calculate the value of stochastic
games. Other methods that were used to calculate the value or equilibria in
discounted stochastic games include fictitious play (Vrieze and Tijs, 1982),
value iteration and general methods to find the maximum of a function (Filar
and Vrieze, 1996), and an homotopy method (Herings and Peeters, 2004).

Recently Chatterjee, Majumdar and Henzinger (2008) provided a finite
algorithm for approximating the uniform value. This algorithm relies on the
following insight. By Bewley and Kohlberg (1976), the function λ 7→ vλ that
assigns to each λ the value of the λ-discounted game, is a semi-algebraic func-
tion of λ. It therefore can be expressed as a Taylor series in fractional powers
of λ, and is monotonic, in a neighborhood of λ = 0. As mentioned before, iden-
tifying the uniform value amounts to finding the limit v of this semi-algebraic
function. Relying on Bewley and Kohlberg (1976), Chatterjee, Majumdar and
Henzinger note that, for a given α, determining whether v > α is equivalent to
finding the truth value of a sentence in the theory of real-closed fields. Tarski’s
quantifier elimination algorithm (or Basu, 1999, see also Basu, Pollack and
Roy, 2003) can be used to compute this truth value. Since the uniform value v
is bounded by the payoffs of the game, it is sufficient to repeat this algorithm
for finitely many different values of α, to get an approximation of v.

In this note we show how this approach can be extended to calculate
uniform ε-optimal strategies. We will rely on ε-optimal strategies devised in
Mertens and Neyman (1981). These strategies use an unbounded memory. This
is a necessary feature, since in general uniformly ε-optimal strategies cannot
be implemented by finite automata. A famous example of this is the game
called “The Big Match”, see Blackwell and Ferguson (1968), and also Fortnow
and Kimmel (1998).

We provide an algorithm that terminates in finite time, and can be exe-
cuted before the game starts. The output of this algorithm can be used to
compute, for any given stage n, the mixed action to be played at that stage.
The operations performed at stage n include addition, and calculating the root
of a real number (an accurate approximation of the square root is sufficient),
where the real numbers increase to infinity, at a rate which is at most linear in
n, as the game evolves. Hence the memory space required for the calculation,
as well as the per-stage processing time, increase with n.

The main purpose of the preprocessing algorithm is the following. By Be-
wley and Kohlberg (1976), there is a semi-algebraic function λ 7→ xλ, that
associates to any discount factor a stationary, λ-discounted optimal strategy
(of player 1). Therefore, the probability xλ(s, a) assigned to action a in state s



3

can be expressed as a Taylor series in fractional powers of λ, in a neighborhood
of zero. The preprocessing stage consists in finding the leading exponent and
an approximation of the leading coefficient of this series, for all states s and
actions a, which are then used to implement Mertens and Neyman’s ε-optimal
strategies. As in Chatterjee, Majumdar and Henzinger (2008) we rely on the
theory of real-closed fields for this approximation. It should be noted that
we know of no a priori estimate for the leading coefficients. This prevents us
from getting a complexity bound on this algorithm, in contrast to Chatterjee,
Majumdar and Henzinger (2008).

The paper is organized as follows. Section 2 contains the model of stochastic
games. Section 3 provides a self-contained reminder of Mertens and Neyman
(1981), together with related material. We also introduce all the sentences that
are used for the algorithm. The algorithm itself is presented in section 4.

In section 5, we briefly argue that such constructions can be used in non-
zero-sum stochastic games as well. The existence of a uniform ε-equilibrium
in multi-player games, that is, a strategy profile that is ε-equilibrium for ev-
ery discount factor sufficiently low, was proved for two-player games (Vieille,
2000a,b), and for some classes of games with more than two players (see, e.g.,
Filar and Vrieze (1996), Solan (1999), Solan and Vieille (2001), Flesch, Thui-
jsman and Vrieze (2007), Flesch, Schoenmakers and Vrieze (2008)). In most
cases, the ε-equilibria share the feature that each player behaves in a “simple”
manner, as long as the empirical play of other players meets some predefined
constraints, and switches to an ε-optimal strategy in a related zero-sum game
as soon as one of these constraints is not met.

2 The Model

A two-player zero-sum stochastic game is given by a 5-tuple (S, A,B, r, q),
where S is a finite set of states, A and B are two finite sets of actions for the
two players, r : S×A×B → R is a payoff function, and q : S×A×B → ∆(S)
is a transition function.1 We assume w.l.o.g. that payoffs are bounded by 1:
|r(s, a, b)| ≤ 1 for every (s, a, b) ∈ S×A×B. The mixed extensions of r and q
are still denoted by r and q respectively. Thus, and given x ∈ ∆(A), y ∈ ∆(B),
r(s, x, y) is the expected payoff to player 1, when the state is s and players use
the mixed actions x and y respectively.

The game starts at the initial2 state s1 ∈ S. At every stage n, the game
is in some state sn ∈ S, the players choose independently and simultaneously
actions an ∈ A and bn ∈ B, and a new state sn+1 is chosen according to
the probability distribution q(· | sn, an, bn). Throughout, we let a two-player,
zero-sum stochastic game Γ be given.

The information that is available to each player at stage n is the sequence
of states visited so far, and the sequence of past actions that were chosen
by both players. Therefore, the set of finite histories is

⋃∞
n=1 S × (S × A ×

1 Given any finite set Ω, ∆(Ω) denotes the set of probability distributions over Ω.
2 We find it convenient to let the initial state be a parameter, and not a data of the game.
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B)n−1. A behavior strategy for player 1 is a function σ :
⋃∞

n=1 S × (S × A ×
B)n−1 → ∆(A) that assigns, to every finite history h, a mixed action to play
if h occurs. Behavior strategies τ for players 2 are defined analogously. A
stationary strategy for player 1 (resp. player 2) is a function x : S → ∆(A)
(resp. y : S → ∆(B)). We denote by xs(a) the probability to play the action
a ∈ A in state s ∈ S, when the stationary strategy x is used. The quantity
ys(b) is defined analogously.

For every discount factor λ ∈ (0, 1] and every pair of strategies (σ, τ) for
the two players, define the λ-discounted payoff by:

γλ
s1

(σ, τ) = Es1,σ,τ

[
λ

∞∑
n=1

(1− λ)n−1r(sn, an, bn)

]
,

where the expectation is computed under the probability distribution Ps1,σ,τ

over plays induced by the initial state s1 and the strategy pair (σ, τ). The
quantity vλ

s1
is the λ-discounted value at the initial state s1 if

vλ
s1

= sup
σ

inf
τ

γλ
s1

(σ, τ) = inf
τ

sup
σ

γλ
s1

(σ, τ). (1)

A strategy σ (resp. τ) that attain the supremum in the middle term of (1)
(resp. the infimum in the right term of (1)) is called λ-discounted optimal.
Shapley (1953) proved the existence of the discounted value, and that both
players have stationary optimal strategies. Bewley and Kohlberg (1976) proved
that v0

s1
:= limλ→0 vλ

s1
exists for every s1 ∈ S. Mertens and Neyman (1981)

proved that v0
s1

is the uniform value in the following sense. For every ε > 0
player 1 has a strategy σε that uniformly guarantees v0 − 2ε: there is λ0 > 0
such that

γλ
s1

(σε, τ) ≥ vλ
s1
− ε ≥ v0

s1
− 2ε,

for every strategy τ of player 2, for every discount factor λ ∈ (0, λ0), and for
every initial state s1 ∈ S. Similarly, for every ε > 0 player 2 has a strategy τε

that uniformly guarantees v0 + 2ε: there is λ0 > 0 such that

γλ
s1

(σ, τε) ≤ vλ
s1

+ ε ≥ v0
s1
− 2ε,

for every strategy σ of player 1, for every discount factor λ ∈ (0, λ0), and for
every initial state s1 ∈ S.

Unlike for discounted games, in which stationary optimal strategies exist, in
general there are no stationary uniform ε-optimal strategies, and the ε-optimal
strategies designed by Mertens and Neyman (1981) are history dependent. In
their construction, at every stage n the player calculate a fictitious discount
factor λn as a function of past play, and plays according to any optimal strategy
in the λn-discounted game.
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3 Preparations

We here collect diverse material. We first recall the main features of the con-
struction of Mertens and Neyman (1981). We next state a result on the continu-
ity of discounted payoffs with respect to strategies, and recall a few definitions
related to Puiseux functions. Next, we introduce and discuss the sentences in
the theory of real-closed fields that our algorithm will use.

3.1 Uniform ε-optimal strategies – Background

For completeness, we here describe the uniform ε-optimal strategies constructed
in Mertens and Neyman (1981, see also Mertens, Sorin and Zamir (1994, Ch.
VII), or Neyman (2003)). Our algorithm uses this construction.

For every discount factor λ, let zλ be a stationary strategy for player 1,
and let wλ : S → R be a function, such that the following inequality holds,
for every state s ∈ S, and every action b ∈ B:

λr(s, zλ
s , b) + (1− λ)

∑
s′∈S

q(s′ | s, zλ
s , b)wλ

s′ ≥ wλ
s . (2)

That is, if the continuation payoff is given by wλ, the strategy zλ guarantees
that the discounted payoff for player 1 when the state is s is at least wλ(s).
Suppose that the limit w0

s := limλ→0 wλ
s exists. Let δ < 1, let λ : (0,∞) →

(0, 1) be a strictly decreasing function, and let u∗ ≥ 1/δ such that the following
holds: for every θ ∈ [−3, 3], every u ≥ u∗ and every s ∈ S,

|λ(u + θ)− λ(u)| ≤ δλ(u), (3)∣∣∣wλ(u+θ)
s − wλ(u)

s

∣∣∣ < 4λ(u), (4)∫ ∞

u∗

λ(u) ≤ δ. (5)

Mertens and Neyman (1981) proved the following.

Theorem 1 Denote ε = 12δ. In the notations given above, set

u0 = u∗, un+1 = max{u∗, r(sn, an, bn)− wλ(un)
sn

+ 2ε}. (6)

Let σ be the strategy that plays at each stage n the mixed action z
λ(un)
sn . Then

σ uniformly guarantees w0
s0
− 5ε.

If zλ is a λ-discounted optimal stationary strategy of player 1, and if wλ is
the λ-discounted value, then Eq. (2) holds, and, by finding a function u 7→ λ(u)
and a constant u∗ such that the requirements (3)-(5) are satisfied, Mertens and
Neyman (1981) proved that v0

s is the uniform value at the initial state s.
Our algorithm proceeds by computing functions wλ and zλ that approxi-

mate the value and optimal strategies of the λ-discounted game, and such that
(2) is satisfied. Finally, we will find a function λ(u) and a natural number u∗
such that the requirements (3)-(5) are satisfied as well.
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3.2 Perturbations

The following result follows from Solan (2003) or Solan and Vieille (2003).
It says that small perturbations in the strategies of player 1 do not affect the
discounted payoff by much. Observe that the bound that the theorem provides
is independent of λ.

Theorem 2 Let (S, A,B, r, q) be a stochastic game, let λ ∈ (0, 1] be a discount
factor, and let ε > 0. Let x, z be two stationary strategies of player 1 that satisfy∣∣∣∣xs(a)

zs(a)
− 1
∣∣∣∣ ≤ ε, ∀s ∈ S, a ∈ A (7)

(with the convention
0
0

= 1). Then for every stationary strategy y of player 2,∣∣∣∣γλ
s (x, y)

γλ
s (z, y)

− 1
∣∣∣∣ ≤ |S|ε.

As a corollary we deduce that every perturbation of a λ-discounted optimal
strategy is a λ-discounted |S|ε-optimal strategy, for every discount factor.

Corollary 1 Let (S, A,B, r, q) be a stochastic game, let λ ∈ (0, 1) be a dis-
count factor, and let ε > 0. Let x be a λ-discounted optimal stationary strategy
of player 1, and let z be a strategy that satisfies (7). Then z is a λ-discounted
|S|ε-optimal strategy of player 1.

3.3 Puiseux Functions

A key result that we use in our construction is that the function that assigns to
every discount factor the discounted value at a given state has a representation
as a Taylor series in a fractional power of λ in a neighborhood of 0 (Bewley
and Kohlberg, 1976). Such a function is called a Puiseux function. In the
sequel we will not use any property of Puiseux functions, except that such a
representation exists.

Formally, a function λ 7→ f(λ) is a Puiseux function if there is λ0 ∈ (0, 1),
a natural number M ∈ N, an integer K ∈ Z, and real numbers (ak)∞k=K such
that

f(λ) =
∞∑

k=K

akλk/M , ∀λ ∈ (0, λ0].

If f is not identically zero, we can assume w.l.o.g. that aK 6= 0. In this case
we call K

M the leading exponent of f , and aK the leading coefficient. If f is a
Puiseux function, then the limit limλ→0 f(λ) exists. Note that limλ→0 f(λ) = 0
if and only if K > 0, and limλ→0 f(λ) ∈ R if and only if K ≥ 0.

By Bewley and Kohlberg (1976) the function λ 7→ vλ
s is a Puiseux function,

for each initial state s ∈ S. Moreover, there is a function λ 7→ xλ that assigns
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a λ-discounted optimal strategy xλ to each discount factor λ, such that for
every s ∈ S and every a ∈ A, the function λ 7→ xλ

s (a) is a Puiseux function.
By Corollary 1, for our purposes it will be sufficient to consider only the

leading term of the Puiseux expansion of the functions λ 7→ xλ
s (a). This makes

the computation of an optimal strategy feasible.

3.4 Quantifier Elimination

The field of the real numbers R, supplemented with the usual order >, is a real
closed field. An atomic formula over R is an expression of the form (p > 0) or
(p = 0), where p is a multi-variate polynomial over R. The set of all formulae
is the smallest set that contains all the atomic formulae, and is closed under
conjunction, disjunction and negation (if φ1 and φ2 are formulae, so are φ1∧φ2,
φ1 ∨φ2 and ¬φ1), and under the existential and universal quantifiers (if φ is a
formula, and x is a variable, then ∃x(φ) and ∀x(φ) are formulae; in this case
we say that φ is the scope of x). A variable x is free if it is not in the scope
of a quantifier ∃x(φ) or ∀x(φ). A sentence is a formula without free variables.
With every sentence we attach its truth value over the field R.

Tarski (1951) provided an algorithm that solves every formula in finite time;
that is, the input of the algorithm is a sentence, and the output is “True” if
the sentence is true, and “False” otherwise. Basu (1999, see also Basu, Pollack
and Roy, 2003) provided a more efficient algorithm to determine the truth
value of a sentence.

We are now going to present several formulae and sentences that will be
used in our algorithm.

3.4.1 Stationary strategies

The formula φ1(x) below expresses the property that x is a stationary strategy
of player 1. That is, φ1(x) is true if and only if x is a stationary strategy for
player 1.

φ1(x) = (∧s,axs(a) ≥ 0) ∧

(
∧s

∑
a∈A

xs(a) = 1

)
.

The formula φ2(y) below expresses the property that y is a stationary strategy
of player 2.

φ2(y) = (∧s,bys(b) ≥ 0) ∧

(
∧s

∑
b∈B

ys(b) = 1

)
.
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3.4.2 Optimal discounted stationary strategies

The formula φ3(x, y, v, λ) below expresses the property that v is the λ-discounted
value and x, y are λ-discounted optimal strategies (see Shapley, 1953).

φ3(x, y, v, λ) = φ1(x) ∧ φ2(y) ∧ (0 < λ < 1) ∧(
∧s,a

(∑
b

ys(b)

(
λr(s, a, b) + (1− λ)

∑
t∈S

q(t | s, a, b)v(t)

)
≤ v(s)

))
∧(

∧s,b

(∑
a

xs(a)

(
λr(s, a, b) + (1− λ)

∑
t∈S

q(t | s, a, b)v(t)

)
≥ v(s)

))
.

The formulas φ1, φ2 and φ3 are the only formulas used in Chatterjee,
Majumdar and Henzinger (2008). The computation of ε-optimal strategies
require more complex formulas, that we now introduce.

3.4.3 Finding leading exponents

We now provide few sentences that, when true, imply that there are optimal
discounted stationary strategies with certain features. The sentences φ4 and
φ5 are not used in the sequel, and are only given for expositional purposes.

Given s ∈ S and a ∈ A, the formula φ4(s, a) expresses the property that
for λ small enough, there is an optimal stationary strategy in the λ-discounted
game that assigns probability 0 to action a at state s.

φ4(s, a) = ∃λ0 ∈ (0, 1).∀λ ∈ (0, λ0).∃x ∈ RS×A.∃y ∈ RS×B .∃v ∈ RS

(φ3(x, y, v, λ) ∧ (xs(a) = 0)) .

By the theory of real algebraic sets (see, e.g., Bochnak, Coste and Roy, 1998,
or Mertens, Sorin and Zamir, 2004, ch. VII), if the sentence φ4(s, a) is true,
then there is a Puiseux function λ 7→ xλ such that (i) xλ is a λ-discounted
optimal stationary strategy, for every discount factor sufficiently small, and
(ii) xλ

s (a) = 0 for all λ in a neighborhood of zero.

Given s ∈ S, a ∈ A, a nonnegative integer K and a natural number M , the
sentence φ5(s, a,K, M) expresses the property that there is a Puiseux function
λ 7→ xλ such that (i) xλ is a λ-discounted optimal stationary strategy, for every
discount factor sufficiently small, and (ii) the leading exponent of this function
is K

M .

φ5(s, a,K, M) = ∀ε > 0.∃c ∈ (0,+∞).∃λ0 ∈ (0, 1).∀λ ∈ (0, λ0).∃µ ∈ (0, 1]
∃x ∈ RS×A.∃y ∈ RS×B .∃v ∈ RS(

φ3(x, y, v, λ) ∧ (µM = λK) ∧
(
−ε <

xs(a)
µ

− c < ε

))
.
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We now extend φ4 and φ5 to collections of pairs (state,action). Let D,E
be two disjoint subsets of S×A, and for every (s′, a′) ∈ D let Ks′,a′ ∈ N∪{0}
be a nonnegative integer and Ms′,a′ ∈ N be a natural number. The formula
φ6(D,E, (Ks′,a′ ,Ms′,a′)(s′,a′)∈D) below expresses the property that there is a
Puiseux function λ 7→ xλ such that

(i) xλ is a λ-discounted optimal stationary strategy, for every discount factor
sufficiently small,

(ii) the leading exponent of λ 7→ xλ
s′(a

′) is Ks′,a′

Ms′,a′
for every (s′, a′) ∈ D, and

(iii) xλ
s′(a

′) = 0 for all λ in a neighborhood of zero and every (s′, a′) ∈ E.

φ6(D,E, (Ks′,a′ ,Ms′,a′)(s′,a′)∈D) = ∀ε > 0.∃(cs′,a′) ∈ (0,+∞)D

∃λ0 ∈ (0, 1).∀λ ∈ (0, λ0).∃x ∈ RS×A.∃y ∈ RS×B .∃v ∈ RS(
φ3(x, y, v, λ) ∧

(
∧(s′,a′)∈Exs′(a′) = 0

)
∧(

∧(s′,a′)∈D

(
∃µ ∈ (0, 1]

(
(µMs′,a′ = λKs′,a′ ) ∧

(
−ε <

xs′(a′)
µ

− cs′,a′ < ε

))))
.

3.4.4 Approximating leading coefficients

In the algorithm we will allocate recursively every pair (s, a) ∈ S×A to either
D or E. Whenever (s, a) is allocated to D, we will also compute the leading
exponent Ks,a

Ms,a
of xλ

s (a). This will be achieved through a repeated computation
of the truth value of φ6. We will then find recursively the leading coefficients
of the functions (xλ

s (a))(s,a)∈D. We now introduce the formula φ7 that is used
for that purpose.

Let a positive number ε, let a partition (D,E) of S × A, and let a subset
D′ ⊆ D be given. In addition, for each (s′, a′) ∈ D, let a nonnegative integer
Ks′,a′ and a natural number Ms′,a′ be given, and for each (s′, a′) ∈ D′, let a
positive number cs′,a′ be given.

The formula φ7(ε, D, E,D′, (Ks′,a′ ,Ms′,a′)(s′,a′)∈D, (cs′,a′)(s′,a′)∈D′) below
expresses the property that there is a Puiseux function λ 7→ xλ such that

(i) xλ is a λ-discounted optimal stationary strategy, for every discount factor
sufficiently small,

(ii) for every (s′, a′) ∈ D, the leading exponent of λ 7→ xλ
s′(a

′) is Ks′,a′

Ms′,a′
,

(iii) for every (s′, a′) ∈ E and λ close to zero, xλ
s′(a

′) = 0, and
(iv) for every (s′, a′) ∈ D′, the leading coefficient of λ 7→ xλ

s′(a
′) is within ε of

cs′,a′ .
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φ7(ε, D, E,D′, (cs′,a′)(s′,a′)∈D′ , (Ks′,a′ ,Ms′,a′)(s′,a′)∈D) =

∃λ0 ∈ (0, 1).∀λ ∈ (0, λ0).∃x ∈ RS×A.∃y ∈ RS×B .∃v ∈ RS(
φ1(x) ∧ φ2(y) ∧ φ3(x, y, v, λ) ∧ φ6(D,E, (Ks′,a′ ,Ms′,a′)(s′,a′)∈D)

∧
(
∧(s′,a′)∈D′

(
∃µ ∈ (0, 1)

(
µKs′,a′ = λMs′,a′

)
∧
(
−ε <

xs′(a′)
µ

− cs′,a′ < ε

))))
.

The algorithm will use one additional sentence φ8, whose definition is post-
poned to the next section.

4 The Algorithm

4.1 An overview

We first describe the main ideas of the algorithm. As mentioned before, there
is a Puiseux function λ 7→ xλ that assigns an optimal λ-discounted stationary
strategy for every discount factor λ. In particular, one has the representation

xλ
s (a) =

∞∑
k=K

akλk/M . (8)

Using sentences over a real closed field we will find the leading exponent Ks,a

Ms,a

and the leading coefficient cs,a in the representation (8), for every (s, a) ∈
S ×A. We then define

zλ
s (a) :=

cs,aλKs,a/Ms,a∑
s′,a′ λ

Ks,a/Ms,a
.

By Corollary 1 it follows that zλ is an ε-optimal discounted stationary strat-
egy, provided λ is sufficiently small. When player 1 follows zλ, the optimization
problem faced by player 2 reduces to a Markov decision problem, and so the
highest payoff that zλ guarantees, (wλ

s )s∈S , can be found using a linear pro-
gram with coefficients that are rational functions of λ. Thus, Eq. (2) is satisfied
w.r.t. zλ and wλ that were just defined, and to complete the construction it
is left to find u∗ that satisfies Eq. (3)-(5).

The algorithm is divided into three phases as follows. All computations
below are done once, at the beginning of the game. At each stage, a small
number of additional arithmetic computations are needed to determine the
mixed move used in that stage.

Phase 1: For every (s, a) ∈ S×A, we find the leading exponent of the Puiseux
expansion of some discounted optimal strategy, by enumerating over the
possible values of the leading exponent.
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Phase 2: We approximate the leading coefficients of the Puiseux expansion of
some discounted optimal strategy xλ. These leading exponents and coeffi-
cients are used to define an auxiliary strategy zλ.

Phase 3: By solving a linear program we determine the highest quantity wλ

that is guaranteed by zλ in the λ-discounted game. Next, we determine the
function λ(u) and the constant u∗ that are used in Mertens and Neyman’s
(1981) construction, and conclude that the resulting strategy is uniform
Cε-optimal, for C = |S|+ 5.

A uniform Cε-optimal strategy for player 2 can be calculated analogously.

4.2 Detailed presentation

We now describe in detail the three phases of the algorithm.

Phase 1: Finding the leading exponents of a Puiseux expansion of discounted
optimal strategies.

To find the leading exponent, the algorithm divides the set of pairs (state,
action) into two disjoint sets D and E. Intuitively, the set E will contain all
pairs (s, a) such that the action a is not played in the state s by an optimal
strategy, while the set D will contain the remaining pairs (s, a).

The algorithm does this as follows. Suppose that we have two disjoint
subsets of pairs D and E such that, for every discount factor sufficiently small,
there exists an optimal strategy that does not play any action pair in E. By
taking a pair (s, a) that is not in D ∪E, and by using the formula φ6, we can
determine whether for every discount factor sufficiently small there exists an
optimal strategy that does not play any action pair in E ∪ {(s, a)}. If this is
true, we add (s, a) to E. Otherwise, we add it to D, and using the formula φ6

we find the leading coefficient of the Puiseux expansion of λ 7→ xλ
s (a).

Step 1 : Set D = E = ∅.
Step 2 : Choose a pair (s, a) 6∈ D ∪ E. If there is none, continue to Phase 2.

Otherwise, continue to Step 3.
Step 3 : Determine the truth value of the sentence

φ6(D,E ∪ {(s, a)}, (Ks′,a′ ,Ms′,a′)(s′,a′)∈D).

If it is true, add (s, a) to E, and go to Step 2. If it is false, continue to Step
4.

Step 4 : Set M = 1.
Step 5 : For every K = 0, 1, 2 . . . , M , set Ks,a = K and Ms,a = M , and

determine the truth value of the sentence

φ6(D ∪ (s, a), E, (Ks′,a′ ,Ms′,a′)(s′,a′)∈D∪{(s,a)}).

Step 6 : If there is K0 ∈ {0, 1, 2, . . . ,M} for which the sentence is true, set
Ks,a = K0, Ms,a = M , add (s, a) to D, and go to Step 2.



12

Step 7 : If there is no such K0, increase M by 1, and go to Step 5.

Since there is a function λ 7→ xλ that assigns to each discount factor a
stationary λ-discounted optimal strategy, this stage is bound to stop in finite
time. An upper bound on Ms,a can be calculated by the results of Benedetti
and Risler (1990).

Phase 2: Approximating the leading coefficients of a Puiseux expansion of
discounted optimal strategies.

In the second phase we approximate up to ε, for every (s, a) ∈ D, the lead-
ing coefficient of the Puiseux function λ 7→ xλ

s (a). This is done by enumerating
on values in the set {lε, l ∈ Z}, starting at l = 1. For each (s, a) ∈ S × A and
every l, one should calculate the truth value of the sentence φ7. Denote by
(cs,a)(s,a)∈D the output of this phase.

Step 8 : Set D′ = ∅.
Step 9 : Choose a pair (s, a) ∈ D ∪D′. If there is none, continue to Phase 3.

Otherwise, continue to Step 10.
Step 10 : Set l = 1.
Step 11 : Set cs,a = lε.
Step 12 : Determine the truth value of the sentence φ7(ε, D, E,D′, (Ks′,a′ ,Ms′,a′)(s′,a′)∈D, (cs′,a′)(s′,a′)∈D′).
Step 13 : If the truth value is true, add (s, a) to D′ and go to Step 9. If it is

false and l > 0, multiply l be −1. If it is false and l < 0, multiply l be −1,
increase the resulting l by 1, and go to Step 11.

Since for some l ∈ Z the sentence φ7 will hold, this phase is finite. However,
we do not know of an upper bound to the coefficients (cs,a)(s,a)∈D, as a function
of the date of the game.3 Consequently, we have no complexity bound for this
phase.

Phase 3: The functions (wλ
s )s∈S , λ(u), and u∗ are determined in turn, in

steps.

Define for every λ > 0 a stationary strategy zλ as follows:

zλ
s (a) =

cs,aλKs,a/Ms,a∑
a′:(s,a′)∈D cs,a′λ

Ks,a′/Ms,a′
if (s, a) ∈ D,

and zλ
s (a) = 0 if (s, a) ∈ E. That is, the strategy zλ is defined using only the

(approximation of the) leading coefficients and the leading exponents of xλ.
In particular, limλ→0

zλ
s (a)

xλ
s (a)

= 1 for every (s, a) ∈ S × A.4 By Corollary 1, the
strategy zλ is λ-discounted |S|ε-optimal for every λ sufficiently small. Denote

wλ
s := inf

y
γλ

s (zλ, y).

3 This issue is further discussed in the next section.
4 By convention, 0

0
= 1.
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This is the amount that is guaranteed by the strategy zλ in the λ-discounted
game with initial state s. By Corollary 1, wλ

s ≥ vλ
s − |S|ε for λ sufficiently

small. By taking the limit λ → 0 we obtain w0
s ≥ v0

s − |S|ε. Since wλ is the
minimal payoff that zλ guarantees, it follows that (2) holds.

The quantity wλ
s is the value of the Markov decision problem with ini-

tial state s, in which player 1 uses the stationary strategy zλ and player 2
minimizes the λ-discounted payoff. Therefore the function λ 7→ wλ is the so-
lution of a linear program with coefficients that are polynomial functions of
(zλ

s (a))s∈S,a∈S , see Eaves and Rothblum (1985) or Altman et al. (1999). Since
zλ
s (a) is a rational function of λ, the coefficients of this linear program all lie

in the ordered field of rational functions of λ. Therefore, the determination of
the functions λ 7→ wλ

s , s ∈ S, can be done by solving a linear program over a
real closed field.

Write the Puiseux expansion of wλ
s as

wλ
s = w0

s + wsλ
K̂s/M̂s +

∞∑
k=K̂s+1

wk
s λk/M̂s ,

where wsλ
K̂s/M̂s is the first non-zero non-constant term, and the fraction

K̂s/M̂s is irreducible. Using the expression of wλ
s as a rational function, the

value of M̂s ∈ N is readily obtained in finitely many arithmetic steps.
Mertens and Neyman (1981) show that, setting M̂ to be the g.c.d. of

(M̂s)s, the function λ(u) := 1

uM̂+1
satisfies (4) for u sufficiently large, and

it also satisfies (3). Finally we have to choose u∗ to be sufficiently large. Since∫∞
u∗

u−M̂−1du = u−M̂
∗
M̂

, requirement (5) is satisfied once u∗ ≥ 1

M̂δ
. To ensure

that u∗ is sufficiently large so that (4) is satisfied for every u ≥ U0, we need
the following sentence to be true:

φ8(s, u∗) = ∀u ≥ u∗.∃µ > 0.∃ν > 0(
(µ1+M̂ = u) ∧ (ν1+M̂ = u + 3) ∧ (|wµ

s − wν
s | < 4µ)

)
.

We find u∗ that satisfies this condition for all s, by calculating the truth
value of φ8(s, u∗) successively for u∗ = l, l ≥ 1

M̂δ
.

To summarize, Phase 3 consists of the following three steps:

– Compute the rational function wλ by solving a linear program with coef-
ficients in an ordered field.

– Compute M̂ .
– Find a suitable value for u∗.

The strategy of Mertens and Neyman (1981), relative to (zλ, wλ), guaran-
tees w0

s1
− 5ε ≥ v0

s1
− (|S|+ 5)ε. Thus, at every stage of the game one has to

compute un by (6), λ(un) and zλn
sn

.
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4.3 Running Time and Space Requirements

To bound the running time of the algorithm, as well as the amount of space
required by the computations, one needs to bound (1) the time and space
required to determine the truth value of a sentence, (2) the denominator of
the leading exponent of the Puiseux expansion of the value function, (3) the
leading coefficient (cs,a)(s,a)∈S×A of the Puiseux functions λ 7→ xλ

s (a), for
every s, a ∈ S × A, and (4) the parameter u∗. A bound for (1) can be cal-
culated using Basu (1999, Theorem 2; see also Chatterjee, Majumdar and
Henzinger (2008, Theorem 2)). However, it depends on the bound for (2): e.g.,
to determine the truth value of the sentence φ6(D,E, (Ks,a,Ms′,a′)(s′,a′)∈D)
requires |S|(|A| + |B|)mO(|S|2|A|(|A|+|B|)) arithmetic operations, where m =
O(|S|(|A|+ |B|) maxs,a Ms,a), and the determination of the truth value of the
sentence φ7 requires |S|(|A|+|B|)mO(|S|(|A|+|B|)) arithmetic operations, where
m = O(|S|(|A|+ |B|) maxs M̂s).

A bound for (2) can be derived by the results of Benedetti and Risler
(1990).

Unfortunately, we do not know how to bound the quantities (cs,a)(s,a)∈S×A.
Whereas for every state s ∈ S, the leading coefficient of the value function
λ 7→ vλ

s is bounded by the maximal payoff, as the following example shows
this is not the case for the quantities (cs,a)(s,a)∈S×A.

Example 1

Consider the stochastic game described in Figure 1. Player 1 is the row player,
and player 2 is the column player. There are three states, s∗, s0 and s1. States
s0 and s1 are absorbing, with absorbing payoff 0 and 1 respectively; the as-
terisks that appear in states s0 and s1 in Figure 1 indicate that these states
are absorbing.5 State s∗ is not absorbing; when at that state, the payoff is 0
whatever the players play, and the transition is given in Figure 1.

B

T

L R

[p(s1), (1− p)(s∗)

s∗ s1

s0

state s∗

1 ∗

state s1

0 ∗

state s0

Figure 1
Plainly vλ

s0
= 0 and vλ

s1
= 1. In states s0 and s1 player 1 has a unique action,

and therefore the optimal strategy in these states are trivial. We concentrate
on the case that the initial state is s∗.

The value vλ
s∗ at s∗ satisfies the following recursive equation (see Shapley,

1953, and the formula φ3):

vλ = val
(

(1− λ)vλ
s∗ 1

p + (1− p)(1− λ)vλ
s∗ 0

)
. (9)

5 Formally, the action sets of the players are the same in all states. Here we assume that
in states s0 and s1 all action pairs yield the same payoff and the same transition.
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Denote by xλ
s∗ the probability by which player 1 chooses T at s∗ under the

stationary λ-discounted optimal strategy. Then

vλ
s∗ = xλ

s∗ = xλ
s∗(1− λ)vλ

s∗ + (1− xλ
s∗) + (1− xλ

s∗)(1− λ)(1− p)vλ
s∗ .

The solution of this system of equations is:

xλ
s∗ =

1 + λ + p− λp±
√

(1 + λ + p− λp)2 − 4p

2p
.

Using the Taylor expansion
√

a + x =
√

a + x
2
√

a
+ o(x), we obtain that

xλ
s∗ = 1− 1− p

2p
λ + o(λ).

In other words, the leading coefficient of xλ
s∗ is 1−p

2p , which goes to infinity as
p goes to 0.

We do not know either how to bound the parameter u∗, as a function of ε,
and of the data of the game. We end this discussion by commenting that the
proof of Mertens and Neyman (1981) implies that it is enough to approximate
the quantity λ(un) = 1

uM̂+1
n

to within λ(un)ε; in that case Eq. (2) holds for the

approximating λ, provided one adds the term −3λε. This change will imply
that the resulting strategy is uniform C+3-optimal (see Neyman, 2003, Lemma
1).

4.4 Example

We illustrate the algorithm using the example provided in the previous section,

with p = 1. The solution of Eq. (9) is vλ =
1−

√
λ

1− λ
. As calculated in the

previous section, the λ-discounted optimal strategy of player 1 at s∗ is given
by
[

1
1+
√

λ
(T ),

√
λ

1+
√

λ
(B)

]
. Therefore, the optimal strategy of player 1 assigns

probabilities 1−
√

λ + o(
√

λ) to T and 1− vλ =
√

λ + o(
√

λ) to B.

When applied to player 1, the algorithm will yield the following results.
Phase 1 will consider each of the two actions T and B in turn. Since both

actions are played with positive probability by the unique optimal strategy,
the algorithm assigns both of them to the set D. In addition, KT = 0 and
MT = 1, while KB = 1 and MB = 2, since the leading exponents of the
optimal strategy are 0 for T and 1/2 for B.

Phase 2 executes repeatedly an algorithm that computes the truth value
of φ7 for various values of cB and cT , using the values of KT ,MT ,KB ,MB

obtained in Phase 1. It yields values cB and cT such that |cB − 1| < ε and
|cT − 1| < ε. For knife-edge values of ε, the outcome of Phase 2 may depend
on the order of enumeration of the possible values.
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Phase 3: The stationary strategy zλ assigns probabilities

zλ(T ) =
cT

cT + cB

√
λ

,

and

zλ(B) =
cB

√
λ

cT + cB

√
λ

to the actions T and B. When facing zλ, player 2 gets an expected payoff of
zλ(T ) if he plays R in the first round of the game, and an expected payoff
which does not exceed zλ(B)+(1−λ)zλ(T )wλ if he plays L in the first round.
Thus, wλ is the highest number which satisfies both inequalities

wλ ≤ zλ(T )
wλ ≤ zλ(B) + (1− λ)zλ(T )wλ

This yields

wλ = min
{

zλ(T ),
zλ(B)

1− (1− λ)zλ(T )

}
=

min{cT , cB}
cT + cB

√
λ

.

Thus, wλ = min
{

1,
cB

cT

}(
1− cB

cT

√
λ

)
+ o(

√
λ), so that K̂ = 1, M̂ = 2.

Consequently, λ(u) =
1
u3

. Phase 3 then executes repeatedly an algorithm that
finds the truth value of φ8, for increasing values of u∗. This concludes the
preprocessing stage of the algorithm.

At each stage of the game, the algorithm first updates un according to (6).
As long as no absorbing state has been reached the stage payoff is 0, hence

un+1 = max

{
u∗, un −

min{cT , cB}
cT + cB

√
λ(un)

+ 2ε

}
.

The algorithm finally computes λ(un+1)) = 1/u3
n+1, and the probabilities

zλ(un+1)(T ) and zλ(un+1)(B) assigned to the two actions.

5 Extensions

Several existence results of uniform equilibria in multi-player stochastic games
use the vanishing discount approach: one considers a sequence of stationary
discounted equilibria as the discount factor goes to 0, and, using the sequence,
calculates a uniform equilibrium. This method was used, among others, for
two-player non-zero-sum absorbing games (Vrieze and Thuijsman, 1989), two-
player non-zero-sum games (Vieille, 2000a,b), three-player absorbing games
(Solan, 1999), normal-form correlated equilibrium in multi-player absorbing
games (Solan and Vohra, 2001), and extensive-form correlated equilibrium in
multi-player stochastic games (Solan and Vieille, 2002). Our approach can be
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used in these cases to calculate a uniform ε-equilibrium/correlated ε-equilibrium.
We omit the details, as the presentation of such algorithms requires intimate
knowledge of the various constructions.
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