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a b s t r a c t

We provide a characterization of the set of real-valued functions that can be the value function of
some polynomial game. Specifically, we prove that a function u : R → R is the value function of some
polynomial game if and only if u is a continuous piecewise rational function.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A polynomial game is a finite strategic-form game whose pay-
offs are polynomials in a real-valued parameter Z . The value of
the two-player zero-sum polynomial game depends on the value
of Z , and therefore it is a function u : R → R. Since the
value of a two-player zero-sum strategic-form game with finitely
many strategies is a solution of a set of linear inequalities (see,
e.g., [6]), it follows that the value function u is a continuous and
piecewise rational function; that is, one can divide the real line R
into finitely many intervals such that the function u is a rational
function on each piece. In this note we show that the converse
also holds: every continuous and piecewise rational function is
the value function of some polynomial game.

The reader should not confuse polynomial games as defined
above with the class of games bearing the same name and studied
in [2], which are two-player zero-sum strategic-form games in
which the action set of each player is [0, 1] and the payoff
function is polynomial in x and y, where x ∈ [0, 1] is the mixed
action chosen by Player 1 and y ∈ [0, 1] is the mixed action
chosen by Player 2.

Characterizing the collection of value functions of a given
model has several reasons. First, the richness of the set of value
functions indicates the complexity of the model, and allows us
to compare models that seem unrelated. Second, each restriction
that the value function must satisfy arises from some aspect(s)
in the model, hence increases our understanding of the model.
Third, sometimes we are given the value for some parameters,
and we would like to estimate the value for other parameters.
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Once we identify the set of possible value functions of the model,
we know how many data points we need to estimate the value
function for new parameters. Fourth, sometimes we are given the
value function for some parameters, yet we do not completely
know the underlying model. The characterization of the set of
value functions may allow us to rule out possible models or
increase our confidence in a prospective model. The characteri-
zation of the set of value functions of Markov decision processes
appears in [3]. Characterizations of the set of equilibrium payoffs
of nonzero-sum games are provided in [4,5], and [7].

2. The model and the main result

Definition 2.1. A two-player zero-sum polynomial game is a
tuple Γ = (A, B,G), where A is the finite strategy set of Player 1,
B is the finite strategy set of Player 2, and G = ((Ga,b)a∈A,b∈B) is
the payoff matrix of size |A| × |B|, whose entries are polynomials
in Z .

For every z ∈ R, denote by Γ (z) = (A, B,G(z)) the two-
player zero-sum strategic-form game where the sets of strategies
of the two players are A and B respectively, and the payoffs are
G(z) = (Ga,b(z))a∈A,b∈B, that is, the payoffs in Γ evaluated at Z = z.
Denote by u(z) := val(Γ (z)) the value in mixed strategies of the
game Γ (z). The function u : R → R is the value function of
the polynomial game Γ . Denote by V the set of all real-valued
functions that are value functions of some polynomial game Γ .

Definition 2.2. A function u : R → R is piecewise rational if there
are a natural number K ∈ N, a sequence −∞ = h1 < h2 < · · · <

hK = ∞, and rational functions ( Qk
Rk
)K−1
k=1 such that

u =

K−1∑
k=1

1(hk,hk+1]
Qk
Rk

. (1)
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To simplify notation in Eq. (1), for k = K − 1 we write
(hK−1, hK ] and not (hK−1, hK ). Our main result is the following.

Theorem 2.3. The set V coincides with the set of all continuous and
piecewise rational functions from R to R.

3. Proof of Theorem 2.3

We start by proving the necessity of the condition. Let G be a
polynomial game. Since the function that assigns to every two-
player zero-sum game its value is continuous, it follows that the
function z ↦→ val(Γ (z)) is continuous.

For every square matrix H , denote by det(H) its determinant,
by co(H) the cofactor matrix whose (i, j) entry is the determinant
of the submatrix of H obtained by deleting the i’th row and the
j’th column, and by S(H) the sum of all elements of H . By [6],
for every z ∈ R there is a square submatrix H(z) of G such that
val(Γ (z)) =

det(H(z))
S(co(H(z))) . Since the number of square submatrices of

G is finite, since for every square submatrix H of G the function
z ↦→

det(H(z))
S(co(H(z))) is a rational function, and since two distinct

rational functions intersect in finitely many points, it follows that
the function z ↦→ val(Γ (z)) is piecewise rational.

We turn to prove the sufficiency of the condition. To this end
we prove the following simple properties of the set V .

Proposition 3.1. Let u, w ∈ V . Then

(A.1) −u ∈ V .
(A.2) u + w ∈ V .
(A.3) max{u, w} ∈ V .
(A.4) If there is z0 ∈ R such that u(z0) = w(z0) then the following

function v : R → R is in V:

v(z) := 1z≤z0u(z) + 1z>z0w(z), ∀z ∈ R. (2)

(A.5) P · u ∈ V for every polynomial P.
(A.6) If there is ε > 0 such that u(z) ≥ ε for every z ∈ R, then

1
u ∈ V .

Proof. Since u, w ∈ V , there exist polynomial games Γu =

(Au, Bu,Gu) and Γw = (Aw, Bw,Gw) such that u is the value
function of Γu and w is the value function of Γw .

By changing the role of the two players, the value of the game
is multiplied by −1. That is, the value of the game (Bu, Au, (−Gu)T )
is minus the value of the game (Au, Bu,Gu). (A.1) follows.

To see that (A.2) holds, suppose that the two players simul-
taneously play the games Γu and Γw , and the payoff is the sum
of the payoffs in the two games. Formally, we consider the game
Γ = (A, B,G) where A = Au×Aw , B = Bu×Bw , and G(au,aw ),(bu,bw ) =

Gu,au,bu + Gw,aw ,bw . The reader can verify that for every z ∈ R,
val(Γ (z)) = val(Γu(z)) + val(Γw(z)).

To see that (A.3) holds, suppose again that the two players
simultaneously play the games Γu and Γw , and, when choosing
his strategies in the two games, Player 1 also chooses whether
the payoff will be the payoff in Γu or in Γw . Formally, we con-
sider the game Γ = (A, B,G) where A = Au × Aw × {U,W },
B = Bu × Bw , G(au,aw ,U),(bu,bw ) = Gu,au,bu , and G(au,aw ,W ),(bu,bw ) =

Gw,aw ,bw . The reader can verify that for every z ∈ R, val(Γ (z)) =

max{val(Γu(z)), val(Γw(z))}.
We next prove that (A.4) holds. For every two rational func-

tions û, ŵ : R → R such that û(0) = ŵ(0) = 0 there are c > 0
and N ∈ N sufficiently large such that û(z) ≥ cz + z2N+1 for every
z ≤ 0, and ŵ(z) ≤ cz + z2N+1 for every z ≥ 0. Consequently,
since u and w are continuous piecewise rational functions, there
are two polynomials P1, P2 : R → R such that

• u(z) ≥ P1(z) for every z ≤ z0, and u(z), w(z) ≤ P1(z) for
every z ≥ z0.

• u(z), w(z) ≤ P2(z) for every z ≤ z0, and w(z) ≥ P2(z) for
every z ≥ z0.

The reader can verify that the function v that is defined in Eq. (2)
coincides with min{max{u, P1},max{w, P2}}, and (A.4) follows
from (A.1) and (A.3).

To prove (A.5), fix a polynomial P . Denote by Γ P
u (Au, Bu,GP

u)
the polynomial game that is defined by GP

u,a,b := P ·Gu,a,b for every
(a, b) ∈ Au × Bu. For every z ∈ R for which P(z) ≥ 0 we have
val(Γ P

u (z)) = P(z)u(z). By a repeated use of (A.4), the following
function u1 is in V:

u1(z) :=

{
P(z) · u(z) if P(z) ≥ 0,
0 if P(z) < 0.

By (A.1) we have −u ∈ V , hence as above the function u2 that is
defined by

u2(z) :=

{
(−P(z)) · (−u(z)) if P(z) ≤ 0,
0 if P(z) > 0,

is in V . Since u = u1 + u2, (A.5) follows from (A.2).
We finally turn to prove that (A.6) holds. Let Γ = (A, B,G) be

the game where A = {1} ∪ Au, B = {1} ∪ Bu, and

G =

{
ε 01×|Bu|

0|Au|×1 Gu − ε|Au|×|Bu|

}
,

where 01×|Bu| and 0|Au|×1 are matrices of sizes 1 × |Bu| and |Au|×1
all of whose elements are 0, and ε|Au|×|Bu| is the matrix of size
|Au|× |Bu| all of whose elements are ε. The value of the strategic-
form game (Au, Bu,Gu(z) − ε|A|×|B|) is u(z) − ε, which is positive.
Since ε > 0, it follows that the value of the strategic-form
game (A, B,G(z)) is the same as the value of the 2 × 2 strategic-

form game
{
ε 0
0 u(z) − ε

}
, which is ε(u(z)−ε)

u(z) = ε −
ε2

u . (A.6)

follows. ■

We now have the tools to prove that every continuous piece-
wise rational function is in V . Note that since (A.4) does not hold
for one-player polynomial games, there is a continuous piecewise
rational function that is not the value function of any one-player
polynomial game.

Proposition 3.2. Let u : R → R be a continuous function that is
piecewise rational. Then u ∈ V .

Proof. Since the function u is piecewise rational, there are K ∈ N,
−∞ = h1 < h2 < · · · < hK = ∞, and rational functions(

Qk
Rk

)K−1

k=0
such that u =

Qk
Rk

on the interval (hk, hk+1) and Qk and Rk

do not have common roots, for every k. Assume w.l.o.g. that for
every k the polynomial Rk is positive on (hk, hk+1), and denote by
εk := inf{Rk(z): z ∈ (hk, hk+1)} the minimum of Rk in this interval.
Since u(z) is finite for every z ∈ R, and since Rk and Qk do not
have common roots, it follows that Rk has no root in the closure
of (hk, hk+1), for every k.

We argue that εk > 0 for every k. For k ̸= 1, K − 1 this holds
since the interval [hk, hk+1] is compact. For k = 1 we have εk > 0
since limz→−∞ R1(z) > 0 and since R1(z) > 0 on (−∞, h1]. For
analogous reasons, εK−1 > 0.

By (A.3) we have max{Rk, εk} ∈ V for every k. By (A.5) and (A.6)
and since εk > 0 we have Qk

max{Rk,εk}
∈ V for every k. By iterative

use of (A.4), we have
∑K−1

k=1 1z∈(hk,hk+1]
Qk

max{Rk,εk}
∈ V . Since Rk ≥ εk

on (hk, hk+1), for every k, this function is equal to u, and the result
follows. ■
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4. Discussion and open problems

Let F be the family of all polynomial games where the entries
of the payoff matrix are polynomials with rational coefficients. A
corollary of our result is that the set VF of value functions of poly-
nomial games in F coincides with the set of continuous piecewise
rational functions u ∈ V where, in the presentation (1), the
polynomials (Qk, Rk)K−1

k=0 have integer coefficients with algebraic
(hi)K−1

i=1 .
A piecewise rational game (resp. an affine game) is a two-player

game where each entry in the payoff matrix is a continuous
piecewise rational (resp. affine) function of the parameter Z . The
arguments that we provided for the necessary condition imply
that the set of value functions of piecewise rational games co-
incides with V . This implies that even though the payoff entries
of piecewise rational games can be more complicated than those
of polynomial games, for any piecewise rational game one can
construct a polynomial game with the same value function. In
contrast, the set of value functions of affine games is a strict
subset of V . Indeed, in an affine game the maximal payoff is linear
in Z , hence the value function is bounded by an affine function of
Z . In particular, the function Z2 cannot be the value function of
an affine game.

When the domain of the parameter Z is a compact interval
I rather than R, the set VI of value functions of affine games
coincides with the restriction of V to I; that is, the set VI is the
set of all continuous and piecewise rational functions from I to
R. The only parts in our proof that do not carry over to affine
games are the proofs of Conditions (A.4) and (A.5). In the proof
of (A.4) we use the evident fact that V contains all polynomials.
For affine games this property is no longer evident. Yet, one can
prove by induction on k that Zk

∈ VI , for every k ∈ N. In the
proof of (A.5) we use the fact that the product of polynomials
remains a polynomial. However, the product of affine functions
is not necessarily an affine function. Instead of proving (A.5), one
can prove by induction on the degree of Q that for every positive
real number ε > 0 and every two polynomials Q and R, the
function Q

max{R,ε} ∈ VI , which is the property that is needed in
the proof of Proposition 3.2.

One example of an affine game that is defined over a compact
interval is a Bayesian game with two states of nature s0 and s1,
where the parameter Z is the prior probability that the state is s0.

Our result implies that the set of all value functions of Bayesian
games with two states of nature is the set of all continuous
piecewise rational functions defined on [0, 1].

When u =
∑K−1

k=0 1(hk,hk+1]
Qk
Rk

is a continuous piecewise rational
function, our construction shows that there is a polynomial game
Γu = (Au, Bu,Gu) whose value function is u and such that the
number of actions of both players is of the order of 2K . In addition,
the degree of the polynomials in the payoff matrix Gu is at most
maxk{deg(Qk) + deg(Rk) + 1}. We do not know whether one can
improve upon these bounds.

A natural question that arises from our study is what happens
when the payoffs depend on two (or more) parameters, say Z
and W . In that case, the value function is a function that as-
signs a real number to every (Z,W ) ∈ R2. Some parts of our
arguments extend to this case. The difficult step is to prove that
(A.4) holds. This condition turns out to be related to the Pierce–
Birkhoff Conjecture [1], which asks whether every continuous
piecewise polynomial function in Rd is the maximum of finitely
many minima of finitely many polynomials.
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