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Typically, models with a heterogeneous property are considerably
harder to analyze than the corresponding homogeneous models,
in which the heterogeneous property is replaced by its average
value. In this study we show that any outcome of a heterogeneous
model that satisfies the two properties of differentiability and
symmetry is O(e2) equivalent to the outcome of the corresponding
homogeneous model, where e is the level of heterogeneity. We
then use this averaging principle to obtain new results in queuing
theory, game theory (auctions), and social networks (marketing).

homogenization | perturbation methods

Mathematical modeling is a powerful tool in scientific research.
Typically, the mathematical model is merely an approxima-

tion of the actual problem. Therefore, when choosing the model to
work with, one has to strike a balance between complexmodels that
are more realistic and simpler models that are more amenable to
analysis and simulations. This dilemma arises, for example, when
the model contains a heterogeneous quantity. In such cases, a huge
simplification is usually achieved by replacing the heterogeneous
quantity with its average value. The natural question that arises is
whether this approximation is “legitimate,” i.e., whether the error
that is introduced by this approximation is sufficiently small.
Let us illustrate this with the following example, which is dis-

cussed in detail below. Consider a queue with k heterogeneous
servers, whose expected service times are μ1, . . . , μk. We want to
calculate analytically the expected number of customers in the
system, which we denote* by F(μ1, . . . , μk). Although an explicit
expression for F(μ1, . . . , μk) is not available, there is a well-known
explicit expression in the case of k homogeneous servers, which
we denote by Fhomog:ðμÞ :=F ðμ; . . . ; μ|fflfflfflffl{zfflfflfflffl}Þ

× k

. A natural approximation

for the expected number of customers in the system is

Fðμ1; . . . ; μkÞ ≈ Fhomog:
�
μ
�
; [1]

where μ is the average of {μ1, . . . , μk}.
More generally, let F(μ1, . . . , μk) denote the “outcome” of a

heterogeneous model, let

e :=
max1≤i≤k

��μi − μ
����μ�� [2]

denote the level of heterogeneity of {μ1, . . . , μk}, and let
Fhomog.(μ) denote the outcome of the corresponding homoge-
neous model. If the function F(μ1, . . . , μk) is differentiable, then
it immediately follows that

Fðμ1; . . . ; μkÞ = Fhomog:
�
μ
�
+OðeÞ:

Therefore, for a 10% heterogeneity level, the error of approxi-
mating F(μ1, . . . , μk) with Fhomog:ðμÞ is, roughly speaking, on the
order of 10%. In many studies in different fields, however,
researchers have noted that the error of this approximation is

considerably smaller than e. Moreover, this observation seems to
hold even when the level of heterogeneity is not small.
In this study we show that these observations follow from a

general principle, which we call the averaging principle. Specif-
ically, we show that any outcome of a heterogeneous model that
satisfies the two properties of differentiability and symmetry is
O(e2) asymptotically equivalent to the outcome of the corre-
sponding homogeneous model; i.e.,

Fðμ1; . . . ; μkÞ = Fhomog:
�
μ
�
+O

�
e2
�
:

Thus, if the function F is also symmetric, the error of the ap-
proximation in Eq. 1 for a 10% heterogeneity level is only O(1%).
The averaging principle of this study is unrelated to averaging

principles that originate from laws of large numbers for k � 1,
such as mean-field approximations or approximations of a con-
tinuous population with a large discrete population (see, e.g.,
refs. 1 and 2). Thus, for example, this principle holds when there
are only few servers in a queuing system or few bidders in an
asymmetric auction. The averaging principle can be classified as
a perturbation method in analysis. Whereas it can also be viewed
as an approximation rule, we note that approximation theory is
usually more interested in how well a family of simple functions
approximates a given complicated function (see, e.g., ref. 3).

Averaging Principle
Let F(μ1, . . . , μk) be the outcome of a model with a heteroge-
neous property, captured by the k parameters μ1, . . . , μk, that
satisfies the following two properties:

i) Differentiability: F is twice continuously differentiable at and
near the diagonal μ1 = . . . = μk.

ii) Symmetry: For every (μ1, . . . μk)∈R
k and every i≠ j,F(. . ., μi, . . .,

μj, . . .)= F(. . ., μj, . . ., μi, . . .). Thus, the outcomeF is independent
of the order in which we list the heterogeneous parameters.†

Then, we have the following result:‡

Theorem 1 (the Averaging Principle). Let F be symmetric in its
arguments and twice continuously differentiable. Then, there exist
two positive functions δ(x) and C(x) such that the following holds.
Let μ = (μ1, . . . , μk) be sufficiently close to the diagonal; i.e.,
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��μ− μA
��≤ δ

�
μA
�
; [3]

where μA := ðμA; . . . ; μA|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}Þ
× k

, μA := 1
k

Pk
j=1μj is the arithmetic average,

and k·k is a vector norm on R
k. Then,

��Fðμ1; . . . ; μkÞ− Fhomog:
�
μA
���≤ C

�
μA
�
·
��μ− μA

��2; [4]

where Fhomog:ðμÞ :=F ðμ; . . . ; μ|fflfflfflffl{zfflfflfflffl}Þ
× k

.

Theorem 1 remains valid if μ1, . . . , μk are functions and not
scalars; see Game Theory Application: Assymetric Auctions below.

Using the Geometric and Harmonic Averages. In Theorem 1, we
averaged μ1, . . . , μk using the arithmetic mean. It is well known
in homogenization theory that in some cases the correct ho-
mogenization is provided by the geometric or the harmonic
mean. To address the question of the “correct” averaging, we
recall the following result.

Lemma 1. Let μ > 0, and let h1, . . . , hk ∈ R. Then, as e → 0, the
arithmetic, geometric, and harmonic means of μ + eh1, . . . , μ + ehk
are O(e2) asymptotically equivalent.

Proof: We can prove this result, using the averaging principle.
Let μA denote the arithmetic mean of μ + eh1, . . . , μ + ehk. The

geometric mean μGðμ+ eh1; . . . ; μ+ ehkÞ=
�
∏k

i= 1ðμ+ ehiÞ
�1=k

satisfies the symmetry and differentiability properties. Therefore,
application of Theorem 1 gives

μGðμ+ eh1; . . . ; μ+ ehkÞ = μG
�
μA; . . . ; μA

�
+O

�
e2
�
= μA +O

�
e2
�
:

The proof for the harmonic mean μH = k=
�

1
μ1
+⋯+ 1

μk

�
is similar.

From Lemma 1 and the differentiability of Fhomog.(μ) it fol-
lows that

Fhomog:
�
μA
�
= Fhomog:

�
μG
�
+O

�
e2
�
= Fhomog:

�
μH
�
+O

�
e2
�
:

Corollary 2. The averaging principle (Theorem 1) remains valid if we
replace the arithmetic mean with the geometric mean or the har-
monic mean. In the former case, we add the condition that μ has
positive coordinates.
A natural question is which of the three averages is “optimal,”

in the sense that it minimizes the constant C in Eq. 4. The answer
to this question is model specific. It can be pursued by calculating
explicitly the O(e2) term, as we do later on.
To extend the scope of the averaging principle, we define

a weaker symmetry property.§

Weak Symmetry. For every μ and η, the outcome
Fððμ; . . . ; μ|fflfflfflffl{zfflfflfflffl}Þ

× k

+ ηêjÞ is independent of the value of j for 1 ≤ j ≤ k,

where êj is the jth unit vector in R
k.

Thus, F(μ1, . . . , μk) is weakly symmetric if, whenever all but
one of the parameters are identical, the outcome F is in-
dependent of the identity (coordinate) of the heterogeneous
parameter.
Every symmetric function F is also weakly symmetric, but not vice

versa.{ Nevertheless, the proof of Theorem 1 implies the following:

Corollary 3. The averaging principle (Theorem 1) remains valid if we
replace the assumption of symmetry with the assumption of weak
symmetry.

Queuing Theory Application: An M/M/k Queue with
Heterogeneous Service Rates
Consider a system with k servers. Server i has a random service
time that is distributed according to an exponential distribution
with rate μi. Customers arrive randomly according to a Poisson
distribution with arrival rate λ. An arriving customer is randomly
allocated to one of the nonbusy servers, if such a server exists.
Otherwise, the customer joins a waiting queue, which is unbounded
in length. Once a customer is allocated to a server, he gets the
service he needs and then leaves the system. This setup is known
in the Queuing literature as the M/M/k model.║ Examples for such
multiserver queuing systems are call centers, queues in banks,
parallel computing, and communications in Integrated Services
Digital Network (ISDN) protocols.
Let F(μ1, . . . , μk) denote the expected number of customers in

the system (i.e., waiting in the queue or receiving service) in
steady state. In the case of two heterogeneous servers, F(μ1, μ2)
can be explicitly calculated (SI Text):

Lemma 2. Consider an M/M/2 queue with heterogeneous servers,
where ρ := λ

μ1 + μ2
< 1. Then, the expected number of customers in

the system is given by

Fðμ1; μ2Þ=
1

ð1− ρÞ2
1

1
ρ

2μ1μ2
ðμ1 + μ2Þ2

+
1

1− ρ

: [5]

Finding an explicit solution for F(μ1, . . . , μk) when k ≥ 3 is
computationally challenging, because it involves solving a system
of 2k − 1 linear equations. In the homogeneous case μ1 = . . . =
μk = μ; however, it is well known that (e.g., ref. 4)

F ð μ; . . . ; μ|fflfflfflffl{zfflfflfflffl}Þ
× k

=

ðλ=μÞk
k!

λ

kμ

1−
λ

kμPk−1
n= 0

ðλ=μÞn
n!

+
ðλ=μÞk
k!

1

1−
λ

kμ

1

1−
λ

kμ

+
λ

μ
: [6]

The function F(μ1, . . ., μk) can be written as a sum of solutions
of a system of linear equations with coefficients that depend
smoothly on μ1, . . . , μk (SI Text). Therefore, F is differentiable.
Because customers are randomly allocated to the free servers,
renaming the servers does not affect the expected number of
customers in the system. Hence, F is also symmetric. Therefore,
we can use the averaging principle to obtain an explicit O(e2)
approximation for F(μ1, . . . , μk):

Theorem 4. Consider an M/M/k queue with heterogeneous servers
whose service rates are μ1, . . . , μk. The expected number of cus-
tomers in the system is given by

Fðμ1; . . . ; μkÞ = Fhomog:
�
μ
�
+O

�
e2
�
;

where Fhomog:ðμÞ :=F ðμ; . . . ; μ|fflfflfflffl{zfflfflfflffl}Þ
× k

is given by Eq. 6, μ := 1
k

Pk
i=1μi,

and e is given by Eq. 2.§See the social-networks application below for an example of a weakly symmetric out-
come that is not symmetric.

{For example, F(μ1, μ2, μ3, μ4) = (μ2 − μ1)
2 + (μ3 − μ2)

2 + (μ4 − μ3)
2 + (μ1 − μ4)

2 is weakly
symmetric but is not symmetric. ║For an introduction to queuing theory, see, e.g., ref. 4.
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For example, by Theorem 4, the expected number of customers
with two heterogeneous servers is

Fðμ1; μ2Þ = F
�
μ; μ
�
+O

�
e2
�
=

4λμ
4μ2 − λ2

+O
�
e2
�
; [7]

where

μ :=
μ1 + μ2

2
;   e :=

μ2 − μ1
2

:

Indeed, substituting μ1;2 = μ± e in Eq. 5 and expanding in « gives
Eq. 7.
In the case of k = 8 heterogeneous servers, even writing the

system of 28 − 1 = 255 equations for the 255 unknowns is a
formidable task, not to mention solving it explicitly. By the av-
eraging principle, however,

Fðμ1; . . . ; μ8Þ = Fhomog:
�
μ
�
+O

�
e2
�
;

where Fhomog:ðμÞ := F ðμ; . . . ; μ|fflfflfflffl{zfflfflfflffl}Þ
× 8

is given by Eq. 6 with k = 8.

We ran stochastic simulations of an M/M/8 queuing system
with eight heterogeneous servers, using the ARENA simulation
software, and used it to calculate the expected number of cus-
tomers in the system. The simulation parameters were

λ=
28
hour

;   μ=
5

hour
;  μi = μ+ ehi;  i= 1; . . . 8;

ðh1; . . . ; h8Þ = ð1; 1:5; 2; 3; 3:5; − 2:5; − 4; − 4:5Þ 1
hour

;

and e varies between 0 and 1 in increments of 0.05. BecausePk
i=1hi = 0, the average service rate is μ= μ= 5. Therefore, by

Theorem 4,

Fðμ+ eh1; . . . ; μ+ eh8Þ= Fhomog:ð5Þ+O
�
e2
�
:

In addition, by Eq. 6, Fhomog.(5) = 6.2314.
To illustrate the accuracy of this approximation, we plot in

Fig. 1 the relative error of the averaging-principle approximation
Fðμ+ eh1; . . . ; μ+ eh8Þ−Fhomog:ð5Þ

Fðμ+ eh1; . . . ; μ+ eh8Þ . As expected, this error scales

as e2. Note that even when the heterogeneity is not small, the
averaging-principle approximation is quite accurate. This is be-
cause the coefficient (0.594) of the O(e2) term is small.** For
example, when e = 0.5, the relative error is ∼2%, and for e = 1 it is
below 10%.

Remark: We can also use the averaging principle to obtain
O(e2) approximations to other quantities of interest that satisfy
the symmetry property, such as the average waiting time in the
queue or the probability that there are exactly m customers in
the queue.

Game Theory Application: Asymmetric Auctions
Consider a sealed-bid first-price auction with k bidders, in which
the bidder who places the highest bid wins the object and
pays his bid, and all other bidders pay nothing.†† A common
assumption in auction theory is that of independent private-value

auctions, which says that each bidder knows his own valuation for
the object, does not know the valuation of the other bidders, but
does know the cumulative distribution functions (CDF) of the
valuations of the other bidders. Bidders are also characterized by
their attitude toward risk: The literature usually assumes that
bidders are risk neutral, because this simplifies the analysis. More
often than not, however, bidders are risk averse.
A strategy of bidder i is a function bi that assigns a bid bi(υi) to

each possible valuation υi of that bidder. The bid that a bidder
places depends on his valuation υi and on his beliefs about the
distributions of the valuations of the other bidders and about
their bidding behavior. An equilibrium in this setup is a vector of
k strategies fbigki=1, such that no single bidder can profit by de-
viating from his bidding strategy, whatever his valuation might
be, as long as all other bidders follow their equilibrium bidding
strategies.
Most of the auction literature focuses on the symmetric (ho-

mogeneous) case, in which the beliefs of any bidder about any
other bidder (e.g., about his distribution of valuations, his atti-
tude toward risk, etc.) are the same. In this case, one can look for
a symmetric equilibrium, in which all bidders adopt the same
strategy. In practice, however, bidders are usually asymmetric
(heterogeneous), both in their attitude toward risk and in the
distribution of their valuations. Each bidder then faces a differ-
ent competition. As a result, the equilibrium strategies of the
bidders are not the same.
The addition of asymmetry usually leads to a huge complica-

tion in the analysis. For example, consider a first-price auction
for a single object with risk-neutral bidders that have private
values that are independently distributed in the unit interval
[0, 1] according to a common cumulative distribution function
F. Denote by b the symmetric Nash equilibrium bidding strategy.
Then υ:= b−1, the inverse of b, satisfies the ordinary differential
equation (ODE)‡‡

υ′ðbÞ= 1
k− 1

FðυðbÞÞ
F′ðυðbÞÞ

1
υðbÞ− b

; υð0Þ= 0:

0 0.2 0.4 0.6 0.8 1
0
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Fig. 1. The relative error of the averaging-principle approximation for the
steady-state number of customers in a system with eight heterogeneous
servers, as a function of the heterogeneity parameter e. The solid line is error =
0.594e2. The crosses denote the relative error of the improved approximation
given by Eq. 16. The dotted line is error = 0.074e3.

**This coefficient is computed analytically later on from Eq. 15.
††See ref. 5 for an introduction to auction theory.

‡‡See, e.g., ref. 5. Because we consider the case where all bidders use the same strategy,
we omit the subscript i from b and υ.
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This equation can be solved explicitly, yielding

bðυÞ= υ−

Zυ
0

Fk−1ðsÞds

Fk−1ðυÞ : [8]

Therefore, this case is “completely understood.” From the sell-
er’s point of view, a key property of an auction is his expected
revenue. In the symmetric case, Eq. 8 can be used to calculate
the seller’s expected revenue Rhomog.[F], yielding

Rhomog:½F�= 1+ ðk− 1Þ
Z1
0

FkðυÞdυ− k
Z1
0

Fk−1ðυÞdυ: [9]

In the asymmetric case, where the value of bidder i is indepen-
dently distributed in [0, 1] according to Fi, the inverse equilibrium
strategies fυið · Þgki=1 are the solutions of the system of ODEs,

υ′iðbÞ=FiðυiðbÞÞ
F′iðυiðbÞÞ

" 
1

k− 1

Xk
j=1

1�
υjðbÞ− b

�!−
1

ðυiðbÞ− bÞ

#
; [10a]

for i = 1, . . ., k, subject to the initial conditions

υiðb= 0Þ= 0;  i= 1; . . . ; k; [10b]

and the “end condition” at some unknown b,

υi
�
b
�
= 1;  i= 1; . . . ; k: [10c]

Thus, the addition of asymmetry leads to a huge complication of
the mathematical model: Instead of a single ODE that can be
explicitly integrated, the mathematical model consists of a system
of coupled nonlinear ODEs with a nonstandard boundary con-
dition. As a result, Eq. 10 cannot be explicitly solved, and it is
poorly understood, compared with the symmetric case.
In ref. 6, Fibich and Gavious considered Eq. 10 in the weakly

asymmetric case Fi = F + eHi, i = 1, . . . , k. After several pages of
informal perturbation-analysis calculations, they obtained O(e2)
asymptotic approximations of the inverse equilibrium strategies
fυiðb; eÞgki=1. Substituting these approximations in the expression
for the seller’s expected revenue showed that it is given by

R½F1 = F + eH1; . . . ;Fk = F + eHk� [11]

=Rhomog:½F�− eðk− 1Þ
Z1
0

ð1−FðυÞÞFk−2ðυÞ
Xk
i=1

HiðυÞdυ+O
�
e2
�
:

This is, in fact, a special case of the averaging principle. Indeed,
symmetry holds because changing the indexes of the bidders does
not affect the revenue. Therefore, assuming differentiability, the
averaging principle for functions (SI Text) yields

R½F1 =F + eH1; . . . ;Fk =F + eHk�=Rhomog:
	
F


+O

�
e2
�
; [12]

where F =F + e
k

Pk
i=1Hi. Substituting F in Eq. 9 and expanding in

powers of e gives

Rhomog:
	
F


=Rhomog:½F�

−eðk− 1Þ
Z1
0

ð1−FðυÞÞFk−2ðυÞ
Xk
i=1

HiðυÞdυ+O
�
e2
�
:

Hence, Eq. 11 follows.
In ref. 7, Lebrun rigorously proved that the asymmetric equi-

librium bids and the expected revenue are once differentiable.
Lebrun noted that this proves Eq. 11 [with o(e) error instead of
O(e2)]. In retrospect, this can be viewed as an early application of
the averaging principle.
Numerical calculations (ref. 6, table 1, and ref. 8, tables 1 and 2)

show that the error of the averaging-principle approximation in Eq.
12 is small (typically below 1%), even when the asymmetry level is
not small (e.g., e = 0.4). This provides another illustration that the
averaging-principle approximation can be useful even when e is not
very small.
The averaging principle not only leads to a simpler derivation

of Eq. 11, but also enables us to derive a more general
novel result:

Theorem 5.Consider an anonymous auction§§ in which all k bidders
have the same attitude toward risk, and all bidders follow the same
“rules” when they determine their bidding strategies.{{ Let F1, . . . ,
Fk be the cumulative distribution functions of the valuations of the
bidders, and let R[F1, . . . , Fk] be the expected revenue of the seller.
If R is twice differentiable at and near the diagonal, then

R½F1; . . . ;Fk�=Rhomog:
	
F


+O

�
e2
�
;

where Rhomog:½F�=R½F; . . . ;F�, F is the average of F1, . . ., Fk, and e
is the level of heterogeneity.
Indeed, the assumptions of the theorem imply that F is sym-

metric. Therefore, if F is also differentiable, the theorem follows
from the averaging principle.

Social-Networks Application: Diffusion of New Products
Diffusion of new products is a fundamental problem in marketing,
which has been studied in diverse areas such as retail service; in-
dustrial technology; agriculture; and educational, pharmaceutical,
and consumer-durables markets (10). Typically, the diffusion pro-
cess begins when the product is first introduced into the market
and progresses through a series of adoption events. An individual
can adopt the product due to external influences such as mass
media or commercials and/or due to internal influences by other
individuals who have already adopted the product (word of
mouth). The internal influences depend on the underlying social-
network structure, because adopters can influence only people
that they “know.” The social network is usually modeled by an
undirected graph, where each vertex is an individual, and two
vertices are connected by an edge if they can influence each other.
The first quantitative analysis of diffusion of new products was

the Bass model (11), which inspired a huge body of theoretical
and empirical research. In this model and in many of the sub-
sequent product-diffusion models:

i) A new product is introduced at time t = 0.
ii) Once a consumer adopts the product, he remains an adopter

at all later times.
iii) If consumer j has not adopted before time t, the probability

that he adopts the product in the time interval [t, t + s), given
that the product was already adopted by nj(t) people that are
connected to j, and that no other consumer adopts the prod-
uct in the time interval [t, t + s), is

§§i.e., an auction in which the winner and the amount that each bidder pays depend
solely on their bids and not on the identity of the bidders.

{{For example, bidders may use bounded rationality (9) when determining their bidding
strategies. Thus, bidders may restrict themselves to a class of simple strategies, such as
low-order polynomial functions of the valuation υ. They may even not be aware of the
concept of equilibrium. Nevertheless, as long as all bidders have the “same” bounded
rationality, the symmetry requirement holds.
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Prob
�
j adopts in

	
t; t+ s

���njðtÞ; no other consumer
adopts in ½t; t+ sÞ

�
   =

�
pj +

njðtÞ
mj

· qj

�
s+O

�
s2
�
;

[13]

as s→ 0, wheremj is the total number of individuals connected to
consumer j and the parameters pj and qj describe the likelihood
of individual j to adopt the product due to external and internal
influences, respectively.
We say that a social network is translation invariant if any

individual sees exactly the same network structure. Therefore, in
particular, mj is independent of j. Examples of translation-in-
variant social networks are as follows (Fig. 2 A–D):

A) A complete graph, in which any two individuals are connected.
B) A one-dimensional circle, in which each individual is con-

nected to his two nearest neighbors.
C) A one-dimensional circle, in which each individual is con-

nected to his four nearest neighbors.
D) A two-dimensional torus, in which each individual is con-

nected to his four nearest neighbors.

We say that the individuals are homogeneous when all individuals
share the sameparameters; i.e., pj= p and qj= q for every individual j.
Let N(t) denote the number of adopters at time t. The expected
aggregate adoption curve Ehomog.[N(t; p, q)] in several translation-
invariant social networks with homogeneous individuals was
analytically calculated in refs. 12 and 13. In these studies, the
assumption that all individuals are homogeneous was essential
for the analysis.
One of the fundamentals of marketing theory is that consumers

are anything but homogeneous. An explicit calculation of the
expected aggregate adoption curve E[N(t;{pj},{qj})] in the
heterogeneous case, however, is much harder than in the ho-
mogeneous case. As a result, the effect of heterogeneity is not
well understood.
The averaging principle allows us to approximate the hetero-

geneous model with the corresponding homogeneous model.
Consider a translation-invariant network. Then, for t ≥ 0
the function F({pj},{qj}) := E[N(t;{pj},{qj})] is differentiable
and weakly symmetric (SI Text). Therefore, by the averaging
principle,

Theorem 6. The expected aggregate adoption curve in a translation-
invariant social network with heterogeneous individuals can be
approximated with

E
	
N
�
t; fpjg; fqjg

�

= Ehomogeneous

	
N
�
t; p; q

�

+O

�
e2
�
;

where p and q are the averages of {pj} and {qj}, respectively, and e
is the level of heterogeneity of {pj} and {qj}.
Theorem 6 is consistent with previous numerical findings:

1) In ref. 14, simulations of an agent-based model with a com-
plete graph showed that heterogeneity in p and q had a minor
effect on the expected aggregate adoption curve.

2) Simulations of agent-based models with 1D and 2D transla-
tion-invariant networks (ref. 12, figure 18) showed that when
the values of {pj} and {qj} are uniformly distributed within ±
20% of the corresponding values p and q of the homogeneous
individuals, the heterogeneous and homogeneous adoption
curves are nearly indistinguishable. Even when the heteroge-
neity level was increased to ±50%, the two adoption curves
were still very close.

Calculating the O(e2) Term
The averaging principle is based on a two-term Taylor expansion
of F. Therefore, the error of this approximation is given, to
leading order, by the quadratic term in this expansion. When F
satisfies the differentiability and symmetry properties*** and μ is
the arithmetic mean, this error is given by (SI Text)

Fðμ1; . . . ; μkÞ−F
�
μA; . . . ; μA

�
∼ α
Xk
i=1

�
μi − μA

�2
; [14a]

where

α :=
1
2

 
∂2F

∂μ1∂μ1

����
μA

−
∂2F

∂μ1∂μ2

����
μA

!
: [14b]

Therefore,

i) The magnitude of this error is ∼ jαjkμ− μAk22.
ii) The sign of this error is the same as the sign of α.

A Taylor expansion in h gives

F
�
μA + 2h; μA; μA; . . . ; μA|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

× k−2

�
−F
�
μA + h; μA + h; μA . . . ; μA|fflfflfflfflfflffl{zfflfflfflfflfflffl}

× k−2

�
  

∼ 2αh2; h � 1:

This shows that to determine the sign of α, one can compare the
effect of adding h units to two parameters with the corre-
sponding effect of adding 2h units to a single parameter.
The value of α can be calculated as follows:

Lemma 3. Assume that F(μ1, . . . , μk) satisfies the differentiability
and symmetry properties. Then,

Fig. 2. (A–D) Examples of translation-invariant networks.

Table 1. Values of {ci, bi}

i ci bi

0 1 1
1 45 14
2 999 126
3 14,280 840
4 144,720 4,200
5 1,088,640 15,120
6 6,249,600 35,280
7 27,941,760 40,320
8 97,977,600
9 263,390,400
10 514,382,400
11 653,184,000
12 406,425,600

***Here we cannot assume that F is only weakly symmetric, because we require that

∂2F
∂μi∂μj

=
∂2F

∂μ1∂μ2
for all i, j.

Fibich et al. PNAS Early Edition | 5 of 6

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206867109/-/DCSupplemental/pnas.201206867SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1206867109/-/DCSupplemental/pnas.201206867SI.pdf?targetid=nameddest=STXT


α=
k

2ðk− 1Þ

 
∂2F
∂μ1μ1

����
μA

−
1
k2

Fhomog:″ ðμA
�!

:

Therefore, this calculation requires only the explicit calculations
of F in the homogeneous case μ1 = . . . = μk and in the case
that the heterogeneity is limited to a single coordinate (i.e., when
μ2 = . . . = μk). In many applications this is a considerably easier
task than the explicit calculation of F in the fully hetero-
geneous case.
To illustrate this, consider again the M/M/k example of Fig. 1

with k = 8. Whereas the fully heterogeneous case requires solving
2k − 1 = 255 equations, the single-coordinate heterogeneous case
requires solving only 2 · k = 16 equations. Solving these 16
equations symbolically and using Lemma 3 yields (SI Text)

αðk = 8Þ= 1
2λμA

P12
i= 0 ci

�
μA
λ

�i
 P7

i= 0 bi

�
μA
λ

�i!2; [15]

where the values of {ci, bi} are listed in Table 1.
In particular, substituting μA = 5 and λ = 28 yields α ∼ 0.00837.

This leads to the improved approximation

Fðμ1; . . . ; μ8Þ≈ Fhomog:
�
μA
�
+ α

P8
i=1

�
μi − μA

�2
≈ Fhomog:ð5Þ+ 0:594e2:

[16]

The error of this improved approximation scales as 0.074e3 (Fig.
1), which is the next term in the Taylor expansion. In particular,
the relative error of Eq. 16 is below 1.5% for 0 ≤ e ≤ 1.

Final Remarks
The averaging principle is based on a simple observation: The
leading-order effects of heterogeneity cancel out when the out-
come is symmetric. Nevertheless, it can lead to a significant
simplification of mathematical models in all branches of science.
The symmetry and the weak-symmetry properties are usually

easy to check. The differentiability of F is easy to check in some
applications, but can be quite a challenge in others. We note,
however, that more often than not, functions that arise in
mathematical models are differentiable, unless there is a “very
good reason” why they are not. Although this is a very informal
statement, we make it to point out that the “generic” case is that
the outcome F is differentiable, rather then the other way around.
An important issue is the “level of heterogeneity” that is

covered by the averaging principle. Strictly speaking, the level of
heterogeneity should be “sufficiently small.” In practice, how-
ever, in many cases the averaging principle provides good
approximations even when e = 0.5. In other words, the co-
efficient of the O(e2) term is O(1). Whereas this is also an in-
formal statement, we make it to point out that one should not be
“surprised” that the averaging principle holds even when e is not
very small.
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Proof of Theorem 1 and Corollary 3. Because of the differentiability
of F, there exist positive constants δðμAÞ and CðμAÞ, such that for
all μ that satisfy Eq. 3,�����FðμÞ−F

�
μA
�
−
Xk
j¼1

�
μj − μA

� ∂F
∂μj

����
μA

����� ≤ C
�
μA
���μ− μA

��2:
If F is symmetric, then

∂F
∂μi

����
μA

¼ ∂F
∂μ1

����
μA

;   j ¼ 1; . . . ; k: [S1]

Because μA is the arithmetic average,

Xk
j¼1

�
μj − μA

� ∂F
∂μj

����
μA

¼ ∂F
∂μ1

����
μA

Xk
j¼1

�
μj − μA

�¼ 0:

Hence, the result follows.
Note that symmetry was used only to derive Eq. S1. Because

∂F
∂μi

����
μA

¼ lim
η→0

F
�
μA þ ηêi

�
−F
�
μA
�

η
;

deriving Eq. S1 requires only weak symmetry. Therefore, Corol-
lary 3 follows.

Proof of Lemma 2. We calculate F(μ1, μ2) explicitly, using the
steady-state transition diagram that is shown in Fig. S1. We
denote by pi the steady-state probability for the system to be with
i customers and by pð1;0Þ1 and pð0;1Þ1 the steady-state probability
for the system to be with one customer in servers 1 and 2, re-
spectively. In particular, p1 ¼ pð1;0Þ1 þ pð0;1Þ1 . Because in steady
state the amount of inflow is equal to the amount of outflow, the
following equalities hold:

λ p0 ¼ μ1p
ð1;0Þ
1 þ μ2p

ð0;1Þ
1 ; [S2a]

λ

2
p0 þ μ2p2 ¼ ðλþ μ1Þpð1;0Þ1 ; [S2b]

λ

2
p0 þ μ1p2 ¼ ðλþ μ2Þpð0;1Þ1 ; [S2c]

λ pð1;0Þ1 þ λ pð0;1Þ1 þ ðμ1 þ μ2Þp3 ¼ ðλþ μ1 þ μ2Þp2; [S2d]

λ pn þ ðμ1 þ μ2Þpnþ2  ¼ ðλþ μ1 þ μ2Þpnþ1;  n ¼ 2; 3; . . . [S2e]

We can view Eqs. S2a–S2c as a linear system for the three un-
knowns p0; p

ð1;0Þ
1 ; pð0;1Þ1 . Solving this system for p0 yields

p0 ¼ 2μ1μ2
λ2

p2:

In addition, the solution of Eqs. S2d and S2e is pn ¼
�

λ
μ1þμ2

�n−2
p2 ¼ ρn−2p2 for n ≥ 1. Substituting the above in

1 ¼
X∞
n¼0

pn ¼ p0 þ
X∞
n¼1

ρn−2p2 ¼
�
2μ1μ2
λ2

þ 1
ρ

1
1− ρ

	
p2

gives p2 ¼
�
2μ1μ2
λ2

þ 1
ρ

1
1−ρ

�−1
. Therefore,

Fðμ1; μ2Þ ¼
X∞
n¼0

npn ¼
X∞
n¼0

nρn−2 p2 ¼ p2
ρ

X∞
n¼0

nρn−1

¼ p2
ρ

 X∞
n¼0

ρn
!′
¼ p2

ρ

�
1

1− ρ

	′¼ p2
ρ

1

ð1− ρÞ2;

and the result follows.

M/M/3 Queue. Consider the case of three heterogeneous servers
with average service times μ1, μ2, and μ3. Denote by p0, p

ð1;0;0Þ
1 ,

pð0;1;0Þ1 , pð0;0;1Þ1 , pð1;1;0Þ2 , pð1;0;1Þ2 , pð0;1;1Þ2 , and p3, p4, . . . , the steady-
state probabilities. Thus, for example, pð1;0;1Þ2 is the steady-state
probability that servers 1 and 3 are busy, server 2 is free, and
there are no waiting customers in the queue (we denote by pn,
n ≥ 2 the probability of having n customers in the system). The
transition diagram for k = 3 servers is given in Fig. S2. The
steady-state equations are

λp0 ¼ μ1p
ð1;0;0Þ
1 þ μ2p

ð0;1;0Þ
1 þ μ3p

ð0;0;1Þ
1 ;

λ

3
p0 þ μ2p

ð1;1;0Þ
2 þ μ3p

ð1;0;1Þ
2 ¼ ðμ1 þ λÞpð1;0;0Þ1 ;

λ

3
p0 þ μ1p

ð1;1;0Þ
2 þ μ3p

ð0;1;1Þ
2 ¼ ðμ2 þ λÞpð0;1;0Þ1 ;

λ

3
p0 þ μ1p

ð1;0;1Þ
2 þ μ2p

ð0;1;1Þ
2 ¼ ðμ3 þ λÞpð0;0;1Þ1 ;

λ

2
pð1;0;0Þ1 þ λ

2
pð0;1;0Þ1 þ μ3p3 ¼ ðλþ μ1 þ μ2Þpð1;1;0Þ2 ;

λ

2
pð1;0;0Þ1 þ λ

2
pð0;0;1Þ1 þ μ2p3 ¼ ðλþ μ1 þ μ3Þpð1;0;1Þ2 ;

λ

2
pð0;1;0Þ1 þ λ

2
pð0;0;1Þ1 þ μ1p3 ¼ ðλþ μ2 þ μ3Þpð0;1;1Þ2 ;

    ¼ ðλþ μ1 þ μ2 þ μ3Þp3;

λpn þ ðμ1 þ μ2 þ μ3Þpnþ2  ¼ ðλþ μ1 þ μ2 þ μ3Þpnþ1;   n ≥ 3;

X∞
n¼0

pn ¼ 1:

The solution of the last two equations is pn ¼
�

λ
μ1þμ2þμ3

�n−3
p3 for

n ≥ 2. The values of p0, p1, p2 as a function of p3 can be evaluated
explicitly with MAPLE, by solving the first 23 − 1 = 7 linear
equations for p0, pð1;0;0Þ1 , pð0;1;0Þ1 , pð0;0;1Þ1 , pð1;1;0Þ2 , pð1;0;1Þ2 , and
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pð0;1;1Þ2 . The resulting expression for F(μ1, μ2, μ3), however, is
extremely cumbersome and not informative.

Proof of Theorem 4. Because customers are randomly assigned to
the available servers, F(μ1, . . . , μk) is symmetric. To see that F is
differentiable in (μ1, . . . , μk), we note that F ¼P∞

n¼0npn, where
pn is the steady-state probability that there are n customers in
the system. In addition, fpngkn¼1 are the solutions of a linear
system with coefficients that depend smoothly on (μ1, . . ., μk),

and pn ¼
�

λ
μ1þ⋯þμk

�n−k
pk for n ≥ k − 1. This was shown explic-

itly for the cases k = 2 and k = 3; the proof for k > 3 is similar.

Averaging Principle for Functions (Proof of Eq. 12). Let F1, . . ., Fk
belong to a function space F , let e ∈ ℝ, and let R : (F1, . . . , Fk) ↦
R[F1, . . ., Fk] ∈ ℝ be a functional. We say that the functional R is
differentiable if it is twice differentiable in the sense of Fréchet.
(We can also relax this assumption and assume that R is once
differentiable in the sense of Fréchet, and the scalar function
~RðeÞ :¼ R½F1 ¼ F þ eH1; . . . ;Fk ¼ F þ eHk� is twice differentia-
ble at and near e = 0, for every F, H1, . . . , Hk ∈ F .) By Taylor
expansion,

~RðeÞ ¼ ~Rð0Þ þ e
Xk
j¼1

d
de

�����
e¼0

R

2
6664 ðF; . . . ;F|fflfflfflffl{zfflfflfflffl}Þ

× k

þ eHjêj

3
7775þO

�
e2
�
;

where

d
de

����
e¼0

R
h
ðF; . . . ;FÞ þ eHjêj

i
¼ δR

δFj

�
Hj
�
;

and δR
δFj

is the Fréchet derivative of R[F1, . . ., Fk] with respect to
Fj. Therefore,

~RðeÞ ¼ ~Rð0Þ þ e
Xk
j¼1

δR
δFj

�
Hj
�þO

�
e2
�
:

Because R is symmetric and the Fréchet derivative is a linear
operator,

~RðeÞ ¼ ~Rð0Þ þ e
δR
δF1

"Xk
j¼1

Hj

#
þO

�
e2
�
:

Denote F :¼ 1
k

Pk
j¼1Fj and Hj :¼ Fj −F. Then

Pk
j¼1Hj ¼ 0.

Hence, ~RðeÞ ¼ ~Rð0Þ þOðe2Þ, which is Eq. 12.

Proof of Theorem 6. We first prove that F is differentiable. De-
note δi;i′ ¼ 1 if individuals i and i′ influence each other and
δi;i′ ¼ 0 otherwise. For every k, every set of k consumers {i1, i2,
. . . , ik}, and every increasing sequence of times 0 ≤ t1 ≤ . . . ≤
tk, denote by P(i1, t1, i2, t2, . . . , ik, tk) the probability that
consumer i1 adopts the product before time t1, consumer i2
adopts the product between times t1 and t2, etc., and all con-
sumers who are not in {i1, . . . , ik} do not adopt the process by
time tk. Then,

Pði1; t1Þ ¼
�
1− exp

�
− pi1 t1

��
∏
j≠i1

exp
�
− pjt1

�
:

Similarly,

Pði1; t1; i2; t2; . . . ; ik; tkÞ ¼
 Pði1; t1; i2; t2; . . . ; ik−1; tk−1Þ
 ×
�
1− exp

�
−
�
pik þ

Pk−1
m¼1

δik;imqim

	
ðtk − tk−1Þ

		
 × ∏

j∉fi1;...;ikg
exp
�
−
�
pj þ

Pk−1
m¼1

δj;imqim

	
ðtk − tk−1Þ

	
:

Hence, the function P(i1, t1, i2, t2, . . . , ik, tk) is differentiable in
{pi, qi}. Finally,

E
h
N
�
t;
n
pj
o
;
n
qj
o�i

¼ 1
M

X
π

XM
k¼1

k
ðM − kÞ!

×
R t
t1¼0

R t
t2¼t1

⋯
R t
tk− 1¼tk− 2

Pði1; t1; . . . ; ik−1; tk−1; ik; tÞdtk−1 . . . dt1;

where π ranges over all permutations on the set of M individ-
uals. Therefore, the differentiability of E[N(t;{pj},{qj})]
follows.
Because the network is translation invariant, F is weakly

symmetric in {pj} and in {qj}. By this we mean that

If pm ¼ ~p, pj = p for all j ≠ m, and qj = q for all j, then F is
independent of the value of m.

If qn ¼ ~q, qj = q for all j ≠ n, and pj = p for all j, then F is
independent of the value of n.

Therefore, the result follows from a slight modification of the
proof of Theorem 1.

Proof of Eq. 14. Because F is symmetric, the quadratic term in the
Taylor expansion of F(μ1, . . . , μk) around the arithmetic mean is
equal to

Xk
i;j¼1

�
μi − μA

��
μj − μA

� ∂2F
∂μi∂μj

�����
μA

¼ ∂2F
∂μ1∂μ2

�����
μ

Xk
i;j¼1;i≠j

�
μi − μA

��
μj − μA

�þ ∂2F
∂μ1∂μ1

�����
μ

Xk
i¼1

�
μi − μA

�2
:

Because μA is the arithmetic mean,

Xk
i;j¼1

�
μi − μA

��
μj − μA

� ¼Xk
i¼1

�
μi − μA

�Xk
j¼1

�
μj − μA

� ¼ 0:

Therefore, the result follows.

Proof of Lemma 3. Consider the case where μi ¼ μþ h for i = 1,
. . . , k. By Eq. 14,

1
2

Xk
i;j¼1

�
μi − μ

��
μj − μ

� ∂2F
∂μi∂μj

�����
μ

¼ 1
2

∂2F
∂μ1∂μ2

�����
μ

kðk− 1Þh2 þ 1
2

∂2F
∂μ1∂μ1

�����
μ

kh2:

On the other hand, because

F
�
μþ h; . . . ; μþ h

� ¼ Fhomog:
�
μþ h

�
;
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we have

1
2

Xk
i; j¼1

�
μi − μ

��
μj − μ

� ∂2F
∂μi∂μj

�����
μ

¼ h2

2
F″homog:

�
μ
�
:

Therefore,

1
2

∂2F
∂μ1∂μ2

�����
μ

kðk− 1Þh2 þ 1
2

∂2F
∂μ1∂μ1

�����
μ

kh2 ¼ h2

2
F″homog:

�
μ
�
:

Hence,

∂2F
∂μ1∂μ2

�����
μ

¼ 1
k− 1

 
1
k
F″homog:

�
μ
�
−

∂2F
∂μ1∂μ1

�����
μ

!
:

Calculation of α.We illustrate the computation of the coefficient α
for a queue with eight servers. Consider then the case of a single
server with service time μ1 and seven servers with service time μ,
such that ρ :¼ λ

7μþμ1
< 1. Denote by p0,n and p1,n, n = 1, . . ., 6, the

steady-state probabilities that n of the homogeneous servers are
busy and that the single heterogeneous server is free or busy,
respectively. The equations for the 2 · 8 − 1 = 15 variables p0,
p0,1, p1,0, . . . , p1,6, p0,7 are

λp0;0 ¼ μp0;1 þ μ1p1;0;

− p0;0
λ

8
þ p1;0ðλþ μ1Þ− p1;1μ ¼ 0;

p0;nðλþ nμÞ ¼ p0;n−1
8− n
9− n

λþ p1;nμ1 þ p0;nþ1ðnþ 1Þμ;
 n ¼ 1; . . . ; 6;

p1;nðμ1 þ λþ nμÞ ¼ p1;n−1λþ p1;nþ1ðnþ 1Þμþ p0;n
λ

8− n
;

 n ¼ 1; . . . ; 5;

p0;7ðλþ 7Þμ� ¼ p0;6
λ

2
þ p7μ1ρ;

where pn = ρn−7p7 for n ≥ 8, and
P∞

n¼0 pn ¼ 1. These equations
can be solved with Maple and the solution can be used to calcu-
late Fðμ1; μ; . . . ; μ|fflfflfflffl{zfflfflfflffl}

× 7

Þ explicitly. (The Maple code is available at

www.bgu.ac.il/∼ariehg/averagingprinciple.html.) Differentiating
this expression twice with respect to μ1, differentiating
Fhomog. (Eq. 6) twice with respect to μ, and using Lemma 3
yields Eq. 15. Substituting μA ¼ 5 and λ = 28 gives α ∼
0.00837. In addition,

P8
i¼1ðμi−μÞ2 ¼ e2

P8
i¼1h

2
i ¼ 71e2. There-

fore, α
P8

i¼1ðμi−μÞ2 ≈ 0:594e2.

Fig. S1. Transition diagram of a queue with two heterogeneous servers. State “0” corresponds to the situation in which no server is busy. State (1, 0) cor-
responds to the situation in which server 1 is busy and server 2 is not busy. State (0, 1) corresponds to the situation in which server 1 is not busy and server 2 is
busy. State “k” for k ≥ 2 corresponds to the situation in which both servers are busy and k − 2 customers wait in the queue. Here, ξ ¼ μ1 þ μ2.

Fig. S2. Same as Fig. S1 with three heterogeneous servers. For example, state (0, 1, 1) corresponds to the situation in which server 1 is not busy and servers 2
and 3 are busy. Here, ξ ¼ μ1 þ μ2 þ μ3.
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