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SOCIAL LEARNING IN ONE-ARM BANDIT PROBLEMS

BY DINAH ROSENBERG, EILON SOLAN, AND NICOLAS VIEILLE1

We study a two-player one-arm bandit problem in discrete time, in which the risky
arm can have two possible types, high and low, the decision to stop experimenting is
irreversible, and players observe each other’s actions but not each other’s payoffs. We
prove that all equilibria are in cutoff strategies and provide several qualitative results
on the sequence of cutoffs.

KEYWORDS: Social learning, one-arm bandit, equilibrium, cutoff strategies.

INTRODUCTION

RECENT MODELS of strategic experimentation (see Bolton and Harris (1999)
and Keller, Rady, and Cripps (2005)) feature players who face identical bandit
problems with a risky arm and a safe arm. It is assumed that players are free
to switch from one arm to the other and that all information—both the actions
and the actual rewards of the players—is publicly disclosed. The latter assump-
tion appears to be restrictive in many economic setups, and the necessity to
drop it has been recognized; see, for example, Bolton and Harris (1999).2

Here we address this task partially and study the following model. Each of
two players faces a bandit machine with a risky arm and a safe arm. The risky
arm is either of the high type, which yields independent and identically distrib-
uted (i.i.d.) payoffs with positive expectation, or of the low type, which yields
payoffs with negative expectation. The machines of the two players have the
same type. The decision to switch to the safe arm is irreversible. Along the play,
each player observes her opponent’s choices, but not her opponent’s payoffs.

Dropping the assumption that payoffs are publicly observed raises new is-
sues. Player i would like to make inferences about player j’s observations on
the basis of player j’s actions, but cannot do so without knowing how player
j’s decisions relate to player j’s observations, that is, j’s strategy. As a con-
sequence, there is no commonly observed state variable, such as a common
posterior belief, on which to condition one’s actions.

1We are indebted to Itzhak Gilboa for his help. We thank Yisrael Aumann, Pierpaolo Batti-
galli, Thomas Mariotti, Peter Sozou, and Shmuel Zamir for their suggestions, and seminar au-
diences at Caltech, Hebrew University of Jerusalem, LSE, Northwestern, Paris, Stanford, Tel
Aviv University, Toulouse 1 University, the Workshop on Stochastic Methods in Game Theory in
Erice, and the Second World Congress of the Game Theory Society. The research of the second
author was supported by the Israel Science Foundation, grant 69/01.

2Other models of strategic experimentation include Bergemann and Välimäki (1997, 2000)
and Décamps and Mariotti (2004). Bergemann and Välimäki (1997, 2000) studied a model of
sellers and buyers who learn the value of new products by experimentation. Décamps and Mar-
iotti (2004) studied a specific duopoly model where each player learns about the quality of a
common value project by observing some public information plus the experience of her rival.
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Our main result states that, nevertheless, all equilibrium strategies process
information in a simple way: at each stage a player (i) computes the conditional
probability that the type is high, using only her private observations (i.e., her
own payoffs), (ii) determines a time-dependent cutoff, which depends on the
public information (the decisions of the other player), and (iii) switches to the
safe arm if the conditional probability does not exceed the cutoff.

The intuition for this result runs as follows. Once player j’s strategy is given,
player i faces an optimal stopping problem. It turns out that the pair formed by
player j’s status (active or not) and player i’s private belief follows a Markov
process. This observation crucially relies on the property that the payoffs to
both players are conditionally independent given the type of the machines, and
it allows one to recast player i’s optimal continuation payoff as a function of
this pair. We next prove that, everything else being equal, player i’s continua-
tion payoff increases with respect to (w.r.t.) her private belief and is, therefore,
positive (resp. negative) above (resp. below) some cutoff.

We also prove that the equilibrium cutoffs are nonincreasing as long as the
other player is active and are constant afterward: seeing the other player active
induces a player to be more optimistic and, therefore, to stay active with lower
beliefs associated to private payoffs. Finally, we argue that, as the number of
players increases, there is eventually a unique equilibrium that can be explicitly
derived.

Our model is equivalent to a multiplayer version of the standard real-options
problem (see Dixit and Pindyck (1994, p. 136)) in which an investor has to
choose when to invest in some project with uncertain prospects. This equiva-
lence is discussed in Section 2.2.

The model also relates to the literature on social learning with endogenous
timing. In Chamley and Gale (1994) (see also Chamley (2004)), players are en-
dowed with private information on the state of nature and must decide when
to “invest.” Like here, externalities are purely informational, decisions are ir-
reversible, and information is private. The main difference is that private in-
formation is received only once, in contrast to our setup where it keeps flowing
in.

Finally, some studies in biology address similar issues. In some contexts, an-
imals can learn some relevant information by observing the behavior of other
animals of the same species. Such behavior has been studied by, for example,
Valone and Templeton (2002) and Giraldeau, Valone, and Templeton (2002).

The paper is organized as follows. In Section 1, we present the model and
the main results. Comments and extensions appear in Section 2. All proofs are
relegated to the Appendix.
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FIGURE 1.—Evolution of the game.

1. MODEL AND RESULTS

1.1. The Game

Each of two players operates a one-arm bandit machine in discrete time
and must decide when to stop operating the machine. The decision to stop is
irreversible and yields an outside payoff normalized to zero.

At each stage n ≥ 0, the following sequence of events unfolds (see Figure 1).
First, each (active) player i decides whether to drop out (that is, stop operating
the machine) or not. If she chooses the latter, she receives a random payoff
Xi

n and observes who decided to stay in the game. Thus, payoffs are private
information, while the exit decisions are publicly observed.

Player i’s machine is one of two types: high or low. The two machines have
the same type Θ, which is chosen by nature at the outset of the game according
to a known prior. We assume that, conditional on Θ, the payoffs (Xi

n�X
j
n),

n ≥ 0, are i.i.d.
Denote by θ (resp. θ) the expected stage payoff of a machine of type high

(resp. low), which we identify with the type of the machine. To eliminate trivial
cases, we assume that θ < 0 < θ. The players discount payoffs at a common
rate δ ∈ (0�1).

Note that the payoff to player i is not affected by player j’s decisions. How-
ever, insofar as player j’s decisions are affected by her payoffs, and since the
payoffs to both players are correlated, player j’s decisions may be used by
player i to infer information about Θ.

1.1.1. Strategies

Let (Ω�P) be the probability space over which all random variables are
defined. Pθ stands for the conditional probability given Θ = θ. Expectations
w.r.t. P and Pθ are denoted E and Eθ, respectively. The prior probability that
the machines’ type is high is denoted by p0 := P(Θ = θ).

A strategy of player i specifies when to drop out from the game. At stage n,
player i’s private information consists of her past payoffs (Xi

0� � � � �X
i
n−1). We

denote by F i
n = σ(Xi

0� � � � �X
i
n−1) the σ-algebra over Ω defined by player i’s

private information at stage n.
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In addition, player i knows if (and when) the other player, player j, dropped
out. We denote by α ∈ N ∪ {�} the status variable of player j: α = � if player j
is still active and α= k if player j dropped out at stage k. Accordingly, we have
the following definition of a pure strategy.

DEFINITION 1: A pure strategy of player i is a family φi = (τi(α)�α ∈ N∪{�})
of stopping times for the filtration (F i

n)n∈N, with the property that τi(k) > k, P
almost surely (P-a.s.) for each k ∈ N.

Player i’s behavior until player j drops out is described by τi(�), while τi(k)
(k ∈ N) describes her behavior after stage k, in the event player j drops out at
stage k.

Cutoff strategies process information in the simplest way. At any stage, the
decision whether to drop out or to continue is made by computing the belief
assigned to the state high, given only one’s own private information, and com-
paring it to a time-dependent cutoff.

Formally, for every stage n ∈ N, we define pi
n := P(Θ = θ | F i

n). This is the
posterior belief over the machine’s type, taking into account player i’s private
information. We call it the private belief of player i.

DEFINITION 2: A strategy φi is a cutoff strategy if there exist πi
n(α) ∈ [0�1],

(n ∈ N and α ∈ {��0�1� � � � � n − 1}), such that τi(�) = inf{n ≥ 0 :pi
n ≤ πi

n(�)}
and τi(k) = inf{n > k :pi

n ≤ πi
n(k)} for each k ∈ N.3

Figure 2 shows typical cutoffs of a cutoff strategy (here we depict only π1
n(�);

they are decreasing, and are denoted by large circles), with a typical evolution
of the private belief of the player (assuming player 2 stays in throughout). In
this figure, the player stops at stage 7, once her private belief falls below her
cutoff.

Mixed strategies are probability distributions over pure strategies. Following
Aumann (1964), this is formalized by supplying each player i with an exter-
nal randomization device uniformly distributed over [0�1], which is privately
observed at the outset of the game.

Given a pair of (pure or mixed) strategies φ = (φ1�φ2), we denote ti(φ) ∈
N ∪ {+∞} as the stage in which player i drops out. That is, t1(φ) = n if either
(i) both τ2(�) ≥ n and τ1(�) = n or if (ii) both τ2(�) = k, τ1(�) > k, and
τ1(k) = n for some k< n. In the former case, player 1 drops out before or with
player 2, whereas in the latter, player 2 drops out first at stage k.

Player i’s overall payoff is the discounted sum ri(φ) := ∑ti(φ)−1
n=0 δnXi

n of pay-
offs received prior to dropping out. Her expected payoff is γi(φ) := E[ri(φ)].

3These cutoffs need not be uniquely defined. For example, if π and π ′ are such that P(π ′ ≤
p1

i ≤ π)= 0, then any choice of π1
n(α) in the interval [π ′�π] gives rise to the same strategy.
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FIGURE 2.—Typical evolution of the private belief.

1.2. Main Results

All of our results are obtained under Assumption A below.

ASSUMPTION A: The law of the private belief pi
1 held by player i at stage 1

has a density (w.r.t. Lebesgue measure).

The assumption means that the distribution of Xi
n given θ has a density

fθ whose support does not depend on θ, and, moreover, the likelihood ratio
(fθ(X

i
n))/(fθ(X

i
n)) is a random variable (r.v.) that has a density. In particular,

the probability that pi
1 = pi

2 is 0; with probability 1, the players hold different
private beliefs. By Bayes’ rule, the likelihood ratio at stage 1 is then given by

pi
1

1 −pi
1

= p0

1 −p0
× fθ(X

i
0)

fθ(X
i
0)
�

Thus, the existence of a density for pi
1 is equivalent to the existence of a density

for the r.v. (fθ(Xi
0))/(fθ(X

i
0)). Under Assumption A, the private belief pi

n has
a density for each n≥ 0.

Our first result is standard and claims that a symmetric equilibrium exists.

THEOREM 3—Existence: The game has a symmetric equilibrium.

The uniqueness issue is addressed in Section 2.3. The next two results char-
acterize the equilibrium strategies.

THEOREM 4—Structure: All equilibria are in cutoff strategies.

We actually prove that any best reply is a cutoff strategy and, therefore, so is
any rationalizable strategy.
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According to Theorem 4, all equilibria are pure and process information in
a simple way. The interaction is incorporated in the way cutoff values depend
on time and public information: if player j drops out at stage n, player i takes
it into account by changing the cutoff and using πi

·(n) rather than πi
·(�) from

then on; if player j does not drop out by stage n, player i takes this fact into
account by using at stage n + 1 the cutoff πi

n+1(�) rather than πi
n(�) that she

used at stage n.
At a given stage, equilibrium behavior is monotonic w.r.t. the private be-

lief. However, private belief need not be monotonic w.r.t. payoffs, unless the
likelihood ratio fθ/fθ is monotonic; high payoffs need not be good news; see
Milgrom (1981).

If player j drops out at stage k, player i remains alone and gets no more pub-
lic information from player j. The continuation game starting at stage k+ 1 is
then analogous to a one-player game, where the initial prior takes into account
the private belief pi

k+1 of player i and the fact that player j dropped out at stage
k. This one-player version is equivalent to the usual one-arm bandit problem,
in which exit decisions are reversible; see Chow and Robbins (1963) or Fergu-
son (2004). The optimal policy is to drop out as soon as the belief assigned to
θ (given public and private information) drops below a time-independent cutoff
value, which we denote π∗.

Accordingly, after player j drops out, player i faces an auxiliary decision
problem, in which she drops out whenever her belief is lower than π∗. This is
equivalent to using a cutoff strategy, that is, dropping out whenever the private
belief is lower than some cutoff. The cutoff is calculated by Bayes’ rule from
π∗ and the fact that player j dropped out at stage k. We denote it by πi(k), so
that πi

n(k) = πi(k) for every n > k.

THEOREM 5: Let an equilibrium with cutoffs (πi
n) be given.

P1. The cutoff sequences (πi
n(�))n∈N are nonincreasing for i = 1�2.4

P2. limn→∞ πi
n(�)= 0 for at least one player i.

P3. For each player i, πi
n(�) < π∗, and πi

n(�) < πi(k) whenever k< n.

Statements P1–P3 hold for any pair of rationalizable strategies, and not only
for equilibrium strategies.5 We comment briefly on these statements. Two pos-
sibly conflicting effects combine in P1. Assume that player i reaches stages n
and n + 1 with the same private belief p, while player j is still active. State θ
is then more likely at stage n+ 1 than at stage n: indeed, the longer player j is

4Since the sequence (πi
n(�))n∈N need not be uniquely defined, P1 should be interpreted as to

mean that given an equilibrium, the corresponding cutoffs may be chosen in such a way that the
sequences (πi

n(�))n∈N are nonincreasing.
5Indeed, by our proof of Theorem 4, every best reply is a cutoff strategy. Moreover, by prop-

erly adapting our proof of Theorem 5, one obtains that every best reply to a mixture of cutoff
strategies satisfies P1–P3. It follows that P1–P3 hold for any pair of rationalizable strategies.
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active, the better news it is on Θ. On the other hand, the optimal continuation
value for player i also depends on whether and when she is likely to infer in-
formation about θ through player j’s behavior in the future. That is, it involves
both player i’s current belief over the private belief currently held by player j,
and player j’s future cutoffs. This second effect is ambiguous. According to P1,
the combined effect is such that the optimal continuation payoff is higher at
stage n+ 1: a lower value for the private belief is necessary to trigger exit.

The intuition behind P2 is the following. If player j never drops out, pj
n con-

verges to 1 if Θ = θ and to 0 if Θ = θ. If player j’s cutoffs are bounded away
from 0, the fact that she stays in longer provides very good news on Θ. Player
i will therefore remain active, unless she gets strong private information in the
opposite direction: player i’s cutoffs will converge to zero.

We turn to P3 that incorporates two effects. On the one hand, having an
active opponent is good news on Θ and is better news than the opponent drop-
ping out in some earlier stage k. This is reflected in a higher posterior belief.
On the other hand, having an active opponent creates an informational ex-
ternality that does not exist in the one-player case and no longer exists if the
opponent has already dropped out. For a given posterior, this is reflected in a
higher option value.

Note that the one-player cutoff π∗ decreases to zero when the discount rate
goes to 1: the cost of experimentation drops to zero. According to P3, all equi-
librium cutoffs (πi

n(�)) then converge to zero.
We conclude by mentioning that our results still hold whenever the players

receive private signals at every stage that are conditionally independent given
Θ, in addition to being told their own payoff. They also hold if the players hold
different (thereby inconsistent) prior beliefs on Θ, provided we use the notion
of subjective Nash equilibrium.

1.2.1. Large games

When the number of players exceeds two, a strategy keeps track of the status
of every other player. The definition of cutoff strategies is similar, except that
cutoffs now depend on who dropped out and when. Theorems 3, 4, and 5(P2,
P3) hold for any finite number of players.

When the number of players gets large, equilibrium behavior can be fully
characterized.6 To simplify the characterization, we will assume that (i) pi

1 has
full support and (ii) p0 >π∗, so that dropping out at stage 0 is a strictly domi-
nated strategy.

Let φN be an arbitrary equilibrium of the N-player game, with cutoffs (πi�N
n ).

At stage 1, all cutoffs πi�N
1 are bounded away from zero. All players are active at

stage zero, and more players drop out at stage 1 if Θ = θ than if Θ = θ. Hence

6We refer to Rosenberg, Solan, and Vieille (2004) for a detailed proof.
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the proportion of players who drop out at stage 1 reveals Θ with high probabil-
ity to all remaining players. Therefore, the continuation payoff at stage 1 may
(asymptotically) be computed under the assumption that θ will be revealed at
the beginning of stage 2: all players use cutoffs that are close to πc , the unique
solution of πθ+ (1 −π)θ+πδθ/(1 − δ)= 0.

Denote by ρN the fraction of players who drop out at stage 1. By a large
deviations argument, there is ρc ∈ (0�1), such that the public likelihood that
Θ = θ is close to +∞ (resp. close to zero) if ρN < ρc (resp. if ρN > ρc). Hence,
except in the unlikely event where ρN = ρc , herding takes place at stage 2.

To summarize, as the number N of players increases to +∞:
Stage 1: supi=1�2�����N |πi�N

1 (�)−πc| converges to zero.
Stage 2: Let a list 
αN be given that specifies the status of the other players at

stage 2, and such that the fraction ρN(
αN) of drop outs converges to ρ ∈ [0�1]:
• If ρ > ρc , the maximal cutoff maxi π

i�N
2 (
αN) converges to 0.

• If ρ < ρc , the minimal cutoff mini π
i�N
2 (
αN) converges to 1.

In a sense, this result provides an asymptotic version of the results of Caplin
and Leahy (1994), which deal with the continuum-of-players case.

2. COMMENTS AND EXTENSIONS

2.1. Reversible Decisions

In the one-player bandit problem, assuming reversible decisions rather than
irreversible ones does not change the equilibrium behavior. This property does
not extend to the two-player case, since in the latter, free-riding effects appear.

The true multiplayer generalization of one-arm bandit problems allows the
players to alternate between the two arms, as in Bolton and Harris (1999).
The definition of cutoff strategies readily adapts to that case. However, public
information is then more cumbersome, since it coincides with the list of the
arms selected by each of the players in the past.

In this case, given an equilibrium, let 
tn denote the public information avail-
able at stage n. The sequence (pi

n� 
tn) is a Markov chain for the filtration (G i
n),

so that the optimal continuation payoff W i
n of player i can be written as a func-

tion of (pi
n� 
tn). Therefore, in equilibrium the players play as a function of their

private beliefs and public information. We do not know whether all equilibria
in this case are in cutoff strategies.

2.2. Timing Games and Real Options

In our model, a player keeps receiving payoffs until she drops out. In most
real option problems, each player i chooses a time n at which she starts to
receive a stream of payoffs X̃i

n� X̃
i
n+1� � � � � Our results apply to this situation as

well. Indeed, observe that, given any strategy profile φ, the sum of the payoffs
received by player i in the timing game we study and in the real options game
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is
∑+∞

n=0 X̃
i
n, and is, therefore, independent of the strategy profile. As a result,

the equilibria of the real option game coincide with the equilibria of the timing
game with stage payoffs Xi

n := −X̃i
n.

2.3. Equilibrium Uniqueness

In general, the equilibrium need not be unique. To see this, assume that the
initial prior p0 coincides with the optimal one-player cutoff π∗. One equilib-
rium is that both players drop out immediately. It can be shown that there is
another symmetric equilibrium in which both players are active at stage 0: the
fact that player j is active at stage 0 creates a positive informational externality
that induces player i to enter as well. The uniqueness issue remains open in the
following special cases: (a) when one restricts attention to equilibria in which
both players are active at stage 0 and (b) when p0 >π∗.

2.4. Efficiency

First-order efficiency would imply that both players drop out at stage 0 if
Θ = θ and that both players stay in forever if Θ = θ. Plainly, this cannot be
achieved. Lemma 18 below proves that if the machines are high, then there is a
positive probability that both players stay in forever. It is not difficult to prove
that if both machines are low, then with probability 1 both players drop out in
finite time. As discussed in Section 1.2.1, sharper results are obtained when the
number of players gets large.
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APPENDIX

For most of the appendix, we let a mixed strategy, φj , of player j be given.
The payoff function to player i, γi(·�φj), does not depend on player j’s strate-
gic decisions τj(k), once player i has dropped out. In the analysis of player i’s
best replies to φj , we therefore may, and will, assume that player j’s behav-
ior is independent of player i’s actions, that is, τj(k) = τj(�) for each k ∈ N.
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Accordingly, we denote by τj the unique stopping time that governs player j’s
decisions.

Section A contains preliminary material on beliefs. Each of the following
three sections is devoted to the proof of one theorem.

A: BELIEFS

We first state the basic stochastic dominance properties of the private beliefs.
Then we examine the Markov property of the sequence of beliefs w.r.t. various
sequences of σ-algebras.

A.1. Stochastic Dominance

Recall that F i
n := σ(Xi

0� � � � �X
i
n−1) is the private information of player i prior

to some stage n and that the private belief of player i at that time is defined as
pi

n := P(Θ = θ |F i
n).

By Bayes’ rule, a version of pi
n is given by

pi
n

1 −pi
n

= p0

1 −p0
×

n−1∏
k=0

fθ(X
i
k)

fθ(X
i
k)
�(1)

It is well known that the sequence (pi
n) is a martingale (resp. a submartingale, a

supermartingale) under P (resp. under Pθ, Pθ). In addition, the law of pi
n under

Pθ stochastically dominates (in the first-order sense) the law of pi
n under Pθ:

the private belief tends to be higher when the state is θ than when it is not.
A slightly stronger statement holds here. We omit the proof.7

LEMMA 6: One has Pθ(p
i
n ≤ p) < Pθ(p

i
n ≤ p) as soon as Pθ(p

i
n ≤ p) > 0 and

Pθ(p
i
n ≤ p) < 1.

This dominance property extends to vectors of beliefs. Again, we omit the
proof.

LEMMA 7: For each stage n ∈ N and x1� � � � � xn ∈ [0�1], one has

Pθ

(
(pi

1� � � � �p
i
n)≤ (x1� � � � � xn)

) ≤ Pθ

(
(pi

1� � � � �p
i
n)≤ (x1� � � � � xn)

)
�

Moreover, Pθ((p
i
1� � � � �p

i
n) > (x1� � � � � xn))≤ Pθ((p

i
1� � � � �p

i
n) > (x1� � � � � xn)).

7All omitted proofs can be found in Rosenberg, Solan, and Vieille (2004).
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A.2. Markov Properties

We denote by tjn the status of player j at stage n: tjn := � if τj ≥ n and tjn = k
if τj = k < n. Since player j’s strategy is given, her past decisions are infor-
mative and tjn is a well defined random variable. Prior to stage n ≥ 0, player
i’s information over Ω is given by the σ-algebra G i

n := σ(F i
n� t

j
n), and we define

her posterior belief as qi
n := P(Θ = θ | G i

n). Our goal is to establish Proposition 9
below.

Conditional on the arm type Θ, the status tjn is independent of the payoffs
(Xi

k)k≥0, hence also of F i
n. Thus, a version of the posterior belief is given by

qi
n

1 − qi
n

= pi
n

1 −pi
n

× Pθ(t
j
n = α)

Pθ(t
j
n = α)

whenever tjn = α�(2)

In particular, qi
n is measurable w.r.t. the pair (pi

n� t
j
n). For later use, note also

that the version Qi
n(p

i
n� t

j
n) of qi

n given by (2) is continuous and increasing in
pi

n.
We now prove that the pair (pi

n� t
j
n) is a Markov chain. This will later allow us

to prove that (pi
n� t

j
n) contains all relevant information for player i’s best-reply

problem.
We use the following definition.

DEFINITION 8—Shiryaev (1996, p. 564): Let (Gn)n∈N be a filtration over a
probability space (Ω�P) and let (An)n∈N be a sequence of random variables,
adapted to (Gn)n∈N and with values in Rd . The sequence (An) is a Markov
chain for the filtration (Gn)n∈N if, for each Borel set B ⊆ Rd and n ∈ N, one
has P(An+1 ∈ B | Gn)= P(An+1 ∈ B |An) P-a.s.

PROPOSITION 9: Under P, the sequence (pi
n� t

j
n)n∈N is a Markov chain for (G i

n).

We will use the following technical observation, stated without proof.

LEMMA 10: Let H1 and H2 be two independent σ-algebras on a probability
space (Ω�P) and let Ai be a sub-σ-field of Hi, i = 1�2. For each C1 ∈ H1, C2 ∈
H2, one has

P(C1 ∩C2 | σ(A1�A2))= P(C1 |A1)× P(C2 |A2)�

PROOF OF PROPOSITION 9: Observe first that the sequence (pi
n)n≥0 is a

Markov chain for (F i
n)n≥0 under Pθ. Let a stage n ≥ 0 be given, let B ⊆ [0�1]

be a Borel set, and fix α ∈ {�} ∪ N.
Under Pθ(θ ∈ {θ�θ}), the σ-algebra F i

n+1 and the r.v. tjn+1 are independent.
By Lemma 10, this implies

Pθ(p
i
n+1 ∈ B� t

j
n+1 = α | G i

n)= Pθ(p
i
n+1 ∈ B |F i

n)× Pθ(t
j
n+1 = α | tjn)�
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Since (pi
n) is a Markov chain under Pθ, Pθ(p

i
n+1 ∈ B | F i

n) = Pθ(p
i
n+1 ∈ B | pi

n).
Therefore, Pθ(p

i
n+1 ∈ B� t

j
n+1 = α | G i

n) is measurable w.r.t. the pair (pi
n� t

j
n).

Since qi
n = P(Θ = θ | G i

n) is measurable w.r.t. (pi
n� t

j
n), the conditional proba-

bility

P(pi
n+1 ∈ B� t

j
n+1 = α | G i

n)

=
∑
θ

P(Θ = θ | G i
n)× Pθ(p

i
n+1 ∈ B� t

j
n+1 = α | G i

n)

is also measurable w.r.t. (pi
n� t

j
n), hence

P(pi
n+1 ∈ B� t

j
n+1 = α | G i

n)= P(pi
n+1 ∈ B� t

j
n+1 = α | pi

n� t
j
n)

as desired. Q.E.D.

B: PROOF OF THEOREM 4

When facing φj , player i must choose when to stop; that is, a stopping time
for the filtration (G i

n)n≥0. If she stops at stage n, her overall realized payoff
is Y i

n := ∑n−1
k=0 δ

kXi
k. Hence, player i’s best-reply problem is equivalent to the

optimal stopping problem,

problem P : find a solution to supσ E[Y i
σ ]�

where the supremum is taken over all stopping times σ for (G i
n). That is, any

best reply to φj yields an optimal solution to (P) and vice versa. We will prove
that (P) admits a unique optimal stopping time, which moreover corresponds
to a cutoff strategy.

We first recall standard material on optimal stopping problems.

STEP 0: Optimal stopping problems. Given n ≥ 0, we let �n be the set of stop-
ping times σ ≥ n (P-a.s.). The Snell envelope of the sequence (Y i

n) is defined to
be the sequence (V i

n ), where

V i
n := ess sup

σ∈�n

E[Y i
σ | G i

n]�

It is the optimal payoff to player i when she is constrained not to drop out
before stage n. The following lemma is well known; see, for example, Chow
and Robbins (1963), Ferguson (2004, Chap. 3), or Neveu (1972).

LEMMA 11: The stopping time σ∗ := inf{n ≥ 0 :V i
n = Y i

n} (with inf∅ = +∞) is
a solution to P . Moreover, σ ≥ σ∗ for every optimal stopping time σ .
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The Snell envelope (V i
n ) can be obtained as the (P-a.s.) limit of the optimal

payoff in the finite horizon versions of (P). To be specific, define V i
n�k for n�k≥

0 by V i
n�0 = Y i

n, and

V i
n�k+1 = max{Y i

n�E[V i
n+1�k | G i

n]} for every n≥ 0 and k≥ 1�(3)

In (3), V i
n�k+1 is the optimal payoff to player i when she is constrained not

to drop out before stage n, but must drop out at stage n + k + 1 at the latest.
Thus, (3) is a dynamic programming principle: the optimal payoff is obtained
as the maximum of the two choices that are available at stage n, dropping out
or staying active. Then V i

n = limk→∞ V i
n�k.

The quantity V i
n − Y i

n is the optimal payoff from stage n onward. We first
prove that this quantity is measurable w.r.t. (pi

n� t
j
n). We then define W i

n to be
the optimal continuation payoff, and show that it is continuous and increasing
in pi

n. We then conclude that σ∗ is the only optimal stopping time and that it
corresponds to a cutoff strategy.

STEP 1: The sequence (W i
n ).

LEMMA 12: V i
n −Y i

n is measurable w.r.t. the pair (pi
n� t

j
n).

Thus, V i
n −Y i

n coincides (P-a.s.) with some function ηi
n(p

i
n� t

j
n).

PROOF OF LEMMA 12: We adapt the proof from Neveu (1972). By (3), one
has

V i
n�k+1 −Y i

n = max{0� δnE[Xi
n | G i

n] + E[V i
n+1�k −Y i

n+1 | G i
n]}�

for every n ≥ 0 and k ≥ 1�

Observe that the expected current payoff, E[Xi
n | G i

n] = qi
nEθ[Xi

n] + (1 −
qi
n)Eθ[Xi

n] is measurable w.r.t. (pi
n� t

j
n).

On the other hand, since the sequence (pi
n� t

j
n) is a Markov chain for (G i

n),
the r.v. E[V i

n+1�k −Y i
n+1 | G i

n] is measurable w.r.t. (pi
n� t

j
n) as soon as V i

n+1�k −Y i
n+1

is measurable w.r.t. (pi
n+1� t

j
n+1). It thus follows inductively that V i

n�k − Y i
n is

measurable w.r.t. (pi
n� t

j
n) for each k. The result follows by letting k → +∞.

Q.E.D.

We define W i
n := δnE[Xi

n | G i
n] + E[V i

n+1 − Y i
n+1 | G i

n]. This is player i’s opti-
mal continuation payoff if she decides to remain active. One has V i

n − Y i
n =

max{0�W i
n }. As in the proof of Lemma 12, W i

n is measurable w.r.t. (pi
n� t

j
n).

Set τ∗ := inf{k> n :V i
k = Y i

k}, so that V i
n+1 = E[Y i

τ∗ | G i
n+1]. The stopping time

τ∗ is optimal for player i, assuming she is active at stage n. It follows that
W i

n = E[Y i
n→τ∗ | G i

n], where Y i
n→τ∗ = Y i

τ∗ −Y i
n = ∑τ∗−1

k=n δkXi
k is the sum of payoffs

received from stage n up to stage τ∗.
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STEP 2: Regularity properties. We here state and prove Lemmas 13 and 14.

LEMMA 13: The r.v. W i
n has a version ωi

n(p
i
n� t

j
n), such that for fixed α, the map

ωi
n(·�α) is continuous on the support of pi

n.

Plainly, it will be sufficient to consider α’s such that P(tjn = α) > 0. For such
α’s, the map ωi

n(·�α) need not be uniquely defined. Indeed, if the distributions
of payoffs are such that the private belief pi

1 cannot fall below, say, some level
λ > 0, the definition of ωi

1(p�α) for p < λ is completely arbitrary. However,
if P(tjn = α) > 0, the restriction of ωi

n(·�α) to the support of pi
n is uniquely

defined.

LEMMA 14: For fixed α, the map ωi
n(·�α) is increasing on the support of pi

n.

We will use the following technical lemma, which follows from Lusin’s theo-
rem.

LEMMA 15: Let ν be a probability measure over R, absolutely continuous
w.r.t. the Lebesgue measure, and let B ⊆ R be a Borel set. Then the map x ∈
R �→ ν(x+B) is continuous.

PROOF OF LEMMA 13: W i
n may also be expressed as

W i
n = E[Y i

n→τ∗ | pi
n� t

j
n]

=
∑

θ∈{θ�θ}
P(Θ = θ | pi

n� t
j
n)Eθ[Y i

n→τ∗ | pi
n� t

j
n]

=
∑

θ∈{θ�θ}
P(Θ = θ | pi

n� t
j
n)

∑
k≥n

δk θ Pθ(τ
∗ > k | pi

n� t
j
n)�

The belief P(Θ = θ | pi
n� t

j
n) has a continuous version, qi

n. It is therefore suffi-
cient to construct a continuous version of Pθ(τ

∗ >k | pi
n� t

j
n) for each k≥ n.

To be concise, we let 
tj stand for the vector (t
j
n+1� � � � � t

j
k) and let 
α =

(αn+1� � � � �αk) denote generic values of 
tj .
Observe first that τ∗ > k if and only if8 ηi

m(p
i
m� t

j
m) > 0 for all n < m ≤ k.

For a given α, define Gm(α) := {p :ηi
m(p�α) > 0} to be those beliefs at which

player i remains active at stage m. Thus, on the event 
tj = α, one has τ∗ > k if
and only if pi

m ∈ Gm(αm) for all n <m ≤ k.
By (1), the private belief pi

m is related to pi
n through the equality

ln
pi

m

1 −pi
m

= ln
pi

n

1 −pi
n

+ ln
fθ(X

i
n)

fθ(Xi
n)

+
m−1∑
s=n+1

ln
fθ(X

i
s)

fθ(Xi
s)
�(4)

8Recall that ηi
m(p

i
m� t

j
m)= V i

m −Y i
m is the optimal continuation payoff at stage m.
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so that on the event 
tj = 
α, one has τ∗ > k if and only if

ln
pi

n

1 −pi
n

+ ln
fθ(X

i
n)

fθ(Xi
n)

+
m−1∑
s=n+1

ln
fθ(X

i
s)

fθ(Xi
s)

∈ Fm(αm)� for all n <m≤ k�(5)

where Fm(αm) is the image of the set Gm(αm) under the map x �→ ln x
1−x

.
With obvious notations, (5) is in turn equivalent to

ln
fθ(X

i
n)

fθ(Xi
n)

∈ Fm(αm�X
i
n+1� � � � �X

i
k−1)− ln

pi
n

1 −pi
n

� for all n <m≤ k�

Finally, set F(
α�xn+1� � � � � xk−1) := ⋂k

m=n+1 Fm(αm�xn+1� � � � � xk−1), so that

Pθ(τ∗ > k� 
tj = 
α | (pi
n� t

j
n))(6)

= Pθ(
tj = 
α | tjn)

× Pθ

(
ln

fθ(X
i
n)

fθ(Xi
n)

∈ F(
α�Xi
n+1� � � � �X

i
k−1)− ln

pi
n

1 −pi
n

∣∣∣ pi
n

)
�

Conditional on Θ = θ, the private belief pi
n is independent of the future

payoffs Xi
m, n ≤ m< k. Therefore, a version of the conditional probability on

the right-hand side of (6) is given by the integral

∫
Rk−n

1{ln f
θ
(xn)

fθ(xn)
∈F(
α�xn+1�����xk−1)−ln pin

1−pin
}

k−1∏
m=n

dPθ(xm)

=
∫

Rk−n−1

{∫
R

1{ln f
θ
(xn)

fθ(xn)
∈F(
α�xn+1�����xk−1)−ln pin

1−pin
} dPθ(xn)

}

×
k−1∏

m=n+1

dPθ(xm)�

Observe now that the inner integral is equal to ν(F(
α�xn+1� � � � � xk−1) −
ln pi

n

1−pi
n
), where ν is the law under Pθ of the random variable ln fθ(X

i
n)

fθ(X
i
n)

. By as-
sumption, the latter variable has a density, so that ν is absolutely continuous
w.r.t. Lebesgue measure. Hence, by Lemma 15, this inner integral is continu-
ous w.r.t. pi

n. By dominated convergence, the integral in (7) is also continuous
w.r.t. pi

n.
By plugging (7) into the right-hand side of (6), one obtains a version of

Pθ(τ∗ > k� 
tj = 
α | pi
n� t

j
n), which is continuous in pi

n. By summing over 
α, one
then obtains a version of Pθ(τ∗ > k | pi

n� t
j
n), which is continuous in pi

n, as de-
sired. Q.E.D.
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PROOF OF LEMMA 14: Given a version of pi
n, we use (4) to choose a version

for pi
m = pi

m(p
i
n�X

i
n� � � � �X

i
m−1) (m> n). Fix p in the support of pi

n. Define the
stopping time

σp := inf
{
k ≥ n+ 1 :ωi

k(p
i
k(p�X

i
n� � � � �X

i
k−1)� t

j
k)≤ 0

}
�

Under σp, player i behaves as if she had reached stage n with a private belief
equal to p, and would play τ∗. Thus, conditional on θ, her continuation payoff
Eθ[Y i

n→σp
| G i

n] does not depend on pi
n. One version of this continuation pay-

off is C(pi
n� t

j
n;p) := qi

n(p
i
n� t

j
n)Eθ[Y i

n→σp
] + (1 − qi

n(p
i
n� t

j
n))Eθ[Y i

n→σp
], which is

continuous and increasing in pi
n.

Fix the version of τ∗ to be τ∗ = inf{k> n :ωi
k(p

i
k(p

i
n�X

i
n� � � � �X

i
m−1)� t

j
k)≤ 0}.

By construction, one has C(p� tjn;p) = ωi
n(p� t

j
n). This inequality holds every-

where, and not only P-a.s., since both C and ωi
n are continuous (see Lemma 13

for the latter). For the same reason, and since ωi
n(p

i
n� t

j
n) is the highest continu-

ation payoff, one has C(pi
n� t

j
n;p) ≤ ωi

n(p
i
n� t

j
n) everywhere. Since C is increas-

ing, this implies for every p′ higher than p in the support of pi
n and every α,

wi
n(p�α)= C(p�α;p) < C(p′�α;p)≤wi

n(p
′�α)�(7)

We obtained that wi
n(·�α) is increasing in p, as desired. Q.E.D.

STEP 3: Conclusion. We here state and prove Lemma 16, which concludes
the proof.

LEMMA 16: The stopping time σ∗ is the only optimal solution to P . Moreover,
it corresponds to a cut-off strategy.

PROOF: We start with the first assertion. Let σ be a solution to P . By
Lemma 11, σ ≥ σ∗. Fix a stage n. By Lemma 14, and since pi

n has a density, one
has ωi

n(p
i
n� t

j
n) < 0 on the event Ωn := {σ∗ = n < σ}. In particular, E[Y i

σ1Ωn] ≤
E[Y i

σ∗1ωn], with a strict inequality if P(Ωn) > 0. Since E[Y i
σ ] = E[Y i

σ∗ ], one must
have P(Ωn)= 0 for each n.

We now turn to the second claim. If P(tjn = α) > 0, Lemmas 13 and 14 pro-
vide us with a version ωi

n(·�α) that is continuous and increasing over the sup-
port of pi

n. We extend it to a continuous, increasing, function defined over [0�1]
and define πi

n(α) to be the unique value of p such that wi
n(p�α)= 0. If instead

P(τj(α))= 0, we choose πi
n(α) ∈ [0�1] in an arbitrary way.

It is immediate to check that σ∗ = inf{n : pi
n ≤ πi

n(t
j
n)} (P-a.s.). Hence, σ∗ is

a cutoff strategy. Q.E.D.

REMARK: σ∗ is the unique optimal stopping time (up to P-null sets). How-
ever, the associated cutoffs need not be uniquely defined, for two reasons.

Consider first α such that P(tjn = α) > 0. If the value of πi
n(α), as obtained in

the previous proof, falls outside the support of pi
n, then its value depends on
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the choice of the extension of wi
n. However, this indeterminacy is only appar-

ent, as these correspond to beliefs that are reached with probability zero: the
corresponding stopping time τi(α) is uniquely defined (up to P-null sets).

If P(tjn = α) = 0, then any choice for πi
n(α) is admissible, and different

choices may yield different stopping times τi(α). Again, this indeterminacy is
only apparent, since, against τj , the stopping time τi(α) will “never” be used.

If the cutoff p does not belong to the support of pi
n, then changing the def-

inition of ωi
n around p would change the cutoff as well. This indeterminacy is

only apparent if p corresponds to a belief that is reached with probability zero.
In other words, the best-reply is unique, even if there may be different cutoff
sequences associated with it.

C: PROOF OF THEOREM 3

The existence of a symmetric equilibrium derives from a standard fixed-point
argument. A cutoff strategy of player i is a sequence (πi

n(k)) indexed by n ≥ 0
and k ∈ {��1� � � � � n − 1}, with values in [0�1]. The set Φ of such sequences is
compact when endowed with the product topology.

Player i’s best-reply map is given by B(φj) := {φi ∈ Φ :γi(φi�φj) =
maxΦ γi(·�φj)} for each cutoff strategy φj ∈ Φ. From the analysis of the previ-
ous section, B(φ′) is convex-valued.

We now check that the payoff function γi is continuous over the space of
cutoff profiles. Let a sequence (φm) of cutoff profiles be given, that converges
to φ (in the product topology). The realized payoff ri(φm) converges to ri(φ),
except possibly if the belief is equal to the cutoff: pi

n = πi
n(α) for some n ≥ 0,

α= ��0�1� � � � � n− 1, and i = 1�2. Since the law of pi
n has a density, this event

has P-measure zero. Since |ri(φm)| ≤ supn∈N |Y i
n|, the dominated convergence

theorem applies and limm→∞ γi(φm)= γi(φ).
Since γi is continuous, B is upper hemi continuous Since Φ is compact and,

by Glicksberg’s (1952) generalization of Kakutani’s fixed-point theorem, B has
a fixed point, φ∗. Plainly, the profile (φ∗�φ∗) is an equilibrium.

D: PROOF OF THEOREM 5

We here prove the qualitative results listed in Theorem 5. Most proofs have
to do with the impact of the public information on the posterior belief.

We fix a cutoff strategy φj of player j. Denote by πj
n the cutoff used by player

j if player i is still active at that stage.

D.1. Proof of P3

Player j stops at stage τj := inf{n :pj
n ≤ πj

n}. In particular, by Lemma 7,
player j tends to stop earlier if the state is θ: Pθ(τ

j ≥ n) ≤ Pθ(τ
j ≥ n). By (2)
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this implies that qi
n ≥ pi

n whenever player j is active: having an active opponent
is good news.

If at stage n player i chooses not to watch player j any longer, she faces
a one-player problem, in which her continuation payoff is positive once her
posterior belief exceeds π∗. In the two-player game, player i has more options
if player j is still active, hence player i’s continuation payoff is positive as well.
Since qi

n ≥ pi
n, whenever her private belief pi

n exceeds π∗, player i continues.
This readily implies that πi

n(�)≤ π∗: the first part of P3 follows.
We now prove that having an active opponent is always the best possible

news on θ. Recall that Qi
n(p

i
n� t

j
n) is the version of qi

n given by (2).

LEMMA 17: One has Qi
n(p��)≥ Qi

n(p�m) for every m< n and p ∈ [0�1].

PROOF: We introduce an auxiliary family of beliefs and set pi�j
n�m := P(Θ = θ |

F i
n�F j

m), m≤ n. The belief pi�j
n�m is computed by collecting the private informa-

tion held by the two players at two possibly different stages n and m. (A version
of) pi�j

n�m is given by

pi�j
n�m

1 −p
i�j
n�m

= pi
n

1 −pi
n

× pj
m

1 −p
j
m

× 1 −p0

p0
�

hence, it is a continuous and increasing function of pi
n and pj

m, that we denote
pi�j

n�m(·� ·).
We also let Qi

n�m(p
i
n� t

j
m) := P(Θ = θ | pi

n� t
j
m). By the law of iterated condi-

tional expectations, and since tjm is a function of pj
1� � � � �p

j
m, one has

Qi
n�m(p

i
n� t

j
m) = E

[
P(Θ = θ | pi

n�p
j
1� � � � �p

j
m) | pi

n� t
j
m

]
= E[pi�j

n�m | pi
n� t

j
m]�

We will prove that the following two inequalities hold:

Qi
n�m(p�m− 1) <Qi

n�m(p��) <Qi
n�m+1(p��)�(8)

According to the second inequality, at stage n, knowing that player j was active
at stage m + 1 is better news than knowing she was active at stage m. When
iterated, this inequality yields Qi

n�m(p��) <Qi
n�n(p��)=Qi

n(p��).
According to the first inequality, at stage n, it is better news to learn that

player j chose to remain active at stage m−1 than to discover that she dropped
out at stage m− 1. Once player j drops out at stage m, player j’s state cannot
possibly change; hence, Qi

n�n(p�m) =Qi
n�m(p�m). The result thus follows from

(8).
We start with the first inequality in (8). If tjm = �, one has pj

m > πj
m(�). Since

pi�j
n�m is monotonic in pj

m, Qi
n�m(p

i
n� t

j
m) > pi�j

n�m(p
i
n�π

j
m(�)). By contrast, if tjm =
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m−1, one has pj
m ≤ πj

m(�), hence Qi
n�m(p

i
n� t

j
m)≤ pi�j

n�m(p
i
n�π

j
m(�)). Combining

the two inequalities yields Qi
n�m(p�m− 1) <Qi

n�m(p��), as desired.
We turn to the second inequality in (8). Using once more the law of iterated

conditional expectations, one has

Qi
n�m(p

i
n� t

j
m)= E[P(Θ = θ | pi

n� t
j
m+1) | pi

n� t
j
m] = E[Qi

n�m+1 | pi
n� t

j
m]�

It follows that Qi
n�m(p��) is a convex combination of Qi

n�m+1(p��) and
Qi

n�m+1(p�m). By the first inequality, the former is higher than the latter and
the result follows. Q.E.D.

D.2. Proof of P2

P2 follows from the next two lemmas.

LEMMA 18: Pθ(τ
i(�)= +∞) > 0.

PROOF: Recall that (pi
n) is a submartingale under Pθ, bounded by 1. There-

fore, the probability that pi
n ≤ π∗ for some n ∈ N is at most (1 −p0)/(1 −π∗).

The first part of P3 implies that Pθ(τ
i(�)= +∞) > 0: given θ, there is positive

probability that no player will ever stop. Q.E.D.

LEMMA 19: Let φ be an equilibrium. Then limn→∞ πi
n(�) = 0 for some

player i.

PROOF: Assume that the sequence π2
n(�) does not converge to zero, for

otherwise the conclusion already holds.
If player 2 is still active, player 1 has more opportunities than in the one-

player problem. Hence, if player 1 drops out when player 2 is still active, she
will a fortiori drop out when alone. Therefore, assuming p1

n = π1
n(�),

q1
n

1 − q1
n

= Pθ(τ
2(�)≥ n)

Pθ(τ2(�)≥ n)
× π1

n(�)

1 −π1
n(�)

≤ π∗
1 −π∗

�

Since Pθ(τ
2(�) ≥ n) > 0, to show that limn→∞ π1

n(�) = 0 it is then sufficient to
show that limn→∞ Pθ(τ

2(�) ≥ n) = 0. But this holds since under Pθ the private
beliefs (p2

n)n form a supermartingale that converges to 0 a.s. Q.E.D.

D.3. Proof of P1

Let φi be the unique best reply to φj , with cutoffs (πi
n). We will prove that

the sequence (πi
n(�)) is nonincreasing.

The formal proof involves a long list of inequalities. We provide a detailed
sketch, which can be easily transformed into a formal proof. We will prove that
player i’s optimal continuation payoff (OCP for short) is lower in situation (A)
than in situation (E) below:
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(A) pi
n = p and tjn = �.

(E) pi
n+1 = p and t

j
n+1 = �.

This will show that wi
n(p��)≤ wi

n+1(p��) for every p, and the result follows.
We proceed by introducing several situations player i may face, including

fictitious ones:
(B) pi

n = p, tjn = �, and there is an interim stage n − 1
2 , between stages

n − 1 and n, in which only player i receives a payoff (but the players make no
choices). This situation is purely fictitious.

(C) pi
n+1 = p, tjn = �, and, starting from stage n, player i observes the status

of player j with a one-stage delay. This situation involves a modified game.
(D) pi

n+1 = p and tjn = �. This is the situation in which player i reaches stage
n+ 1 with a private belief p, but has not yet figured out whether player j chose
to remain active or not at stage n.

We compare these situations, from the viewpoint of the optimization prob-
lem faced by player i.

STEP 1: Variations (A) and (B). All relevant information contained in past
payoffs is summarized in the private belief: it is irrelevant that in (A) and (B)
different payoffs and a different number of payoffs lead to the same private be-
lief. Besides, player j receives the same number of observations in both cases,
so that the conditional distribution of pj

n is the same in both cases. Since from
stage n on, the two situations coincide, player i’s OCP at stage n in both situa-
tions is the same.

STEP 2: Variations (B) and (C). The continuation games faced by player i in
situations (B) and (C) are strategically equivalent. Therefore, player i’s OCP
is the same in both situations.

STEP 3: Variations (C) and (D). The only difference between the continua-
tion games from stage n+ 1 in the two situations is that in (C), information is
delayed for player i. Hence in (C), player i has fewer strategies, so that player
i’s OCP in (C), does not exceed her expected OCP in (D).

STEP 4: Variations (D) and (E). In (D), player i has not yet observed the
choice made by player j at stage n. Once player i observes player j’s choice,
two cases may arise: either player j remained active and we reach (E), or she
chose to drop out, so that we reach yet another situation:

(F) pi
n+1 = p and t

j
n+1 = n.

As a result, player i’s expected OCP in situation (D) is a weighted average
of her OCP’s in situations (E) and (F).

Therefore, to prove that the OCP in situation (D) is at most her OCP in
situation (E), it is sufficient to prove that the OCP in situation (F) does not
exceed that in situation (E). This holds since (i) player i has more strategies in
(E) than in (D) and (ii) by Lemma 17, her posterior belief that the state is θ is
higher in (E) than in (D). Q.E.D.
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