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Introduction

Stochastic games are a mathematical model that is used to study dynamic in-
teractions among agents who influence the evolution of the environment. These
games were first presented and studied by Lloyd Shapley (1953).1,2 Since Shap-
ley’s seminal work, the literature on stochastic games expanded considerably,
and the model was applied to numerous areas, such as arms race, fishery wars,
and taxation.

A stochastic game is played in discrete time by a finite set I of players, and
it consists of a finite number of states. In each state s, each player i ∈ I has a
given set of actions, denoted Ai(s). In every stage t ∈ N the play is in one of
the states, denoted st. Each player i ∈ I chooses an action ait ∈ Ai(st) that is
available to her at the current stage, receives a stage payoff, which depends on
the current state st as well as on the actions (ajt )j∈I chosen by the players, and
a new state st+1 is chosen, according to a probability distribution that depends
on the current state and on the actions of the players (ajt )j∈I .

In a stochastic game the players have two, seemingly contradicting, goals.
First, they need to ensure that their future opportunities remain high. At the
same time, they should make sure that their stage payoff is also high. This
dichotomy makes the analysis of stochastic games intriguing and not trivial.

The study of stochastic games uses tools from many mathematical branches,
such as probability, analysis, algebra, differential equations, and combinatorics.
The goal of this book is to present the theory through the mathematical tech-
niques that it employs. Thus, each chapter presents mathematical results from
some branch of mathematics, and uses them to prove results on stochastic games.
The goal is not to prove the most general theorems in stochastic games, but
rather to present the beauty of the theory. Accordingly, we sometimes restrict
the scope of the results that are proven, to allow for simpler proofs that bypass
technical difficulties.

The material in the book is summarized by the following table.

1Lloyd Stowell Shapley, (Cambridge, Massachusetts, June 2, 1923 – Tucson, Arizona,
March 12, 2016) was an American mathematician who made many influential contributions to
Game Theory, like the Shapley value, stochastic games, and the defer-acceptance algorithm
for stable marriages. Shapley shared the 2012 Nobel Prize in Economics together with game
theorist Alvin Roth.

2All commentary is taken from Wikipedia.
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Chapter Tool + Result

1 Contracting mappings
Stationary optimal strategies in Markov decision problems

2 Tauberian Theorem
Uniform ε-optimality in hidden Markov decision problems

5 Contracting mappings
Stationary discounted optimal strategies in zero-sum stochastic games

6 Semi-algebraic mappings
Existence of the limit of the discounted value

7 B-graphs
Continuity of the limit of the discounted value

8 Kakutani’s fixed point theorem
Stationary discounted equilibria in multiplayer stochastic games

9
Existence of the uniform value in zero-sum stochastic games

10 The vanishing discount factor approach
Existence of uniform equilibrium in absorbing games

11 Ramsey’s Theorem
Existence of undiscounted equilibrium in two-player deterministic stopping games

12 Approximating infinite orbits
Existence of undiscounted equilibrium in multiplayer quitting games

13 Linear complementarity problems
Existence of undiscounted equilibrium in multiplayer quitting games

Each chapter contains exercises. Solutions are available as supplementary
material on the book’s page on the publisher’s website. The book is based on
a graduate level course that I taught at Tel Aviv University for more than a
decade. I hope that the readers, as my students, will like the diversity of the
topics and the elegance of the proofs. For the benefit of readers who would
like to expand their knowledge in stochastic games, I added references to re-
lated results at the end of each chapter. Books and surveys that include ma-
terial on different aspects of stochastic games include Raghavan, Ferguson, and
Parthasarathy (1991), Raghavan and Filar (1991), Başar and Olsder (1998),
Mertens (2002), Vieille (2002), Neyman and Sorin (2003), Solan (2008), Filar
and Vrieze (2012), Chatterjee, Doyen and Henzinger (2009, 2013), Chatterjee
and Henzinger (2012), Laraki and Sorin (2015), Mertens, Sorin, and Zamir
(2015), Solan and Vieille (2015), Solan and Ziliotto (2016), Başar and Zaccour
(2017), Jaśkiewicz and Nowak (2018a,b), and Renault (2019).

I end the introduction by thanking Ayala Mashiah-Yaakovi, who read the
manuscript and the solution manual and made many comments which improved
the text, Andrei Iacob, who copy-edited the text, and John Yehuda Levy, Abra-
ham Neyman, Andrzej Nowak, Robert Simon, Bernhard von Stengel, Uri Zwick,
and my students throughout the years for providing comments and spotting ty-
pos.
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0.1 Notation

The set of positive integers is

N := {1, 2, 3, . . .}.

The number of elements in a finite set K is denoted by |K|. For every finite
set K, the set of probability distributions over K is denoted by ∆(K). We
identify each element k ∈ K with the probability distribution in ∆(K) that
assigns probability 1 to k. For a probability distribution µ ∈ ∆(K), the support
of µ, denoted supp(µ), is the set of all elements k ∈ K that have positive
probability under µ:

supp(µ) := {k ∈ K : µ[k] > 0}.

A probability distribution is pure if supp(µ) contains only one element: |supp(µ)| =
1.

Let I be a finite set, and, for each i ∈ I, let Ai be a set. We denote by
AI :=

∏
i∈I A

i the cartesian product, and denote A−i :=
∏
j∈I\{i}A

j . Similarly,

if a = (ai)i∈I ∈ AI , we denote by a−i := (aj)j∈I\{i} ∈ A−i the vector a with its
i’th coordinate removed.

We will use two norms, the L1-norm and the L∞-norm (or the maximum
norm). For a vector x ∈ Rn, we define

‖x‖1 :=

n∑
i=1

|xi|,

and,
‖x‖∞ := max

i=1,...,n
|xi|.

For a function f : X → R, argmaxx∈Xf(x) is the set of all points in X that
maximize f :

argmaxx∈Xf(x) :=

{
y ∈ X : f(y) = max

x∈X
f(x)

}
.

When the setX is compact and the function f is continuous, the set argmaxx∈Xf(x)
is nonempty.
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1 Markov Decision Problems

Abstract

In this chapter we present the notions of Markov decision problem,
the T -stage evaluation, and the discounted evaluation. We introduce and
study contracting mappings,3and use such mappings to show that the
decision maker has a stationary discounted optimal strategy. We also
define the concept of uniform optimality, and show that the decision maker
has a stationary uniformly optimal strategy.

In this chapter we introduce Markov decision problems, which are stochastic
games with a single player. They serve as an appetizer. On the one hand, the
basic concepts and basic proofs for zero-sum stochastic games are better under-
stood in this simple model. On the other hand, some of the conclusions that we
draw for Markov decision problems are different from those drawn for zero-sum
stochastic games. This illustrates the inherent difference between single-player
decision problems and multiplayer decision problems (=games). The interested
reader is referred to, e.g., Ross (1982) or Puterman (1994), for an exposition of
Markov decision problems.

Definition 1.1 A Markov decision problem4 is a vector Γ = 〈S, (A(s))s∈S , q, r〉
where

� S is a finite set of states.

� For each s ∈ S, A(s) is a finite set of actions available at state s. The set
of pairs (state, action) is denoted by

SA := {(s, a) : s ∈ S, a ∈ A(s)}.

� q : SA→ ∆(S) is a transition rule.

� r : SA→ R is a payoff function.

A Markov decision problem involves a decision maker, and it evolves as
follows. The problem lasts for infinitely many stages. The initial state s1 ∈ S
is given. At each stage t ≥ 1, the following happens:

� The current state st is announced to the decision maker.

3We adhere to the convention that a mapping is a function whose range is a general space
or Rn, while a function is always real-valued.

4Andrey Andreyevich Markov (Ryazan, Russia, June 14, 1856 – St. Petersburg, Russia,
July 20, 1922) was a Russian mathematician. He is best known for his work on the theory of
stochastic processes that now bear his name: Markov chains and Markov processes.
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� The decision maker chooses an action at ∈ A(st) and receives the stage
payoff r(st, at).

� A new state st+1 is drawn according to q(· | st, at) and the game proceeds
to stage t+ 1.

Example 1.2 Consider the following situation. The technological level of a
country can be High (H), Medium (M), or Low (L). The annual investment of
the country in technological advances can also be high (2 billion dollars), medium
(1 billion dollars), or low (0.5 billion dollars). The annual gain from techno-
logical level is increasing: high, medium, and low technological level yield 10, 6,
and 2 billion dollars, respectively. The technological level changes stochastically
as a function of the investment in technological advancement, according to the
following table:5

high medium low
Technology Level investment investment investment

H H [ 1
2 (H), 1

2 (M)] [ 1
4 (H), 3

4 (M)]
M [ 3

5 (H), 2
5 (M)] M [ 2

5 (M), 3
5 (L)]

L [ 3
5 (M), 2

5 (L)] [ 2
5 (M), 3

5 (L)] L

The situation can be presented as a Markov decision problem as follows.

� There are three states, which represent the three technological levels: S =
{H,M,L}.

� There are three actions in each state, which represent the three investment
levels: A(s) = {h,m, l} for each s ∈ S.

� The transition rule is given by

q(H | H,h) = 1, q(M | H,h) = 0, q(L | H,h) = 0,

q(H | H,m) = 1
2 , q(M | H,m) = 1

2 , q(L | H,m) = 0,

q(H | H, l) = 1
4 , q(M | H, l) = 3

4 , q(L | H, l) = 0,

q(H |M,h) = 3
5 , q(M |M,h) = 2

5 , q(L |M,h) = 0,

q(H |M,m) = 0, q(M |M,m) = 1, q(L |M,m) = 0,

q(H |M, l) = 0, q(M |M, l) = 2
5 , q(L |M, l) = 3

5 ,

q(H | L, h) = 0, q(M | L, h) = 3
5 , q(L | L, h) = 2

5 ,

q(H | L,m) = 0, q(M | L,m) = 2
5 , q(L | L,m) = 3

5 ,

q(H | L, l) = 0, q(M | L, l) = 0, q(L | L, l) = 1.

5Here and in the sequel, a probability distribution is denoted by a list of probabilities and
outcomes in square brackets, where the outcomes are written within round brackets. Thus,
[ 2
3

(H), 1
3

(M)] means a probability distribution that assigns probability 2
3

to H and probability
1
3

to M .
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� The payoff function (in billions of dollars) is given by

r(H,h) = 8, r(H,m) = 9, r(H, l) = 9 1
2 ,

r(M,h) = 4, r(M,m) = 5, r(M, l) = 5 1
2 ,

r(L, h) = 0, r(L,m) = 1, r(L, l) = 1 1
2 . �

Example 1.3 The Markov decision problem that is illustrated in Figure 1 is
formally defined as follows.

� There are three states: S = {s(1), s(2), s(3)}.

� In state s(1) there are two actions: A(s(1)) = {U,D}; in states s(2) and
s(3) there is one action: A(s(2)) = A(s(3)) = {D}.

� Payoffs appear at the center of each entry and are given by:

r(s(1), U) = 10, r(s(1), D) = 5, r(s(2), D) = 10, r(s(3), D) = −100.

� Transitions appear in parenthesis next to the payoff and are given by:

– If in state s(1) the decision maker chooses U , the process moves to
state s(2), that is, q(s(2) | s(1), U) = 1.

– If in state s(1) the decision maker chooses D, the process remains in
state s(1), that is, q(s(1) | s(1), D) = 1.

– From state s(2) the process moves to state s(1) with probability 1
10

and to state s(3) with probability 9
10 , that is, q(s(1) | s(2), D) = 1

10
and q(s(3) | s(2), D) = 9

10 .

– Once the process reaches state s(3), it stays there, that is, q(s(3) |
s(3), D) = 1.

5(1,0,0)

10(0,1,0)

D

U

s(1)

10( 1
10 ,0,

9
10 ) −100(0,0,1)D D

s(2) s(3)

Figure 1: The Markov decision problem in Example 1.3.
�

1.1 On Histories

For t ∈ N, the set of histories of length t is defined by

Ht := (SA)t−1 × S,

where by convention (SA)0 = ∅. This is the set of all histories that may occur
until stage t. A typical element in Ht is denoted by ht. The last state of history
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ht is denoted by st. The set H1 is identified with the state space S, and the
history (s1) is simply denoted by s1.

We denote the set of all histories by

H :=
⋃
t∈N

Ht,

and the set of all infinite histories or plays by

H∞ := (SA)N.

The set of plays H∞ is a measurable space, with the sigma-algebra gener-
ated by the cylinder sets, which are defined as follows. For a history h̃t =
(s̃1, ã1, · · · , s̃t) ∈ Ht, the cylinder set C(h̃t) ⊂ H∞ is the collection of all plays

that start by h̃t, that is,

C(h̃t) := {h = (s1, a1, s2, a2, . . .) ∈ H∞ : s1 = s̃1, a1 = ã1, . . . , st = s̃t}.

For every t ∈ N, the collection of all cylinder sets (C(h̃t))h̃t∈Ht defines a
finite partition, or an algebra, on H∞. We denote by Ht this algebra and by H
the sigma-algebra on H∞ generated by the algebras (Ht)t∈N.

1.2 On Strategies

A mixed action at state s is a probability distribution over the set of actions A(s)
available at state s. The set of mixed actions at state s is therefore ∆(A(s)).
A strategy of the decision maker specifies how the decision maker should play
after each possible history.

Definition 1.4 A strategy is a mapping σ that assigns to each history h =
(s1, a1, . . . , at−1, st) a mixed action in ∆(A(st)).

The set of all strategies is denoted by Σ.
A decision maker who follows a strategy σ behaves as follows: at each stage

t, given the past history (s1, a1, . . . , st), the decision maker chooses an action at
according to the mixed action σ(· | s1, a1, . . . , st).

Comment 1.5 A strategy as defined in Definition 1.4 is termed in the literature
behavior strategy.

Comment 1.6 The fact that the choice of the decision maker depends on past
play implicitly assumes that the decision maker knows the past play; that is, the
decision maker observes (and remembers) all past states that the process visited,
and she remembers all her past choices. In Section 2 we will study the model of
Markov decision problems when the decision maker does not observe the state.

Comment 1.7 A strategy contains a lot of irrelevant information. Indeed,
when the initial state is s1 = s, it is not important what the decision maker

12



would play if the initial state were s′ 6= s. Similarly, if in the first stage the
decision maker played the action a1 = a, it is irrelevant what she would play in
the second stage if she played the action a′ 6= a in the first stage. We nevertheless
regard a strategy as a mapping defined on the set of all histories, because of
the simplicity of the definition; otherwise we would have to define for every
strategy σ and every positive integer t the set of all histories of length t that can
occur with positive probability when the decision maker follows strategy σ (which
depend on the definition of σ up to stage t− 1), and define σ at stage t only for
those histories.

Every strategy σ, together with the initial state s1, defines a probability
distribution Ps1,σ on the space of measurable space (H∞,H). To define this
probability distribution formally, we define it on the collection of cylinder sets
that generate (H∞,H) by the rule

Ps1,σ(C(s̃1, ã1, . . . , s̃t−1, ãt−1, s̃t)) (1)

:= 1{s1=s̃1} ·
t−1∏
k=1

σ(ãk | s̃1, ã1, . . . , s̃1) ·
t−1∏
k=1

q(s̃k+1 | s̃k, ãk).

Let Ps1,σ be the unique probability distribution on H∞ that agrees with this
definition on cylinder sets. The fact that in this way we indeed obtain a unique
probability distribution is guaranteed by the Carathéodory6 Extension Theorem
(see, e.g., Theorem 3.1 in Billingsley (1995)).

Two simple classes of strategies are pure strategies that involve no random-
ization, and stationary strategies that depend only on the current state and not
on the whole past history.

Definition 1.8 A strategy σ is pure if |supp(σ(ht))| = 1 for every history ht ∈
H.

The set of pure strategies is denoted by ΣP.

Definition 1.9 A strategy σ is stationary if for every two histories ht = (s1, a1, s2, . . . , at−1, st)

and ĥk = (ŝ1, â1, ŝ2, . . . , âk−1, ŝk) that satisfy st = ŝk we have σ(ht) = σ(ĥk).

The set of stationary strategies is denoted ΣS.
A pure stationary strategy assigns to each state s ∈ S an action in A(s).

Since the number of actions in A(s) is |A(s)|, we can express the number of pure
stationary strategies in terms of the data of the Markov decision problem.

Theorem 1.10 The number of pure stationary strategies is
∏
s∈S |A(s)|.

6Constantin Carathéodory (Berlin, Germany, September 13, 1873 – Munich, Germany,
February 2, 1950) was a Greek mathematician who spent most of his career in Germany.
He made significant contributions to the theory of functions of a real variable, the calculus
of variations, and measure theory. His work also includes important results in conformal
representations and in the theory of boundary correspondence.
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One can identify a stationary strategy σ with a vector x ∈
∏
s∈S ∆(A(s)).

With this identification, x(s) is the mixed action chosen when the current state
is s. Thus, the set of stationary strategies ΣS can be identified with the space
X :=

∏
s∈S ∆(A(s)), which is convex and compact. For every element x ∈ X,

the stationary strategy that corresponds to x is still denoted x.
In Definition 1.4 we defined a strategy to be a mapping from histories to

mixed actions. We now present another concept of a strategy that involves
randomization – a mixed strategy.

Definition 1.11 A mixed strategy is a probability distribution over the set ΣP

of pure strategies.

Every strategy is equivalent to a mixed strategy. Indeed, a strategy σ is defined
by ℵ0 lotteries: to each history ht ∈ H, it assigns a lottery σ(ht) ∈ ∆(A(st)). If
the decision maker performs all the ℵ0 lotteries before the play starts, then the
realizations of the lotteries define a pure strategy. In particular, the strategy
defines a probability distribution over the set of pure strategies.

Conversely, every mixed strategy is equivalent to a strategy. Indeed, given
a mixed strategy τ , one can calculate for each history ht the conditional prob-
ability σ(at | ht) that the action chosen after ht is at ∈ A(st). If the history
ht occurs with probability 0 under Ps1,σ, we set σ(at | ht) arbitrarily. One can
show that the strategy σ is equivalent to the mixed strategy τ .

The equivalence just described is a special case of a more general result,
called Kuhn’s Theorem,7 see, e.g., Maschler, Solan, and Zamir (2020, Chapter 7).

1.3 The T -Stage Payoff

The decision maker receives the stage payoff r(st, at) at every stage t. How
does she compare sequences of stage payoffs? We will study two methods of
evaluations. The first, which we consider in this section, is the T -stage evalua-
tion. This evaluation is relevant when the process lasts T stages, and the goal
of the decision maker is to maximize her expected average payoff during these
stages. The second, which we will study in the next section, is the discounted
evaluation, which is relevant when the play continues indefinitely, and the goal
of the decision maker is to maximize the expected discounted sum of her stage
payoffs.

The expectation operator for the probability distribution Ps1,σ is denoted
by Es1,σ[ · ]. In particular, Es1,σ[r(st, at)] is the expected payoff at stage t.

7Harold William Kuhn (Santa Monica, California, July 29, 1925 – New York City, New
York, July 2, 2014) was an American mathematician. He is known for the Karush-Kuhn-
Tucker conditions, for Kuhn’s theorem, and for developing Kuhn poker as well as the descrip-
tion of the Hungarian method for the assignment problem.
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Definition 1.12 For every positive integer T ∈ N, every initial state s1 ∈ S,
and every strategy σ ∈ Σ, define the T -stage payoff by:

γT (s1;σ) := Es1,σ

[
1

T

T∑
t=1

r(st, at)

]
. (2)

Example 1.13 The Markov decision problem in this example is given in Fig-
ure 2.

5(1,0)

10(0,1)

D

U

s(1)

2(0,1)D

s(2)

Figure 2: The Markov decision problem in Example 1.13.

The initial state is s(1). We will calculate the T -stage payoff of every pure
strategy.

The strategy σD that always plays D yields a payoff 5 at every stage, and
therefore its T -stage payoff is 5 as well:

γT (s(1);σD) = 5, ∀T ∈ N.

The strategy σU that plays U in the first stage yields 10 in the first stage and 2
in all subsequent stages. Therefore,

γT (s(1);σU ) = 10 · 1

T
+ 2 · T − 1

T
= 2 +

8

T
, ∀T ∈ N.

For every 0 ≤ t < T , the strategy σDtU that plays D in the first t stages and
U in stage t + 1 yields 5 in the first t stages, 10 in stage t + 1, and 2 in all
subsequent stages. Therefore,

γT (s(1);σDtU ) = 5· t
T

+10· 1
T

+2·T − t− 1

T
=

2T + 3t+ 8

T
, ∀T ∈ N, ∀0 ≤ t < T.

�

Definition 1.14 Let s ∈ S and let T ∈ N. The real number vT (s) is the T -stage
value at the initial state s if

vT (s) := sup
σ∈Σ

γT (s;σ). (3)

Any strategy in argmaxσ∈ΣγT (s;σ) is T -stage optimal at s.

In words, the T -stage value at s is the maximal amount that the decision maker
can get when the initial state is s, and a strategy that guarantees this quantity
is T -stage optimal.

Is the supremum in Eq. (3) attained? That is, is there a T -stage optimal
strategy? As the following theorem states, the answer is positive.
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Theorem 1.15 For every s ∈ S and every T ≥ 1 there is a T -stage optimal
strategy at the initial state s.

Proof. In the T -stage game, the only relevant part of the strategy is its play
up to stage T . In particular, for the purpose of studying the T -stage problem,
we can define a strategy as a mapping σ :

⋃T
t=1Ht →

⋃
s∈S ∆(A(s)), such that

σ(ht) ∈ ∆(A(st)), for every history ht ∈
⋃T
t=1Ht. This set is a compact subset

of a Euclidean space. The payoff function is continuous on this set. Since a
continuous function defined on a compact set attains its maximum, the result
follows.

Comment 1.16 We can strengthen Theorem 1.15 and prove that for every
s ∈ S and every T ≥ 1, there is a T -stage pure optimal strategy at the initial
state s (see Theorem 1.18 below). To see this, consider the function that maps
each mixed strategy σ into the T -stage payoff γT (s;σ). This function is linear.
Indeed, let σ1 and σ2 be two strategies, and let σ3 be the following strategy: toss
a fair coin; if the result is Head, follow σ1, whereas if it is Tail, follow σ2. Then

γT (s;σ3) =
1

2
γT (s;σ1) +

1

2
γT (s;σ1).

By the Krein8-Milman9Theorem, a linear function that is defined on a compact
space attains its maximum at an extreme point. Since the pure strategies are
the extreme points of the set of mixed strategies, it follows that the function
σ 7→ γT (s;σ) attains its maximum at a pure strategy.

Example 1.3: continued. The quantity γT (s(1);σDtU ) = 2T+3t+8
T is maxi-

mized when t = T − 1: the decision maker plays T − 1 times D and then she
plays once U . The resulting average payoff is 5 + 5

T . The T -stage value at the
initial state s(1) is therefore vT (s(1)) = 5 + 5

T . �

In general, the T -stage value, as well as the T -stage optimal strategies, can
be found by backwards induction, a method that is also known as the dynamic
programming principle. We now formalize this method.

Theorem 1.17 For every initial state s1 ∈ S and every T ≥ 2, we have

vT (s1) = max
a1∈A(s1)

{
1

T
r(s1, a1) +

T − 1

T

∑
s2∈S

q(s2 | s1, a1)vT−1(s2)

}
. (4)

Eq. (4) states that to calculate the T -stage value, we can break the problem
into two parts: the first stage, and the last T − 1 stages. Since transitions and

8Mark Grigorievich Krein (Kiev, Russia, April 3, 1907 – Odessa, Ukraine, October 17,
1989) was a Soviet mathematician who is best known for his work in operator theory.

9David Pinhusovich Milman (Kiev, Russia, January 15, 1912 – Tel Aviv, Israel, July 12,
1982) was a Soviet and later Israeli mathematician specializing in functional analysis.
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payoffs depend only on the current state and on the current action, the problem
that starts at stage 2 is not affected by s1 and a1, the state and action at stage 1.
This problem is a (T −1)-stage Markov decision problem, whose value vT−1(s2)
depends on its initial state (and not on the initial state s1). To calculate the
T -stage value, we collapse the last T − 1 stages into a single number, the value
of the (T − 1)-stage problem that starts at stage 2, and we ask what is the
optimal action in the first stage, assuming that if state s2 is reached at stage 2,
the continuation value is vT−1(s2).

In Eq. (4) the weight of the payoff in the first stage, r(s1, a1), is 1
T , and the

weight of the value of the (T −1)-stage problem that encapsulates the last T −1
stages is T−1

T . Why do we take these weights? The reason is that the quantity
r(s1, a1) represents the payoff in the first stage, while the quantity vT−1(s2)
captures the average payoff in T − 1 stages: stages 2, 3, . . . , T . The weights of
each of the two quantities reflect this point.

To prove Theorem 1.17 we will consider conditional expectation. Recall that
Es1,σ[r(st, at)] is the expected payoff at stage t. For every t′ ≤ t and every his-

tory h̃t′ = (s̃1, ã1, . . . , s̃t′) ∈ Ht′ with s̃1 = s1, the quantity Es1,σ[r(st, at) | h̃t′ ]
is the expected payoff at stage t, conditional that the history h̃t′ has occurred,
that is, conditional that the action in the initial state is ã1, the state at stage 2
is s̃2, etc. Formally, for every history every history h̃t′ = (s̃1, ã1, . . . , s̃t′) ∈ Ht′ ,

the probability distribution Ps1,σ(· | h̃t′) is defined as follows.

� For histories that are not longer than h̃t′ : For every t ≤ t′ we have

Ps1,σ(C(s1, a1, · · · , st) | h̃t′) := 1{s1=s̃1,a1=ã1,...,st=s̃t}.

� For histories that are longer than h̃t′ : For every t > t′, we have

Ps1,σ(C(s1, a1, . . . , st−1, at−1,st) | ht′)

:= 1{s1=s̃1,a1=ã1,...,st′=s̃t′} ·
t−1∏
k=t′

σ(ak | s1, a1, · · · , sk) ·
t−1∏
k=t′

q(sk+1 | sk, ak).

Denote by Es1,σ[· | h̃t′ ] the expectation with respect to Ps1,σ(· | h̃t′).

Proof of Theorem 1.17. For T = 1, the T -stage problem concerns the
first stage only, and

v1(s1) = max
a1∈A(s1)

r(s1, a1).

In particular, Eq. (4) holds. For T ≥ 2, by definition and by the law of iterated
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expectations,

vT (s1) = max
σ∈Σ

Es1,σ

[
1

T

T∑
t=1

r(st, at)

]

= max
σ∈Σ

Es1,σ

[
1

T
r(s1, a1) +

T − 1

T
· 1

T − 1

T∑
t=2

r(st, at)

]

= max
σ∈Σ

(
Es1,σ

[
1

T
r(s1, a1)

]
+ Es1,σ

[
T − 1

T
· 1

T − 1

T∑
t=2

r(st, at) | h2

])
.

(5)

The term within the maximization in these equalities depends only on the part
of the strategy σ that follows the initial state s1. This part is composed of the
mixed action σ(s1) ∈ ∆(A(s1)) that is played in the first stage and the contin-
uation strategies played from the second stage and on. We denote these con-
tinuation strategies by (σ′s1,a1)a1∈A(s1). Formally, for every action a1 ∈ A(s1),
σ′s1,a1 is a strategy in the T − 1 stage problem that is defined by

σ′s1,a1(ht−1) := σ(s1, a1, ht−1), ∀2 ≤ t ≤ T, ∀ht−1 = (s2, a2, . . . , st) ∈ Ht−1.

With this notation, the right-hand side in Eq. (5) is equal to

max
α∈∆(A(s1))

max
(σ′s1,a1

)a1∈A1(s1)

Es1,α,(σ′s1,a1
)a1∈A1(s1)

[
1

T
r(s1, a1)

+Es1,σ′s1,a1

[
T − 1

T
· 1

T − 1

T∑
t=2

r(st, at) | a1, s2

]]
, (6)

where α captures the mixed action played in the first stage. The continuation
strategies (σ′s1,a1)a1∈A1(s1) do not affect the payoff in the first stage r(s1, a1).
The action a1 that is chosen in the first stage affects the continuation payoff
in two ways. First, it determines the probability q(s2 | s1, a1) that the state
in the first stage is s2. Second, it determines the continuation strategy σ′s1,a1 .
Since the probability distribution Ps1,σ conditional on a1 and s2 is equal to the
probability distribution Ps2,σ′s1,a1

, it follows that we can split the maximization

problem in Eq. (6) into two parts, and obtain that

vT (s1) = max
α∈∆(A(s1))

(
1

T
r(s1, α)

+
∑
s2∈S

q(s2 | s1, a1) max
(σ′s1,a1

)a1∈A1(s1)

Es2,σ′s1,a1

[
T − 1

T
· 1

T − 1

T∑
t=2

r(st, at)

])
.

(7)

Note that

vT−1(s2) = max
(σ′s1,a1

)a1∈A1(s1)

Es2,σ′s1,a1

[
1

T − 1

T∑
t=2

r(st, at)

]
,
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hence the right-hand side of Eq. (7) is equal to

max
α∈∆(A(s1))

 1

T
r(s1, α) +

∑
a1∈A1(s1)

α(a1)q(s2 | s1, a1)
T − 1

T
vT−1(s2)

 .

The function within the parentheses is linear in α, and ∆(A(s1)) is a compact
set whose extreme points are the Dirac measures concentrated at the points a1

with a1 ∈ A(s1). A linear function that is defined on a compact set attains its
maximum in an extreme point. The result follows.

The proof of Theorem 1.17 yields an algorithm that calculates the T -stage
value and a T -stage optimal strategy σ∗. We will calculate by induction a k-stage
optimal strategy σ∗k for every k = 1, 2, . . . , T . We start with k = 1, and calculate
a 1-stage optimal strategy for every initial state s ∈ S. Let a∗1(s) ∈ A(s) be an
action that maximizes the quantity r(s, a) over a ∈ A(s), and set

σ∗1(s) := a∗1(s).

The value of the 1-stage problem with initial state s is v1(s) = r(s1, a
∗
1(s)). We

continue recursively. Suppose that for every initial state s we already calculated
vk−1(s) and already defined a (k− 1)-stage optimal strategy σ∗k−1. To calculate
vk(s) and define a k-stage optimal strategy σ∗k, we take

max
a∈A(s)

(
1

k
r(s, a) +

k − 1

k
q(s′ | s, a)vk−1(s)

)
, (8)

and denote by a∗k(s) ∈ A(s) an action that achieves the maximum in Eq. (8).
This is the quantity on the right-hand side of Eq. (4), hence it is equal to vk(s).
We can now define an optimal strategy σ∗ for the decision maker as follows:

� At stage 1, play the action a∗k(s1).

� From stage 2 on, follow the strategy σ∗k−1; that is, at each stage t, when the
current state is s1 and T − t+1 stages are left, play the action a∗T−t+1(st).
Formally,

σ∗(ht) := a∗T−t+1(st), ∀ht = (s1, a1, . . . , st) ∈
T⋃
t=1

Ht.

In Exercise 1.1 the reader is asked to prove that this strategy is indeed T -stage
optimal.

The proof of Theorem 1.17 relies on the linearity of the payoff function: the
goal of the decision maker is to maximize a linear function of the stage payoffs.
If the sets of actions and states are not finite, the theorem still holds, provided
that in Eq. (4) we replace maximum by supremum.

Theorem 1.17 admits the following corollary.
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Theorem 1.18 The T -stage value always exists. Moreover, there exists an
optimal pure strategy σ ∈ Σ.

One can show a stronger result concerning the structure of an optimal pure
strategy: there exists an optimal pure strategy σ with the property that σ(ht)
depends on the current state st and on the stage t, and is independent of the
rest of the history (s1, a1, . . . , st−1, at−1) (Exercise 1.3).

1.4 The Discounted Payoff

The discounted payoff depends on a parameter λ ∈ (0, 1], called the discount
factor, which measures how money grows with time: one dollar today is worth

1
1−λ dollars tomorrow, 1

(1−λ)2 dollars the day after tomorrow, etc. In other

words, the decision maker is indifferent between getting 1−λ dollars today and
one dollar tomorrow.

Definition 1.19 For every discount factor λ ∈ (0, 1], every state s ∈ S, and
every strategy σ ∈ Σ, the λ-discounted payoff under strategy profile σ at the
initial state s is

γλ(s;σ) := Es,σ

[
λ

∞∑
t=1

(1− λ)t−1r(st, at)

]
. (9)

The λ in front of the sum in Eq. (9) serves as a normalization factor: a player
who receives one dollar at every stage, evaluates this stream of payoffs as one
dollar. Since there are finitely many states and actions, the payoff function r is
bounded, and therefore γλ obeys the same bound (which is independent of λ,
thanks to the multiplication by λ).

The dominated convergence theorem (see, e.g., Shiryaev (1995), Theorem
6.3) implies that

γλ(s;σ) := λ

∞∑
t=1

(1− λ)t−1Es,σ [r(st, at)] .

Simple algebraic manipulations yield

γλ(s;σ) := Es,σ

[
λr(s1, a1) + (1− λ)

(
λ

∞∑
t=2

(1− λ)t−2r(st, at)

)]
. (10)

For every two states s, s′ ∈ S and every action a ∈ A(s), set

γλ(s′;σs,a) := Es,σ

[
λ

∞∑
t=2

(1− λ)t−2r(st, at) | s1 = s, a1 = a, s2 = s′

]
.

This is the expected discounted payoff from stage 2 on, when conditioning on
the history at stage 2. Alternatively, this is the expected discounted payoff when
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the initial state is s′, and the decision maker follows that part of her strategy
that follows the history (s, a). If σ is a stationary strategy, then the way it plays
after the first stage does not depend on the play in the first stage. Hence, in
this case for every two states s, s′ ∈ S and every action a ∈ A(s) we have

γλ(s′;σs,a) = γλ(s′;σ).

From Eq. (10) we obtain:

γλ(s;σ) := Es,σ [λr(s1, a1) + (1− λ)γλ(s2;σs1,a1)] . (11)

Thus, the expected payoff is a weighted average of the payoff r(s1, a1) at the
first stage and the expected payoff γλ(s2;σs1,a1) in all subsequent stages. When
the discount factor λ is high, the weight of the first stage is high, whereas when
the discount factor λ is low, the weight of the first stage is low.

Eq. (11) illustrates that the decision maker’s payoff consists of two parts: to-
day’s payoff and the future’s payoff. The discount factor indicates the relative
importance of each part. The lower the discount factor, the higher the impor-
tance of the future, and therefore the decision maker should put more weight on
future opportunities. The higher the discount factor, the higher the importance
of the present, and the decision maker should concentrate on short-term gains.

Comment 1.20 In the proof of Theorem 1.17 we in fact showed that the T -
stage payoff satisfies the following formula:

γT (s;σ) := Es,σ

[
1

T
r(s1, a1) +

T − 1

T
γT−1(s2;σs1,a1)

]
. (12)

Thus, similarly to the discounted payoff, the T -stage payoff is a weighted average
of the payoff r(s1, a1) at the first stage and the expected payoff γT−1(s2;σs1,a1)
in all subsequent stages, with weights 1

T and T−1
T .

Example 1.3: continued.
The Markov decision problem in Example 1.3 is reproduced in Figure 3.

5(1,0,0)

10(0,1,0)

D

U

s(1)

10( 1
10 ,0,

9
10 ) −100(0,0,1)D D

s(2) s(3)

Figure 3: The Markov decision problem in Example 1.3.

The initial state is s(1). The strategy σD that always plays D at state s(1)
yields a payoff 5 at every stage, and therefore its λ-discounted payoff is 5 as
well. Let us calculate the λ-discounted payoff of the strategy σU that always
plays U at state s(1). Since this strategy is stationary,

γλ(s(1);σU ) = 10λ+ (1− λ)

(
10λ+ (1− λ)

(
9

10
(−100) +

1

10
γλ(s(1);σU )

))
. (13)
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The term γλ(s(1);σU ) on the right-hand side is the discounted payoff from the
third stage and on, if at the second stage the play moves from s(2) to s(1).
Eq. (13) solves to

γλ(s(1);σU ) =
10λ+ 10λ(1− λ)− 100 9

10 (1− λ)2

1− 1
10 (1− λ)2

.

For λ = 1 (only the first day matters) we get

γ1(s(1);σU ) = 10,

while for λ close to 0 (the far future matters) we get

lim
λ→0

γλ(s(1);σU ) = −100.

Since the function λ 7→ γλ(s(1);σU ) is continuous, and since γλ(s(1);σD) = 5
for every λ ∈ [0, 1), for a high discount factor the strategy σU is superior to the
strategy σD, while for a low discount factor the strategy σD is superior to the
strategy σU . �

Definition 1.21 Let s ∈ S and let λ ∈ (0, 1] be a discount factor. The real
number vλ(s) is the λ-discounted value at the initial state s if

vλ(s) := sup
σ∈Σ

γλ(s;σ). (14)

The strategies in argmaxσ∈Σ γλ(s;σ) are said to be λ-discounted optimal at the
initial state s.

Thus, the λ-discounted value at s is the maximal λ-discounted payoff that the
decision maker can get when the initial state is s, and a strategy that guarantees
this quantity is λ-discounted optimal.

In Theorem 1.17 we stated the dynamic programming principle for the T -
stage decision problem. We now provide the analogous principle for the dis-
counted problem. The proof of the result is left to the reader (Exercise 1.5).

Theorem 1.22 For every state s ∈ S and every discount factor λ ∈ (0, 1] we
have

vλ(s) = max
a∈A(s)

{
λr(s, a) + (1− λ)

∑
s′∈S

q(s′ | s, a)vλ(s′)

}
. (15)

In Eq. (15), the weight of the payoff at the first stage is λ, while the weight
of the value at the second stage is 1 − λ. The reason for these weights comes
from the definition of the λ-discounted payoff in Eq. (9). In that equation, the
weight of the payoff at stage t is λ(1 − λ)t−1. In particular, the weight of the
payoff at the first stage is λ, which is similar to the weight of the payoff at the
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first stage in Eq. (15). Since the sum of the weights of the payoffs in Eq. (9) is
1, it follows that the total weight of the payoffs at stages 2, 3, . . . is 1−λ, which
is the weight of the second term on the right-hand side of Eq. (15).

Below we will prove that for every discount factor λ there is a pure station-
ary strategy that is λ-discounted optimal at all initial states. The proof uses
contracting mappings, which will be defined shortly. Moreover, we will show
that there is a pure stationary strategy that is optimal for every discount factor
sufficiently close to 0.

Comment 1.23 Like we did for the T -stage problem, one can provide a direct
argument for the existence of a discounted optimal strategy. Since the set of
histories is countable, the set of strategies, which is

∏
ht∈H ∆(A(st)), is compact

in the product topology. Moreover, the discounted payoff function is continuous
in this topology. Hence the supremum in Eq. (14) is attained.

1.5 Contracting Mappings

A metric space is a pair (X, d), where X is a set and d : X ×X → [0,∞) is a
metric, that is, d satisfies the following conditions:

� d(x, y) = 0 if and only if x = y.

� Symmetry: d(x, y) = d(y, x) for all x, y ∈ X.

� Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

A sequence (xn)n∈N in a metric space is Cauchy10 if for every ε > 0 there is an
n0 ∈ N such that n1, n2 ≥ n0 implies d(xn1

xn2
) ≤ ε. A metric space is complete

if every Cauchy sequence has a limit. For every m ∈ N, the Euclidean space
Rm equipped with the distance induced by the Euclidean norm, the L1-norm,
or the L∞-norm is complete. Readers who are not familiar with metric spaces
can think of a metric space as Rm equipped with the Euclidean distance.

Definition 1.24 Let (X, d) be a metric space. A mapping f : X → X is
contracting if there exists ρ ∈ [0, 1) such that d(f(x), f(y)) ≤ ρd(x, y) for all
x, y ∈ X.

Example 1.25 Let ρ ∈ [0, 1) and a ∈ Rn. The mapping f : Rn → Rn that is
defined by

f(x) := a+ ρx, ∀x ∈ Rn,

is contracting.

Theorem 1.26 Let (X, d) be a complete metric space. Every contracting map-
ping f : X → X has a unique fixed point; that is, there exists a unique point
x ∈ X such that x = f(x).

10Augustin Louis Cauchy (Paris, France, August 21, 1789 – Sceaux, France, May 23, 1857)
was a French mathematician. He started the project of formulating and proving the theorems
of calculus in a rigorous manner and was thus an early pioneer of analysis. He also gave several
important theorems in complex analysis and initiated the study of permutation groups.
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Proof. Let f : X → X be a contracting mapping.

Step 1: f has at most one fixed point.
If x, y ∈ X are fixed points of f , then

d(x, y) = d(f(x), f(y)) ≤ ρd(x, y).

Since ρ ∈ [0, 1), this implies that d(x, y) = 0, and therefore x = y.

Step 2: f has at least one fixed point.
Let x0 ∈ X be arbitrary, and define inductively xn+1 = f(xn) for every

n ≥ 0. Then for any k,m > 0,

d(xk, xk+m) ≤
m−1∑
l=0

d(xk+l, xk+l+1) ≤ d(x0, f(x0))ρk
m−1∑
l=0

ρl < d(x0, f(x0))
ρm

1− ρ
,

where the first inequality follows from the triangle inequality, and the second
inequality holds since by induction: d(xl, xl+1) ≤ ρld(x0, x1) = ρld(x0, f(x0)).
Thus (xk)k∈N is a Cauchy sequence, and therefore it converges to a limit x. By
the triangle inequality,

d(x, f(x)) ≤ d(x, xk) + d(xk, xk+1) + d(xk+1, f(x)), (16)

for all k ∈ N. Let us show that all three terms on the right-hand side of
Eq. (16) converge to 0 as k goes to infinity; this will imply that d(x, f(x)) = 0,
hence x = f(x), that is, x is a fixed point of f . Indeed, limk→∞ d(x, xk) = 0
because x is the limit of (xk)k∈N, limk→∞ d(xk, xk+1) because (xk)k∈N is a
Cauchy sequence, and finally, since f is contracting,

lim
k→∞

d(xk+1, f(x)) = lim
k→∞

d(f(xk), f(x)) ≤ lim
k→∞

ρd(xk, x) = 0.

1.6 Existence of an Optimal Stationary Strategy

In this section we prove the following result, due to Blackwell (1965).11 This
result is a special case of an earlier result due to Shaley (1953), see Theorem 5.9.

Theorem 1.27 For every λ ∈ (0, 1] there exists a λ-discounted pure stationary
optimal strategy.

The existence of a λ-discounted optimal strategy was discussed in Com-
ment 1.23, while the existence a λ-discounted pure optimal strategy is estab-
lished by the same arguments as in Comment 1.16. We now explain the intuition
behind the existence of a λ-discounted pure stationary optimal strategy. Let

11David Harold Blackwell (Centralia, Illinois, April 24, 1919 – Berkeley, California, July 8,
2010) was an American statistician and mathematician who made significant contributions to
game theory, probability theory, information theory, and Bayesian statistics.
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ht and ĥt̂ be two histories that end at the same state s. Since the payoffs and
transitions depend only on the current state, and not on past play, if the de-
cision maker plays in the same way after ht and after ĥt̂, the evolution of the

Markov decision problem after ht is the same as after ĥt̂. Suppose now that

the optimal strategy σ prescribes to play differently after ht and after ĥt̂, that

is, σ(ht) 6= σ(ĥt̂). Assume without loss of generality that the expected payoff

after ht is at least as high as the expected payoff after ĥt̂. Define a new strategy

σ1 as follows: σ1 is similar to σ, except that after the history ĥt̂ it plays as σ
plays after ht. It is easy to see that γλ(s1;σ1) ≥ γλ(s1;σ). Repeating this pro-
cess over all histories shows that one can modify σ to be a stationary strategy,
without lowering the λ-discounted payoff, thus establishing Theorem 1.27. The
proof of Theorem 1.27 that we will provide will use a different idea – contract-
ing mappings. This approach will be useful when we will later study stochastic
games.

Before we can prove Theorem 1.27 we need a bit of preparation. Fix a
function w : S → R. This function will capture the “discounted payoff from the
next stage on” given the state at the next stage. Given the initial state s and
the strategy σ, let ht ∈ H be a history with positive probability of realization,
that is, such that Ps,σ(C(ht)) > 0. Consider the situation in which, when
the decision maker follows the strategy σ, once some history ht is realized, the
decision maker is told that after she chooses the action at and the new state
st+1 is announced, the process will terminate, and she will get a terminal payoff
w(st+1). As in Eq. (15), the weights of the payoff at stage t is λ, and the weight
of the terminal payoff12 is 1 − λ. The expected payoff from stage t and on is
then given by

Es,σ

[
λri(st, at) + (1− λ)

∑
s′∈S

q(s′ | st, at)w(s′) | ht

]
(17)

= Es,σ

[
λri(st, at) + (1− λ)w(st+1) | ht

]
.

The first term in the expectation measures the expected stage payoff, while
the second term measures the expected terminal payoff. Note that in Eq. (17)
the expectation is a conditional expectation given the history at stage t. The
following result relates the expectation in Eq. (17) to the discounted payoff.

Lemma 1.28 Let σ be a strategy, let s ∈ S, and let w : S → R be a function.
If for every t ∈ N and every ht ∈ Ht,

Es,σ

[
λr(st, at) + (1− λ)w(st+1) | ht

]
≥ w(st) (18)

then
γλ(s;σ) ≥ w(s). (19)

12Setting the weight of the terminal payoff to 1− λ is equivalent to considering a standard
discounted payoff, assuming the payoff in all stages after stage t are w(st+1).
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If the inequality in Eq. (18) is reversed for every t ∈ N and every ht ∈ Ht, so is
the inequality in Eq. (19). If the inequality in Eq. (18) is an equality for every
t ∈ N and every ht ∈ Ht, then Eq. (19) becomes an equality as well.

Proof. Recall the law of iterated expectation: for every function f : S → R,
every t ∈ N, and every history ht ∈ Ht,

Es,σ[Es,σ[f(st+1) | ht]] = Es,σ[f(st+1)].

Taking expectations in Eq. (18) we deduce that

Es,σ[λr(st, at)] ≥ Es,σ[w(st)]− (1− λ)Es,σ[w(st+1)], ∀t ∈ N. (20)

Multiplying both sides of Eq. (20) by (1 − λ)t−1 and summing over t ∈ N, we
obtain Eq. (19):

γλ(s;σ) =

∞∑
t=1

(1− λ)t−1Es,σ[λr(st, at)]

≥
∞∑
t=1

(1− λ)t−1
(
Es,σ[w(st)]− (1− λ)Es,σ[w(st+1)]

)
(21)

= w(s),

where the last equality holds because the sum involved is telescopic.
If the inequality in Eq. (18) is reversed for every t ∈ N and every ht ∈ Ht,

then the inequality in Eq. (20) is reversed as well, and therefore so is the equality
in Eq. (21). The last conclusion follows from the first two statements.

We need the following technical result.

Lemma 1.29 Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Then∣∣∣∣ max
1≤i≤n

xi − max
1≤i≤n

yi

∣∣∣∣ ≤ max
1≤i≤n

|xi − yi|.

Proof. Without loss of generality we can assume that max1≤i≤n xi ≥
max1≤i≤n yi. Suppose also that xi0 = max1≤i≤n xi and yi1 = max1≤i≤n yi.
Then ∣∣∣∣ max

1≤i≤n
xi − max

1≤i≤n
yi

∣∣∣∣ = max
1≤i≤n

xi − max
1≤i≤n

yi

= xi0 − yi1
≤ xi0 − yi0
≤ max

1≤i≤n
|xi − yi|.

Proof of Theorem 1.27. We define a mapping T : RS → RS , prove
that it is contracting, and conclude that it has a unique fixed point w. We
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then show that the decision maker has a pure stationary strategy x∗ such that
γλ(s;x∗) = w(s) for every initial state s ∈ S, and that γλ(s;σ) ≤ w(s) for every
initial state s ∈ S and every strategy σ.

For every vector w = (w(s))s∈S ∈ RS , define

(T (w))(s) := max
a∈A(s)

(
λr(s, a) + (1− λ)

∑
s′∈S

q(s′ | s, a)w(s)

)
.

Step 1: The mapping T is contracting.
Let w, u ∈ RS . By Lemma 1.29,

|(T (w))(s)− (T (u))(s)| =

∣∣∣∣∣ max
a∈A(s)

(
λr(s, a) + (1− λ)

∑
s′∈S

q(s′ | s, a)w(s′)

)

− max
a∈A(s)

(
λr(s, a) + (1− λ)

∑
s′∈S

q(s′ | s, a)u(s′)

)∣∣∣∣∣
≤ max

a∈A(s)

∣∣∣∣∣
(
λr(s, a) + (1− λ)

∑
s′∈S

q(s′ | s, a)w(s′)

)

−

(
λr(s, a) + (1− λ)

∑
s′∈S

q(s′ | s, a)u(s′)

)∣∣∣∣∣
= max

a∈A(s)
(1− λ)

∑
s′∈S

q(s′ | s, a)|w(s′)− u(s′)|

≤ (1− λ)‖w − u‖∞.

It follows that ‖T (w)− T (u)‖∞ ≤ (1− λ)‖w− u‖∞, hence T is contracting.
By Theorem 1.26, T has a unique fixed point w. For each s ∈ S, let as ∈ A(s)
be an action that maximizes the expression

λr(s, a) + (1− λ)
∑
s′∈S

q(s′ | s, a)w(s).

There might be more than one such action. Then,

(T (w))(s) = λr(s, as) + (1− λ)
∑
s′∈S

q(s′ | s, as)w(s). (22)

Let x∗ be the pure stationary strategy that plays the action as at state s, for
every s ∈ S. We prove that w(s) = vλ(s) for every s ∈ S, and that x∗ is
λ-discounted optimal.

Step 2: γλ(s;x∗) = w(s) for every initial state s ∈ S.
This follows from Eq. (22) and Lemma 1.28.

Step 3: γλ(s;σ) ≤ w(s) for every strategy σ and every initial state s ∈ S.
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By the definition of T (w),

(T (w))(st) = max
a∈A(st)

(λr(st, a) + (1− λ)w(st+1)))

≥ Est,σ [λr(st, a) + (1− λ)w(st+1)] ,

for all t ∈ N. The claim follows from Lemma 1.28.

We in fact proved the following characterization of the set of optimal strate-
gies in Markov decision problems, whose proof is left for the reader (Exer-
cise 1.16). In this characterization and later in the book we will use the following
notations:

r(s, x(s)) :=
∑

a∈A(s)

(∏
i∈I

xi(s, ai)

)
r(s, a), ∀s ∈ S, x(s) ∈

∏
i∈I

∆(Ai(s)),

q(s′ | s, x(s)) :=
∑

a∈A(s)

(∏
i∈I

xi(s, ai)

)
q(s′ | s, a), ∀s, s′ ∈ S, x(s) ∈

∏
i∈I

∆(Ai(s)).

The quantity
∏
i∈I x

i(s, ai) is the probability that under the mixed action profile
x(s) the action profile a is chosen. Therefore, r(s, x(s)) is the expected stage
payoff at stage s when the players play the stationary strategy profile x, and
q(s′ | s, x(s)) is the probability that the play moves from s to s′ when the players
play the stationary strategy profile x.

Theorem 1.30 Let Γ = 〈S, (A(s))s∈S , q, r〉 be a Markov decision problem, and
let λ ∈ (0, 1] be a discount factor. A stationary strategy x is λ-discounted optimal
at all initial states if and only if for every state s ∈ S the mixed action x(s)
satisfies

vλ(s) = λr(s, x(s)) + (1− λ)
∑
s′∈S

q(s′ | s, x(s))vλ(s′).

1.7 Uniform Optimality

For each s ∈ S consider the function λ 7→ vλ(s), which assigns to each discount
factor its discounted value. How does this function depend on λ? Can it be
equal to sin(λ) or eλ? In this section we will answer this question, among others.

Recall that a function f : R→ R is rational if it is the ratio of two polyno-
mials.

Theorem 1.31 Two rational functions f, g : R → R either coincide, or they
(i.e., their graphs) have finitely many intersection points: the set {x ∈ R : f(x) =
g(x)} is either R or finite.

Proof. Let f = P1

Q1
and g = P2

Q2
, where P1, Q1, P2, and Q2 are polynomials.

Then{
x ∈ R : f(x) = g(x)

}
=

{
x ∈ R :

P1(x)

Q1(x)
=
P2(x)

Q2(x)

}
=

{
x ∈ R : P1(x)Q2(x)− P2(x)Q1(x) = 0

}
.
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That is, {x ∈ R : f(x) = g(x)} is the set of all zeroes of a polynomial. Since a
nonzero polynomial has finitely many zeros, the result follows.

An n × n matrix Q = (Qij)i,j∈{1,...,n} is stochastic if the sum of entries in
every row is 1, that is,

∑n
j=1Qij = 1 for all i ∈ {1, 2, . . . , n}. Let Id denote the

identity matrix.

Theorem 1.32 For every stochastic matrix Q and every λ ∈ (0, 1], the matrix
Id− (1− λ)Q is invertible, i.e., the inverse matrix (Id− (1− λ)Q)−1 exists.

Proof. Setting P := Id− (1−λ)Q and R :=
∑∞
k=0(1−λ)kQk, we note that

P ·R = Id, and therefore P is invertible.
Alternatively, Pii > 0 for every i ∈ {1, 2, . . . , n} and Pij ≤ 0 for every

i, j ∈ {1, 2, . . . , n} such that i 6= j, which implies that P is invertible.

Theorem 1.33 For any fixed pure stationary strategy x and any fixed initial
state s ∈ S, the function λ 7→ γλ(s;x) is rational.

Our proof below is valid for any stationary (and not necessarily pure) strategy
(see Exercise 1.12).

Proof. Recall that a pure stationary strategy is a vector of actions, one
for each state. Fix a pure stationary strategy x = (as)s∈S . Denote by Q the
transition matrix induced by x. This is a matrix with |S| rows and |S| columns,
with entries (s, s′) given by

Qs,s′ = q(s′ | s, as).

Using the matrix Q we can easily calculate the distribution of the state st
at stage t. Suppose that one chooses an initial state according to a probability
distribution p ∈ ∆(S) (which is expressed as a row vector), and then one plays
the action as. What is the probability that the next state will be s′? This
probability is

∑
s∈S psq(s

′ | s, as), which is the s′ coordinate of the vector pQ.
Similarly, since (pQ)s is the probability that the state at stage 2 is s, the prob-
ability that the state at stage 3 is s′ is given by

∑
s∈S(pQ)sq(s

′ | s, as), which is
the s′ coordinate of the vector pQ2. By induction, it follows that the probability
that the state at stage t is s′ is the s′ coordinate of the vector pQt−1.

For a state s ∈ S denote by 1(s) = (0, . . . , 0, 1, 0, . . . , 0) the row vector with
the s coordinate equal to 1 and all the other coordinates equal to 0. Then
1(s)Qt−1 represents the probability distribution of the state st at stage t, given
that the initial state is s. Therefore, the λ-discounted payoff can be expressed
as

γλ(s;x) =

∞∑
t=1

λ(1− λ)t−11(s)Qt−1R,

where R is the row vector (r(s, as))s∈S . Therefore,

γλ(s;x) = λ1(s)

( ∞∑
t=1

(1− λ)t−1Qt−1

)
R

= λ1(s)(I − (1− λ)Q)−1R.
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By Theorem 1.32 the matrix I − (1−λ)Q is invertible, and by Cramer’s rule,13

the inverse matrix (I − (1 − λ)Q)−1 can be represented as the ratio of two
polynomials in the entries of the matrix I − (1 − λ)Q. We conclude that for
every fixed pure stationary strategy x, the function λ 7→ γλ(s;x) is rational.

We can now prove a general structure theorem regarding the value function.

Corollary 1.34 For any fixed state s ∈ S the function λ 7→ vλ(s) is continuous.
Moreover, there exist K ∈ N and 0 = λ0 < λ1 < · · · < λ

K
= 1 such that for

every k = 0, 1, . . . ,K − 1 the following holds.

� The restriction of the function λ 7→ vλ(s) to the interval (λk, λk+1) is
rational.

� There is a pure stationary strategy xk ∈
∏
s∈S A(s) that is λ-discounted

optimal for all λ ∈ (λk, λk+1).

Proof. Let ΣSP denote the finite set of all pure stationary strategies. For
any fixed pure stationary strategy x ∈ ΣSP and any fixed state s ∈ S consider
the function λ 7→ γλ(s;x), which we denote by γ•(s;x). By Theorem 1.33,
γ•(s;x) is a rational function; in particular, γ•(s;x) is continuous. Since there
exists a pure stationary optimal strategy, the λ-discounted value at the initial
state s is given by

vλ(s) = max
x∈ΣSP

γλ(s;x).

Since the function λ 7→ vλ(s) is the maximum of a finite family of rational
functions, it is continuous.

By Theorem 1.31, two distinct rational functions intersect in finitely many
points. Let Λs be the set of all intersection points of the rational functions
(γ•(s;x))x∈ΣSP , and set Λ :=

⋃
s∈S Λs. Since the set ΣSP is finite, the set Λs is

finite for every state s ∈ S, and so the set Λ is finite as well. Add the points 0
and 1 to the set Λ, and denote Λ = {λ0, λ1, . . . , λK} where 0 = λ0 < λ1 < . . . <
λK = 1.

Fix k ∈ {0, 1, . . . ,K − 1}. By the choice of λk and λk+1, for every state
s ∈ S the functions (γ•(s;x))x∈ΣSP have no common intersection point in the
interval (λk, λk+1). Let xk ∈ ΣSP be a pure stationary strategy that is λ-
discounted optimal for some λ ∈ (λk, λk+1). We claim that xk is λ′-discounted
optimal at all initial states, for every λ′ ∈ (λk, λk+1), as needed. Indeed, since
xk is λ-discounted optimal at all initial states, for every fixed pure stationary
strategy x ∈ ΣSP and every fixed state s ∈ S, either γγ(s;xk) > γλ(s;x), or
γλ(s;xk) = γλ(s;x). In the former case, since the set of intersection points of
the functions γ•(s;xk) and γ•(s;x) is disjoint from (λk, λk+1), it follows that
γλ′(s;xk) > γλ′(s;x) for every λ′ ∈ (λk, λk+1). In the latter case, for the same
reason γλ′(s;xk) = γλ′(s;x) for every λ′ ∈ (λk, λk+1). Hence, xk is indeed
λ′-discounted optimal for all λ′ ∈ (λk, λk+1).

13Gabriel Cramer (Geneva, Italy, July 31, 1704 – Bagolns-sur-Cèze, France, January 4,
1752) was a mathematician from the Republic of Geneva. In addition to presenting Cramer’s
rule for the calculation of the inverse of a matrix, Cramer worked on algebraic curves.
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The significance of Corollary 1.34 is that the decision maker does not need
to know precisely the discount factor for her to play optimally. If all the decision
maker knows is that the discount factor is within an interval in which a specific
pure stationary strategy x is optimal, by following x she ensures that she plays
optimally, regardless of the exact value of the discount factor.

In particular, we get the following.

Corollary 1.35 There is a pure stationary strategy that is optimal for every
discount factor sufficiently close to 0.

In many situations the decision maker is patient, that is, her discount factor
is close to 0. For example, countries negotiating a peace treaty are often patient.
Another example concerns an investor who may execute many transactions along
the day, sometimes even selling a stock that she bought earlier in the day. For
such an investor, one period of the game may last one hour or one minute, and
subsequently her discount factor is quite close to 0. When the discount factor
is close to 0, by Corollary 1.35, to play optimally the decision maker does not
need to know the exact value of the discount factor.

Definition 1.36 A strategy σ is uniformly optimal at the initial state s if there
is a λ0 > 0 such that σ is λ-discounted optimal at the initial state s for every
λ ∈ (0, λ0).

In the literature, uniformly optimal strategies are also called Blackwell optimal.
By Corollary 1.35 we deduce the following result.

Theorem 1.37 In every Markov decision problem there is a pure stationary
strategy that is uniformly optimal at all initial states.

If f : (0, 1] → R is a bounded rational function, then the limit limλ→0 f(λ)
exists. We therefore deduce that the discounted value is continuous at 0.

Corollary 1.38 limλ→0 vλ(s) exists for every initial state s ∈ S.

1.8 Comments and Extensions

Markov decision problems were first studied by Blackwell (1962). The model, as
introduced by Definition 1.1, include finitely many states, and the set of actions
available at each state is finite. Markov decision problems with general state
and action sets were considered in the literature, and the existence of T -stage
optimal strategies as well as of stationary λ-discounted optimal strategies was
established under various topological conditions on the set SA of pairs (state,
action) and continuity conditions on the payoff function and on the transition
rule. For more details, the reader is referred to Puterman (1994).

By Theorem 1.34, for every state s ∈ S the function λ 7→ vλ(s) is piecewise
rational. A natural goal is to characterize the set of all functions that can arise
as the value function of some Markov decision problem. Such a characterization
was provided by Lehrer, Solan, and Solan (2016).
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Here we considered two types of evaluations for the decision maker: the T -
stage evaluation and the discounted evaluations. Other evaluations have also
been considered, see Puterman (1994, Section 5.4), where algorithms for ap-
proximating optimal strategies for various evaluations are described.

We proved that the limit limλ→0 vλ(s) of the discounted value exists for every
initial state s. We did not touch upon the convergence of the T -stage value as
T goes to infinity, namely, limT→∞ vT (s). For Markov decision problems with
finitely many states and actions, the fact that limT→∞ vT (s) exists and is equal
to limλ→0 vλ(s) follows from a result of Hardy and Littlewood, see Korevaar
(2004, Chapter I.7). We will not prove this result directly, as it will follow
from a much more general result that we will obtain later in this book (see
Theorem 9.13 on Page 128). A rich literature extends this result to Markov
decision problems with general state and action sets, see, e.g., Lehrer and Sorin
(1992), Monderer and Sorin (1993), and Lehrer and Monderer (1994).

When the decision maker follows a uniformly optimal strategy, she guaran-
tees that the discounted payoff is close to the value. This does not rule out the
possibility that the payoff fluctuates along the play: during some long blocks of
stages the payoff is high, in other long blocks of stages the payoff is low, and
the blocks are arranged in such a way that the average payoff is close to the
value. Sorin, Venel, and Vigeral (2010) proved that this is not the case: if the
decision maker follows a uniformly optimal strategy, then for every sufficiently
large positive integer m there is a T ∈ N such that for every t ≥ T , the expected
average payoff in stages t, t+ 1, . . . , t+ T − 1 is close to limλ→0 vλ(s1).

1.9 Exercises

Exercise 1.3 is used in the solution Exercise 5.1.

1. Prove that the strategy σ∗ that is described on Page 19 is T -stage optimal.

2. In this exercise we bound the variation of the sequence of the T -stage
values (vT (s))T∈N. Prove that for every T, k ∈ N and every state s ∈ S,

|(T + k)vT+k(s)− TvT (s)| ≤ k‖r‖∞.

3. Let Γ be a Markov decision problem. Prove that there is a pure T -stage
optimal strategy with the following property: the action played in each
stage depends only on the current stage and on the number of stages
left. That is, for every t ∈ {1, 2, . . . , T} and every two histories ht =
(s1, a1, . . . , st−1, at−1, st) and h′t = (s′1, a

′
1, . . . , s

′
t−1, a

′
t−1, s

′
t), if st = s′t,

then σ(ht) = σ(h′t).

4. For λ ∈ (0, 1], calculate the λ-discounted value and the λ-discounted op-
timal strategy at the initial state s(1) in Example 1.3.

5. Prove Theorem 1.22 about the dynamic programming principle for dis-
counted decision problems: For every initial state s ∈ S and every discount
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factor λ ∈ (0, 1],

vλ(s) = max
a∈A(s)

{
λr(s, a) + (1− λ)

∑
s′∈S

q(s′ | s, a)vλ(s′)

}
.

6. Find the discounted payoff of each pure stationary strategy in the following
Markov decision problem and determine the discounted value for every
discount factor.

0(0,1)

1( 2
3 ,

1
3 )

D

U

s(1)

3(1,0)

2( 1
2 ,

1
2 )

D

U

s(2)

7. Let σ1 and σ2 be two pure stationary strategies. Let σ3 be a stationary
strategy that at every state s chooses an action a that maximizes

λr(s, a) + (1− λ)
∑
s′∈S

q(s′ | s, a) max{γλ(s′;σ1), γλ(s′;σ2)}.

Prove that

γλ(s;σ3) ≥ max{γλ(s;σ1), γλ(s;σ2)}, ∀s ∈ S.

8. Let Γ be a Markov decision problem and let s be a state. In view of
Comment 1.20, is it true that for λ = 1

T we have vλ(s) = vT (s)? If so,
prove it. If not, explain why an inequality does not necessarily hold.

9. Show that every contracting mapping is continuous.

10. Show that for every polynomial P there exist a Markov decision problem
and an initial state s such that vλ(s) = P (λ) for all λ ∈ (0, 1].

11. Let σ be a strategy in a Markov decision problem Γ, and let λ ∈ (0, 1).
Prove that σ is λ-discounted optimal at the initial state s if and only
if the following condition holds: For every history ht ∈ H that satisfies
Ps,σ(ht) > 0 and every action a′ ∈ A(st) that satisfies σ(a′ | ht) > 0,

a′ ∈ argmaxa∈A(st)

{
λr(st, a) + (1− λ)

∑
s′∈S

q(s′ | st, a)vλ(s′)

}
.

12. Prove that for each fixed stationary (not necessarily pure) strategy x, the
function λ 7→ γλ(s;x) is rational.

13. Find a Markov decision problem that satisfies the following two properties:

� There is a strategy σ that is λ-discounted optimal for λ = 1 and for
every λ sufficiently close to 0, but is not optimal for λ = 1

2 .
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� There is a strategy σ′ that is not λ-discounted optimal for λ = 1 and
for every λ sufficiently close to 0, but is optimal for λ = 1

2 .

14. Let X ⊆ Rn and Y ⊆ Rm be two closed sets. A correspondence F : X ⇒
Y is a mapping that assigns to each point x ∈ X a subset F (x) ⊆ Y .
We say that the correspondence F has nonempty values if F (x) 6= ∅ for
every x ∈ X. The graph of a correspondence F is Graph(F ) = {(x, y) ∈
Rn+m : y ∈ F (x)}.
Let X ⊆ Rn be a compact set. Let F : X ×X ⇒ R and G : X ⇒ X be
two correspondences with nonempty values and compact graphs and let
λ ∈ (0, 1). Prove that there exists a unique function f : X ⇒ R such that

f(x) = max
y∈G(x)

(F (x, y) + λf(y)).

15. Let Γ = 〈S, (A(s))s∈S , q, r〉 be a Markov decision problem, and consider
the following linear program in the variables (v(s))s∈S :

Minimize
∑
s∈S

v(s)

Subject to v(s) ≥ λr(s, a) + (1− λ)
∑
s′∈S

q(s′ | s, a)v(s′), ∀s ∈ S, a ∈ A.

Show that the solution (v(s))s∈S of this linear program has the property
that v(s) is the λ-discounted value at the initial state s.

16. Prove Theorem 1.30: Let Γ = 〈S, (A(s))s∈S , q, r〉 be a Markov decision
problem, let λ ∈ (0, 1] be a discount factor, and let vλ(s) be the λ-
discounted value at the initial state s, for every s ∈ S. A stationary
strategy x is λ-discounted optimal at all initial states if and only if, for
every state s ∈ S, the mixed action x(s) satisfies

vλ(s) = λr(s, x(s)) + (1− λ)
∑
s′∈S

q(s′ | s, x(s))vλ(s′).

17. Let Γ = 〈S, (A(s))s∈S , q, r〉 be a Markov decision problem where S is
countable, A(s) is finite for every s ∈ S, and r is bounded. Prove that
for every λ ∈ (0, 1] the λ-discounted value exist at all initial states, and
moreover the decision maker has a pure stationary λ-discounted optimal
strategy.

18. Does limλ→0 vλ(s) exist in every Markov decision problem Γ = 〈S, (A(s))s∈S , q, r〉
for every s ∈ S, where S is countable, A(s) is finite for every s ∈ S, and
r is bounded? Prove or provide a counterexample.
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2 A Tauberian Theorem and Uniform ε-Optimality
in Hidden Markov Decision Problems

Abstract

In this chapter we prove a Tauberian Theorem regarding the relation
between the Abel limit and the Cesàro limit of a sequence of real numbers,
and apply it to prove that a uniformly ε-optimal strategy exists in hidden
Markov decision problems.

In Chapter 1 we assumed that at every stage t the decision maker observes
the state st before choosing an action. In practice, this is not necessarily the
case. For example, suppose that a fishing company operates all fishing boats
on certain lake. The state variable is the number of fish in the lake, which is
affected by the fishing intensity as well as by random factors. In each period
(day, week, or month) the company has to decide what is the target quantity of
fish. In this example, the state variable is not known to the company, and can
only be estimated.

In this chapter we will address the case where the decision maker does not
observe the current state. All that the decision maker knows, besides the data of
the problem (which includes the set of states, her sets of actions, the transition
rule, and the payoff function) is the initial state (or the probability distribution
according to which the initial state is chosen) and the actions she chose in the
past. In particular, for every stage t ∈ N the decision maker can calculate for
each state s the probability that st = s. This model is called a hidden Markov
decision problem.

2.1 A Tauberian Theorem

Tauberian theorems14 provide conditions that ensure that two ways of calculat-
ing limits give the same result. The following result relates the Abel limit15 to
the Cesàro limit.16

14Alfred Tauber (Pressburg, Austrian Empire, November 5, 1866 – Theresienstadt Concen-
tration Camp, Czechoslovakia, July 26, 1942), was a Jewish mathematician known for his
contributions to mathematical analysis and to the theory of functions of a complex variable.

15Niels Henrik Abel (Nedstrand, Denmark-Norway, August 5, 1802 – Froland, Norway, April
6, 1829) was a Norwegian mathematical who demonstrated the impossibility of solving the
general quintic equation in radicals. He was also an innovator in the field of elliptic functions
and the discoverer of Abelian functions. The Abel Prize in mathematics, originally proposed
in 1899 to complement the Nobel Prizes, is named in his honor.

16Ernesto Cesàro (Naples, Italy, March 12, 1859 – Torre Annunziata, Italy, September 12,
1906) was an Italian mathematician who worked in the field of differential geometry. Among
his other contributions, he described fractals, space filling curves, and the averaging method
called after him – Cesàro summation of divergent series.
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Theorem 2.1 Let (zn)∞n=1 be a sequence of real numbers in the interval [0, 1].

For each k ∈ N, set zk := 1
k

∑k
n=1 zn, and for each λ ∈ (0, 1] set zλ :=∑∞

n=1 λ(1− λ)n−1zn. Then

lim inf
n→∞

zn ≤ lim inf
λ→0

zλ ≤ lim sup
λ→0

zλ ≤ lim sup
n→∞

zn.

Proof. Since lim supλ→0 zλ = − lim infλ→0(−zλ) and lim supn→∞ zn =
− lim infn→∞(−zn), it is sufficient to prove the leftmost inequality, namely
lim infn→∞ zn ≤ lim infλ→0 zλ.

Note that, for every n ≥ 0,

∞∑
k=n

λ2(1− λ)k = λ2(1− λ)n
(
1 + (1− λ) + (1− λ)2 + . . .

)
= λ(1− λ)n. (23)

Using Eq. (23) we now present the discounted sum zλ as a weighted average of
the arithmetic means (zn)n∈N:

zλ =

∞∑
n=1

λ(1− λ)n−1zn (24)

=

∞∑
n=1

∞∑
k=n−1

λ2(1− λ)kzn (25)

=

∞∑
n=1

∞∑
k=n

λ2(1− λ)k−1zn (26)

=

∞∑
k=1

k∑
n=1

λ2(1− λ)k−1zn (27)

=

∞∑
k=1

(
λ2(1− λ)k−1

k∑
n=1

zn

)
(28)

=

∞∑
k=1

(
kλ2(1− λ)k−1 · 1

k

k∑
n=1

zn

)
(29)

=

∞∑
k=1

kλ2(1− λ)k−1zk. (30)

Eq. (24) is the definition of zλ, Eq. (25) holds by Eq. (23), Eq. (27) is a change
of the order of summation, to obtain Eq. (29) we multiplied and divided by k,
and Eq. (30) follows by the definition of zk.

Denote a := lim infn→∞ zn, fix ε > 0, and choose N0 ∈ N sufficiently large
such that zk ≥ a− ε for all k ≥ N0. Let λ0 be sufficiently small such that

N0∑
k=1

k · (λ0)2 · (1− λ0)k−1 < ε, ∀λ ∈ (0, λ0]; (31)
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for example, take λ0 ≤
√
ε/N0. Since the payoffs are between 0 and 1, and since

zk ≥ a− ε for every k ≥ N0, we obtain that for every λ ∈ (0, λ0),

zλ =

∞∑
k=1

kλ2(1− λ)k−1zk (32)

=

N0−1∑
k=1

kλ2(1− λ)k−1zk +

∞∑
k=N0

kλ2(1− λ)k−1zk (33)

≥
∞∑

k=N0

kλ2(1− λ)k−1zk (34)

≥ (a− ε)
∞∑

k=N0

kλ2(1− λ)k−1 (35)

= (a− ε)

( ∞∑
k=1

kλ2(1− λ)k−1 −
N0−1∑
k=1

kλ2(1− λ)k−1

)
(36)

= (a− ε)

(
1−

N0−1∑
k=1

kλ2(1− λ)k−1

)
(37)

≥ (a− ε)(1− ε) > a− 2ε, (38)

where Eq. (32) follows from Eqs. (24)–(30), Eq. (34) holds since payoffs are
non-negative, Eq. (35) holds by the choice of N0, and Eq. (38) follows from
Eq. (31). To see that Eq. (37) holds as well, substitute zn = 1 for all n ∈ N in
Eqs. (24)–(30), to obtain that the left-hand side is 1 and the right-hand side is∑∞
k=1 kλ

2(1 − λ)k−1. Thus, zλ ≥ a − 2ε for every λ ∈ (0, λ0). Consequently,
lim infλ→0 zλ ≥ a−2ε. Since ε > 0 is arbitrary, we conclude that lim infλ→0 zλ ≥
a.

2.2 Hidden Markov Decision Problems

Similar to a Markov decision problem, a hidden Markov decision problem is
given by a vector Γ = 〈S, (A(s))s∈S , q, r〉, where S is a finite set of states, A(s)
is a finite set of actions available to the decision maker at state s for each s ∈ S,
q is the transition rule, and r is the payoff function.

The decision maker does not observe the state, yet has to choose an action
at each stage. To ensure that the chosen action is possible at the current unob-
served state, we will assume in this chapter that the same actions are available
in all states.

Assumption 2.1 A(s) = A(s′) for any two states s, s′ ∈ S.

Let A denote the common set of actions. To simplify the calculations we
will also assume without loss of generality that payoffs are non-negative and
bounded by 1.
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Assumption 2.2 For every state s ∈ S and every action a ∈ A we have
r(s, a) ∈ [0, 1].

Since along the process the decision maker does not know the state, it is more
convenient to assume that the initial state s is not necessarily chosen determin-
istically. Rather, the choice is made according to a probability distribution
p1 ∈ ∆(S), which is known to the decision maker.

The probability that the state at stage t is equal to s depends on the actions
that the decision maker played up to stage t− 1, and can be calculated by the
law of total probability. This probability, which is denoted by yt(s), is given by

y1(s) = p1(s),

yt(s) =
∑
s′∈S

yt−1(s′)q(s | s′, at−1), ∀t ≥ 2.

Note that yt is a random variable that depends on the actions played by the
decision maker up to stage t − 1. Because the number of actions is finite, the
set of all possible conditional probabilities that can arise at stage t is finite.

Example 2.2 Consider the Markov decision problem with two states and two
actions in each state that is depicted in Figure 4.

0( 1
2 ,

1
2 )

0(1,0)

D

U

s(1)

0(0,1)

1(0,1)

D

U

s(2)

Figure 4: The Markov decision problem in Example 2.2.

The quantity yt(s(2)) is the probability that the state in stage t is s(2). Since
once the play visits state s(2) it remains there forever, the sequence (yt(s(2)))t∈N
is nondecreasing.

Suppose that the initial state is s(1), that is, p1 is the Dirac measure con-
centrated at s(1). When the decision maker plays U , the state does not change,
and therefore yt = yt−1. When the decision maker plays D, the probability that
the new state is s(1) is divided by 2 and we have

yt(s(1)) =
yt−1(s(1))

2
, yt(s(2)) = yt−1(s(2)) +

1

2
yt−1(s(1)).

In particular, if the number of times that the decision maker played the action
D in the past is k, then the probability that the current state is s(1) is equal to

1
2k+1 , and the probability that the current state is s(2) is equal to 1− 1

2k+1 . �

The information available to the decision maker at stage t consists of her own
past actions. Consequently, a history of length t in a hidden Markov decision
problem includes the actions that were chosen by the decision maker in the first
t− 1 stages, and therefore the set of histories is H :=

⋃
t∈NA

t. The set of plays
is A∞.
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Definition 2.3 A strategy in a hidden Markov decision problem Γ = 〈S, (A(s))s∈S , q, r〉
is a mapinng σ : H → ∆(A).

Denote by Σ := (∆(A))H = {σ : H → ∆(A)} the set of all strategies. The T -
stage value and the λ-discounted value in a hidden Markov decision problem at
the initial distribution p1 are defined analogously to Definitions 1.14 (Page 15)
and 1.21 (Page 22), and denoted vT (p1) and vλ(p1), respectively.

Definition 2.4 Let p1 ∈ ∆(S). The real number v(p1) is the value of the
problem with initial distribution p1 if v(p1) = limT→∞ vT (p1) = limλ→0 vλ(p1).
Let ε ≥ 0. A strategy σ is uniformly ε-optimal at the initial distribution p1 if
there are T0 ∈ N and λ0 ∈ (0, 1] such that

γT (p1;σ) ≥ vT (p1)− ε, ∀T ≥ T0, (39)

γλ(p1;σ) ≥ vλ(p1)− ε, ∀λ ∈ (0, λ0). (40)

This definition differs from Definition 1.36 of a uniformly optimal strategy
in two aspects.

� Whereas a uniformly optimal strategy is optimal for every discount factor
sufficiently close to 0, a strategy is uniformly ε-optimal if the decision
maker may gain by switching to another strategy, but by doing so she can
gain at most ε.

� Whereas a uniformly optimal strategy is required to be optimal only in
the discounted evaluation, a uniformly ε-optimal strategy is required to be
ε-optimal both in the discounted evaluation and in the T -stage evaluation.

In Example 1.13, the strategy σD that always plays the action D is uniformly
ε-optimal for every ε > 0, but not for ε = 0. In Example 2.2, the strategy that
plays T times the action D and thereafter plays the action U is uniformly ε-
optimal, provided 2T < ε (Exercise 2.2).

Theorem 2.5 The value exists for every initial distribution p1 ∈ ∆(S). More-
over, there exists a pure uniformly ε-optimal strategy for every ε > 0.

The rest of this section is devoted to the proof of Theorem 2.5. We first
define the expected average payoff between two stages. For two positive integers
t1, t2 ∈ N such that t1 < t2, let

γt1,t2(p1;σ) := Ep1,σ

[
1

t2 − t1 + 1

t2∑
t=t1

r(st, at)

]
.

Note that γT (p1;σ) = γ1,T (p1;σ).
As the following lemma states, the function p1 7→ γt1,t2(p1;σ) is 1-Lipshitz.

Lemma 2.6 For any strategy σ, any two initial distributions p1, p
′
1 ∈ ∆(S),

and any two integers t1 < t2,

|γt1,t2(p1;σ)− γt1,t2(p′1;σ)| ≤ ‖p1 − p′1‖1.
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Proof. By the law of total expectation,

Ep1,σ[r(st, at)] =
∑
s∈S

p1(s) ·Es,σ[r(st, at)].

This implies that

γt1,t2(p1;σ) =
∑
s∈S

p1(s) · γt1,t2(s;σ).

Similarly,

γt1,t2(p′1;σ) =
∑
s∈S

p′1(s) · γt1,t2(s;σ).

Subtracting the second equality from the first and using the fact that payoffs
are non-negative and bounded by 1, we obtain

|γt1,t2(p1;σ)− γt1,t2(p′1;σ)| ≤
∑
s∈S
|p1(s)− p′1(s)| · γt1,t2(s;σ)

≤
∑
s∈S
|p1(s)− p′1(s)| = ‖p1 − p′1‖1.

Since the decision maker does not observe the state, a pure strategy defines
uniquely the sequence of actions that the decision maker plays. Because a pure
strategy is defined for every history, it also indicates how to play after histories
that were not played, but this part of the pure strategy does not affect the
decision maker’s payoff.

In what follows, each infinite sequence of actions (at)t∈N represents a pure
strategy, namely, a pure strategy σ that satisfies

σ(at | a1, a2, . . . , at−1) = 1, ∀t ∈ N.

To show that there is a pure uniformly ε-optimal strategy, it suffices to define
the sequence of actions that the decision maker plays and yields high payoff in
all discounted games (for discount factors close to 0) and in all T -stage games
(for all T sufficiently large).

For a strategy σ, an ε ∈ (0, 1), and a T ∈ N, define

T0 = T0(σ, ε, T ) := 1 + max{t ≤ T : γt(p1;σ) < γT (p1;σ)− ε}, (41)

where the maximum of an empty set is 0. The maximum in Eq. (41) is strictly
smaller than T , hence T0(σ, ε, T ) ≤ T . Note that if T0 > 1, then, in particular,

γT0−1(p1;σ) < γT (p1;σ)− ε, (42)

and for every t = {T0, T0 + 1, . . . , T} we have

γT (p1;σ)− ε ≤ γt(p1;σ). (43)

The next result asserts that T0 cannot be too close to T , and that for every
t ∈ {T0, T0 + 1, . . . , T}, the average payoff between stage T0 and t is high.
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Lemma 2.7 We have T0 ≤ 1 + (1 − ε)T . Moreover, for every t such that
T0 ≤ t ≤ T ,

γT0,t(p1;σ) ≥ γT (p1;σ)− ε.

Proof. If T0 = 1, then clearly T0 ≤ 1 + (1 − ε)T , and the definition of T0

implies that γk(p1;σ) ≥ γT (p1;σ)− ε for every k such that 1 ≤ k ≤ T , which is
the desired result.

Suppose then that T0 > 1, and assume to the contrary that T0 > 1+(1−ε)T ,
i.e.,

T − T0 + 1

T
< ε. (44)

Since T0 > 1, it follows that γT (p1;σ) > ε. Indeed, if γT (p1;σ) ≤ ε then, since
payoffs are non-negative, we would have T0 = 1. Since the payoffs are bounded
by 1, Eqs. (42) and (44) imply that

γT (p1;σ) ≤ T0 − 1

T
· γT0−1(p1;σ) +

T − T0 + 1

T

<
T0 − 1

T
· (γT (p1;σ)− ε) + ε

< 1 · (γT (p1;σ)− ε) + ε = γT (p1;σ),

a contradiction; the last inequality above holds because γT (p1;σ) > ε. The first
claim of the lemma is established. Let us prove the second claim. Take t such
that T0 ≤ t ≤ T . By the definition of T0,

γT (p1;σ)− ε ≤ γt(p1;σ) =
T0 − 1

T
· γT0−1(p1;σ) +

T − T0 + 1

T
· γT0,t(p1;σ).

Thus, γT (p1;σ) − ε is smaller than the weighted average of two terms. By
Eq. (42), the first term is smaller than γT (p1;σ)− ε. It follows that the second
term is larger than γT (p1;σ)− ε, which is what we wanted to prove.

The first conclusion of Lemma 2.7 can be recast as follows.

Corollary 2.8 For every strategy σ, every T ∈ N, and every ε > 0,

T − T0(σ, ε, T ) ≥ εT − 1.

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. Denote v∗(p1) := lim supT→∞ vT (p1). We will
prove that for every ε > 0 there is a strategy σ∗ such that γT (p1;σ∗) ≥ v∗(p1)−ε,
for all sufficiently large T ∈ N.

For T ∈ N, let σT be a pure optimal strategy in the T -stage problem. Such
a strategy exists by Theorem 1.17. Can this theorem be applied in our setup?
Theorem 1.17 holds for T -stage problems with finite state space. In our setup,
the state at stage t is the conditional distribution yt. As we mentioned above,
the number of possible conditional distributions yt in each stage is finite, and
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since the number of stages in the T -stage problem is finite (it is precisely T ), it
follows that the total number of conditional probabilities up to stage T is finite.

Fix ε > 0 and set zT := yT0(σT ,ε,T ). This is the conditional distribution over
S under the strategy σT at stage T0(σT , ε, T ). Since the strategy σT is pure, it
plays a deterministic sequence of actions up to stage T . Denote the part of the
sequence of actions between stages T0(σT , ε, T ) and T by

~aT = (aT1 , a
T
2 , . . . , a

T
T−T0(σT ,ε,T )+1). (45)

By Lemma 2.7, for every T ∈ N and every t such that T0(σT , ε, T ) ≤ t ≤ T we
have

vT (p1)− ε ≤ γT0(σT ,ε,T ),t(p1;σT ) = γt−T0(σT ,ε,T )+1(zT ,~a
T ). (46)

Since payoffs are bounded, there is an increasing sequence of positive integers
(Tk)k∈N such that

lim
k→∞

vTk(p1) = v∗(p1).

For each T ∈ N we have zT ∈ ∆(S). Since the set of states is finite, the set
∆(S) is compact, and therefore by taking a subsequence we can assume without
loss of generality that the limit

z∗ := lim
k→∞

zTk

exists.
The set of actions A is finite, and therefore the set AN is compact in the

product topology. An element in AN is denoted ~a = (~at)t∈N, and a sequence

of elements (~a(k))k∈N in AN converges to a limit ~a if limk→∞ ~a
(k)
t = ~at for all

t ∈ N. Again thanks to the finiteness of the set of actions A, this condition

means that for every t there is a Kt ∈ N such that ~a
(k)
t = ~at for all k ≥ Kt; or,

equivalently, for every t ∈ N there is a Kt ∈ N such that the prefix of length t
of ~a(k) coincides with the prefix of length t of ~a, for every k ≥ Kt.

We return to the sequence (~aT )T∈N, see Eq. (45). Since the set AN is com-
pact, (~aT )T∈N has a convergent subsequence in the product topology. That is,
without loss of generality we can assume that there is a vector ~a∗ = (~a∗t )t∈N
such that for every t ∈ N there is a K0 ∈ N such that the prefix of length t of
~aTk coincides with the prefix of length t of ~a∗, for every k ≥ K0.

Letting k →∞ in Eq. (46) and using Lemma 2.6 we obtain that

γt(z∗;~a
∗) ≥ v∗(p1)− 2ε, ∀t ∈ N. (47)

Thus, we found a pure strategy whose t-stage payoff is at least v∗(p1) − 2ε
for every t ∈ N, when the initial distribution is z∗. Unfortunately, the initial
distribution is p1 and not z∗. All that is left to do is to add to the pure strategy
~a∗ a prefix, which ensures that the distribution becomes close to z∗ when the
initial distribution is p1.

Let then k ∈ N be sufficiently large such that ‖zTk − z∗‖1 ≤ ε. Consider the
pure strategy σ∗, which follows σTk in the first T0(σTk , ε, Tk) stages and after
that follows ~a∗:

(aTk1 , aTk2 , . . . , aT
k

T0(σTk ,ε,Tk), a
∗
1, a
∗
2, . . .).
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Under σ∗, the distribution over states at stage T0(σTk , ε, Tk) is zTk . Therefore,

γT0(σTk ,ε,Tk),t(p1;σ∗) = γt−T0(σTk ,ε,Tk)(zTk ;~a∗), (48)

for all t ≥ T0(σTk , ε, Tk). By Lemma 2.6,

|γt−T0(σTk ,ε,Tk)(zTk ;~a∗)− γt−T0(σTk ,ε,Tk)(z∗;~a
∗)| ≤ ‖zTk − z∗‖1 ≤ ε. (49)

By Eq. (47),
lim
t→∞

γt−T0(σTk ,ε,Tk)(z∗;~a
∗) ≥ v∗(p1)− 2ε. (50)

Combining Eqs. (48)–(50) we obtain

γT0(σTk ,ε,Tk),t(p1;σ∗) ≥ v∗(p1)− 3ε,

provided t is large enough. For every t > T0(σTk , ε, Tk),

γt(p1;σTk) =
T0 − 1

t
· γT0−1(p1;σTk) +

t− T0 + 1

t
· γT0,t(p1;σTk)

≥ t− T0 + 1

t
· γT0,t(p1;σTk).

Hence, for t sufficiently large,

γt(p1;σ∗) ≥ v∗(p1)− 4ε, (51)

as claimed. Eq. (51) implies that vt(p1) ≥ v∗(p1) − 4ε for t sufficiently large.
Since ε > 0 is arbitrary, and since v∗(p1) = lim supt→∞ vt(p1), we conclude
that the limit limt→∞ vt(p1) exists and is equal to v∗(p1). From this and from
Eq. (51) we deduce that Eq. (39) holds with 4ε for σ∗.

We will finally show that Eq. (40) holds with 6ε for σ∗. Applying Theorem 2.1
to the sequence (zn)n∈N defined by zn = Ep1,σ∗ [r(sn, an)], we obtain that

lim inf
λ→0

γλ(p1;σ∗) ≥ v∗(p1)− 4ε.

Since vt(p1) is the value of the T -stage problem at the initial distribution p1,

γt(p1;σ) ≤ v∗(p1) + ε, ∀t ≥ T, ∀σ ∈ Σ.

Since payoffs are bounded by 1, the proof of Theorem 2.1 implies that for every
λ ∈ (0,

√
ε/T ) we have

γλ(p1;σ) ≤ v∗(p1) + 2ε, ∀t ≥ T, ∀σ ∈ Σ.

We deduce that for every λ > 0 sufficiently small,

vλ(p1) ≤ v∗(p1) + 2ε ≤ γλ(p1;σ∗) + 6ε,

as desired.
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2.3 Comments and Extensions

In Chapter 1 we studied the case in which the decision maker observed the
current state st, and in this chapter we studied the case in which the only
information available to the decision maker is the initial distribution and her
own past actions. There are intermediate cases in which the decision maker
does not know the state for sure, yet at every stage she does receive some
information on the state. Theorem 2.5 can be generalized to this setup, see
Rosenberg, Solan, and Vieille (2002), from where the proof of Theorem 2.5 is
taken. Further extensions of Theorem 2.5 can be found in Renault (2011, 2014).

We studied the cases where the players are interested in the discounted sum
of their stage payoff or in the average payoff in the first T stages. These two
evaluations are special cases of a general family of evaluations. Let θ = (θt)

∞
t=1

be a sequence of non-negative reals that sum to 1. The θ-payoff of a strategy σ
at the initial state s is the quantity

γθ(s;σ) := Es,σ

[ ∞∑
t=1

θtr(st, at)

]
,

and the θ-value at the initial state s is the quantity

vθ(s) := sup
σ∈Σ

γθ(s;σ).

For every λ ∈ (0, 1], the λ-discounted evaluation is a θ-evaluation, where θt :=
λ(1 − λ)t−1 for every t ∈ N. For every T ∈ N, the T -stage evaluation is a
θ-evaluation, where θt = 1

T for t = {1, 2, . . . , T} and θt = 0 for t > T . One can
extend the definition of the value to include θ-evaluations: the quantity v(s) is
the value at the initial state s if for every ε > 0 there exists δ > 0 such that
|vθ(s)− v(s)| < ε for every sequence θ = (θt)

∞
t=1 of non-negative reals that sum

to 1 and is such that maxt∈N θt ≤ δ. θ-evaluations and the existence of the value
were studied, by, e.g., Renault (2011, 2014), Venel and Ziliotto (2016), Ziliotto
(2016a), and Renault and Venel (2017).

2.4 Exercises

Exercise 2.5 is used in the solution of Exercise 10.8.

1. Let Γ = 〈S, (A(s))s∈S , q, r〉 be a Markov decision problem, and let σ be a
strategy that is uniformly optimal at all initial states according to Defi-
nition 1.36. Prove that there is a λ0 > 0 such that γλ(p1;σ) ≥ vλ(p1) for
all λ ∈ (0, λ0) and all p1 ∈ ∆(S).

2. Show that in Example 2.2, the strategy that plays T times D and there-
after plays U is uniformly ε-optimal, provided that 2T < ε.

3. For the following hidden Markov decision problem with two states at all
initial distributions p1, find the value and a pure strategy that is uniformly
ε-optimal for every ε > 0.
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1(1,0)

0(0,1)

D

U

s(1)

0(0,1)

1(1,0)

D

U

s(2)

4. Find the value of the following hidden Markov decision problem with two
states at all initial distributions p1.

0(0,1)

0
(
1
2 ,

1
2 )

D

U

s(1)

0(0,1)

1(1,0)

D

U

s(2)

5. Alice has M unfair coins; for each i ∈ {1, 2, . . . ,M} the probability that
the outcome of coin i is Head is pi ∈ (0, 1]. Bob has one unfair coin; the
probability that the outcome of Bob’s coin is Head is δ ∈ (0, 1]. Alice and
Bob would like to choose a number in {1, 2, . . . ,M} such that the proba-
bility that each number j ∈ {1, 2, . . . ,M} is chosen is close to xj , where
x = (xj)

M
j=1 ∈ ∆({1, 2, . . . ,M}) is some given probability distribution. To

this end they do the following:

� Alice chooses a sequence ~i = (in)n∈N of numbers in {1, 2, . . . ,M}.
The sequence must satisfy the following property: for every j ∈
{1, 2, . . . ,M}, the frequency of stages in which Alice chose the num-
ber j should be close to xj : there are ε > 0 and N0 ∈ N such that∣∣∣∣ 1n#{k ≤ n : ik = j} − xj

∣∣∣∣ < ε, ∀n ≥ N0.

� At each period n ∈ N until a number is selected, Alice tosses the coin
in and Bob tosses his coin. If the outcomes of both tosses is Head,
the number in is selected. Otherwise, Alice and Bob continue to the
next period.

Do the following.

(a) Prove that for every n ≥ N0 we have∣∣∣∣∣ 1n
n∑
k=1

pik −
M∑
i=1

pixi

∣∣∣∣∣ ≤ ε.
(b) For every j ∈ {1, 2, . . . ,M} calculate the probability Aj(δ,~i) that the

number j is selected as a function of Alice’s choices.

(c) Denote Cn :=
∏n−1
k=1(1− δpik) and dn := Cn−Cn+1 for every n ∈ N.

Show that for every δ ∈ (0, 1],

∞∑
n=1

δpinCn = 1.
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(d) Show that there exists δ0 ∈ (0, 1] such that for every δ ∈ (0, δ0) we
have

1− 2ε ≤

(
M∑
i=1

pixi

)
· δ
∞∑
k=1

kdk ≤ 1 + 2ε.

(e) Show that there is δ0 ∈ (0, 1] such that, provided δ ∈ (0, δ0), we have∣∣∣∣∣Aj(δ,~i)− pjxj∑M
i=1 pixi

∣∣∣∣∣ ≤ 2ε.

6. Prove that in every Markov decision problem as studied in Section 1 and
every initial state s ∈ S, the two limits limT→∞vT (s) and limλ→0vλ(s)
exist and coincide.

Hint: Adapt the proof of Theorem 2.5.
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3 Strategic-Form Games — a Review

Abstract

In the present chapter we review material on strategic-form games that
will be needed in the sequel. Readers who are interested in expanding their
knowledge of strategic-form games are referred to Maschler, Solan, and
Zamir (2020, Chapters 4 and 5).

Definition 3.1 A strategic-form game is a triplet G = 〈I, (Ai)i∈I , (ui)i∈I〉
where

� I = {1, 2, . . . , n} is a finite set of players.

� For each i ∈ I, Ai is a finite set of actions of player i. The set of all
action profiles is denoted by A :=

∏
i∈I A

i.

� ui : A→ R is a payoff function.

Definition 3.2 A mixed action of player i is a probability distribution over her
action set Ai.

In other words, a mixed action of player i is an element in ∆(Ai). An action
is sometimes called pure strategy, and a mixed action is sometimes called mixed
strategy.

Definition 3.3 A mixed action profile is a vector α = (α1, α2, . . . , αn) ∈∏
i∈I ∆(Ai) of mixed actions, one for each player.

Definition 3.4 The expected payoff associated with a mixed action profile α ∈∏
i∈I ∆(Ai) is

γi(α) :=
∑
a∈A

(∏
i∈I

αi[ai]

)
ui(a).

This is the expectation of ui when each player i uses the mixed action αi.
The basic solution concept that we use is equilibrium.

Definition 3.5 Let ε ≥ 0. A mixed action profile α∗ is an ε-equilibrium if for
every player i ∈ I,

γi(α) ≥ sup
αi∈∆(Ai)

γi(αi, α−i∗ )− ε.

The corresponding payoff vector (γi(α∗))i∈I is an ε-equilibrium payoff.
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A 0-equilibrium is called an equilibrium, and a 0-equilibrium payoff is called an
equilibrium payoff. Thus, an equilibrium is a mixed action profile such that no
player can gain by a unilateral deviation, and an ε-equilibrium is a mixed action
profile such that no player can gain more than ε by a unilateral deviation.

As the following theorem, due to Nash (1950),17 asserts, every strategic-form
game (with finitely many players and actions) has an equilibrium.

Theorem 3.6 Let G = 〈I, (Ai)i∈I , (ui)i∈I〉 be a strategic-form game. If the
action sets (Ai)i∈I are finite, then the game has at least one equilibrium.

Denote by E(G) the set of equilibrium payoffs of the strategic-form game G.
The set E(G) is subset of Rn. Simple continuity arguments show the following.

Theorem 3.7 The set E(G) is compact.

Definition 3.8 A game G = 〈I, (Ai)i∈I , (ui)i∈I〉 is zero-sum if |I| = n = 2 and
u1(a1, a2) + u2(a1, a2) = 0 for every a1 ∈ A1 and a2 ∈ A2.

In a zero-sum game the payoff function of Player 2 is determined by the
payoff function of Player 1. We denote the payoff function of Player 1 by u,
and then the payoff function of Player 2 is −u. The expected payoff of Player 1
that corresponds to the mixed action profile (α1, α2) is denoted by γ(α1, α2),
and the expected payoff of Player 2 is −γ(α1, α2).

For zero-sum games, the concept of equilibrium payoff is reduced to the
following definition of the value.

Definition 3.9 Let G = 〈{1, 2}, A1, A2, u〉 be a zero-sum game. The real num-
ber v ∈ R is the value of G if

v = sup
α1∈∆(A1)

{
inf

α2∈∆(A2)
γ(α1, α2)

}
= inf
α2∈∆(A2)

{
sup

α1∈∆(A1)

γ(α1, α2)

}
. (52)

We denote the value of G, if it exists, by val(G). A mixed action α1 that attains
the supremum in the middle term in Eq. (52) is called an optimal strategy of
Player 1. Similarly, a mixed action α2 that attains the infimum in the right-hand
side term in Eq. (52) is called an optimal strategy of Player 2.

The following theorem, due to von Neumann (1928),18 is a special case of
Theorem 3.6 and preceded it by 22 years; it states that the value exists.

17John Forbes Nash Jr. (Bluefield, West Virginia, June 13, 1928 – Monroe Township,
New Jersey, May 23, 2015) was an American mathematician who worked in game theory
and differential geometry. He shared the 1994 Nobel Prize in Economics with two other
game theorists, Reinhard Selten and John Harsanyi, and the 2015 Abel Prize in Mathematics
together with mathematician Louis Nirenberg.

18John von Neumann (Budapest, Austria-Hungary, December 28, 1903 – Washington, D.C.,
United States, February 8, 1957) was a Hungarian-American mathematician who made im-
portant contributions in quantum physics, functional analysis, set theory, computer science,
economics, and many other mathematical fields. Most notably, von Neumann was a pioneer
of the modern digital computer and the application of operator theory to quantum mechan-
ics, member of the Manhattan Project Team, and creator of game theory and the concept of
cellular automata.
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Theorem 3.10 Let G = 〈{1, 2}, A1, A2, u〉 be a two-player zero-sum strategic-
form game. If the action sets A1 and A2 are finite, then the game has a value.

The analogue of the concept of ε-equilibrium in two-player zero-sum games
is the concept of optimal strategies.

Definition 3.11 Let ε ≥ 0. A mixed action α1 ∈ ∆(A1) is ε-optimal for
Player 1 if

γ(α1, α2) ≥ v − ε, ∀α2 ∈ ∆(A2).

Thus, a mixed action is ε-optimal if it guarantees that Player 1 receives at least
the value minus ε, whatever her opponent plays. The analogous definition for
Player 2 is the following.

Definition 3.12 Let ε ≥ 0. A mixed action α2 ∈ ∆(A2) is ε-optimal for
Player 2 if

γ(α1, α2) ≤ v + ε, ∀α1 ∈ ∆(A1).

A 0-optimal strategy is called optimal.

Example 3.13 Consider the two-player zero-sum strategic-form game displayed
in Figure 5. Here and in the sequel Player 1 chooses a row and Player 2 chooses
a column. Since the game is zero-sum, only the payoffs of Player 1 are listed.
Formally,

� The set of players is I = {1, 2}.

� The sets of actions are A1 = {T,B} and A2 = {L,R}.

� The payoff function is

u(T, L) = u(B,R) = 1, u(T,R) = u(B,L) = 0.

Player 2

Player 1
B

T

L R

0

1

1

0

Figure 5: The strategic-form game in Example 3.13.

If Player 1 plays [ 1
2 (T ), 1

2 (B)], then she guarantees an expected payoff 1
2 :

γ

([
1

2
(T ),

1

2
(B)

]
, α2

)
=

1

2
, ∀α2 ∈ ∆(A2).

Similarly, if Player 2 plays [ 1
2 (L), 1

2 (R)], then she guarantees 1
2 :

γ

(
α1,

[
1

2
(L),

1

2
(R)

])
=

1

2
, ∀α1 ∈ ∆(A1).
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Hence the value of the game is 1
2 , and the optimal strategies of the two players

are [ 1
2 (T ), 1

2 (B)] and [ 1
2 (L), 1

2 (R)], respectively. �

Since the expected payoff is at most the maximal payoff in absolute values,
the value is at most this quantity as well. Formally,

Theorem 3.14 Let G = 〈{1, 2}, A1, A2, u〉 be a two-player zero-sum strategic-
form game. Then

|val(G)| ≤ ‖u‖∞ = max
(a1,a2)∈A1×A2

|u(a1, a2)|.

The proof of Theorem 3.14 is left to the reader (Exercise 3.1). The value
operator maps each payoff function to the value of the corresponding zero-sum
game. As the following theorem states, it has norm 1.

Theorem 3.15 Let G = 〈{1, 2}, A1, A2, u〉 and Ĝ = 〈{1, 2}, A1, A2, û〉 be two
zero-sum strategic-form games with the same action sets. Then

|val(G)− val(Ĝ)| ≤ ‖u− û‖∞.

The proof is left to the reader (Exercise 3.2).

Comment 3.16 Our definition of strategic-form games requires that the sets of
actions of the players are finite. Strategic-form games with general measurable
action sets have been studied in the literature, see, e.g., Fan (1952), who proved
the existence of the value in two-player zero-sum strategic-form games where
the action sets of the players are nonempty, compact, and convex subsets of
locally convex topological linear spaces, and Glicksberg (1952), who proved the
existence of equilibria when the strategy sets of the players are nonempty and
compact Hausdorff spaces.

3.1 Exercises

Exercise 3.3 is used in the proof of Lemma 7.15. Exercise 3.5 is used in Sec-
tion 9.5 and in the proof of Theorem 10.4.

1. Prove Theorem 3.14.

2. Prove Theorem 3.15.

3. Let G = 〈{1, 2}, A1, A2, u〉 be a two-player zero-sum strategic-form game
and let ρ ∈ R. Let G′ = 〈{1, 2}, A1, A2, u′〉 be the two-player zero-
sum strategic-form game defined by u′(a1, a2) = u(a1, a2) + ρ for every
(a1, a2) ∈ A1 ×A2. Prove that val(G′) = val(G) + ρ.

4. Fix the set of players I, and for each i ∈ I fix a finite action set Ai.
For every vector of payoff functions u = (ui)i∈I , denote by E(u) the
set of Nash equilibrium payoffs in the multiplayer strategic-form game
G = 〈I, (Ai)i∈I , u〉. In this exercise we study the correspondences (set-
valued functions) that maps to each vector of payoff functions u the set
E(u).
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(a) Prove that this function has a closed graph. Are its values convex?

(b) Show that this function is not non-expansive: there exist two vectors
of payoff functions u, ũ and an equilibrium payoff w ∈ E(u) such that
for every equilibrium payoff ŵ ∈ G(û) one has

‖w − ŵ‖∞ > ‖u− û‖∞.

5. The min-max value of player i in a strategic-form gameG = 〈I, (Ai)i∈I , (ui)i∈I〉
is the quantity

vi := inf
α−i∈

∏
j 6=i ∆(Aj)

sup
αi∈∆(Ai)

ui(αi, α−i). (53)

Prove that for every equilibrium α of G we have ui(x) ≥ vi.

6. In the following three-player strategic-form game each player has two ac-
tions, Player 1 chooses a row, Player 2 chooses a column, and Player 3
chooses a matrix.

(a) Prove that minα2∈∆({L,R}),α3∈∆({E,W}) maxα1∈∆({T,B}) u
1(α1, α2, α3) =

3
4 .

(b) Prove that maxα1∈∆({T,B}) minα2∈∆({L,R}),α3∈∆({E,W}) u
1(α1, α2, α3) =

1
2 .

B

T

L R
E

1

0

1

1

B

T

L R
W

1

1

0

1
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4 Stochastic Games — The Model

Abstract

In this chapter we define the model of stochastic games.

A stochastic game is a Markov decision problem that involves several decision
makers, called players; the stage payoff of each player, as well as the transitions,
are determined by the current state and the actions chosen by all the players.
Thus, each player influences the evolution of the state process and the payoffs
of all players.

Definition 4.1 A stochastic game is a vector Γ = 〈I, S, (Ai(s))i∈Is∈S , q, r〉, where

� I = {1, 2, . . . , n} is a finite set of players.

� S is a finite set of states.

� For every i ∈ I and every state s ∈ S, Ai(s) is a finite set of actions
available to player i at s. We denote the set of all action profiles at state
s by A(s) =

∏
i∈I A

i(s), and the set of all action profiles at all states by

SA = {(s, a) : s ∈ S, a ∈ A(s)}.

� q : SA→ ∆(S) is a transition rule.

� For every player i ∈ I, ri : SA→ R is a payoff function.

Play starts at an initial state s1 ∈ S and is played in stages. At each stage
t ≥ 1 the following takes place:

� The current state st is announced to the players.

� Each player i ∈ I chooses an action ait ∈ Ai(st). The players’ choices are
made simultaneously and independently.

� The action profile at = (ait)i∈I is publicly announced to all players.

� Each player i ∈ I receives a stage payoff ri(st, at).

� A new state st+1 ∈ S is drawn according to the probability distribution
q(· | st, at), and the game proceeds to stage t+ 1.

We will deal with stochastic games with finitely many players, states and
actions for each player.
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Example 4.2 Every repeated game is a stochastic game with a single state. �

Example 4.3 Consider the two-player stochastic game with two states that is
depicted in Figure 6. Formally, the data of the game are given as follows:

� There are two players: I = {1, 2}.

� There are two states: S = {s(0), s(1)}.

� In each state both players have two actions.

� Each entry specifies the payoffs to players, as well as the transitions (in
parentheses). For example, if in state s(0) the players select the action
pair (T, L), then the payoff of Player 1 is 0, the payoff of Player 2 is 1,
with probability 1

3 the play remains in s(0), and with probability 2
3 the play

moves to s(1).

B

T

L R

State s(0)

1, 2( 1
2 ,

1
2 )

0, 1( 1
3 ,

2
3 ) 1, 3(0,1)

0, 2(1,0) B

T

L R

State s(0)

2, 0( 1
4 ,

3
4 )

0, 2( 2
3 ,

1
3 ) 4, 1( 2

3 ,
1
3 )

1, 3(1,0)

Figure 6: The game in Example 4.3.
�

Example 4.4 Consider the two-player zero-sum stochastic game with three states
that is depicted in Figure 7. Formally, the data of the game are given as follows:

� There are two players: I = {1, 2}.

� There are three states: S = {s(0), s(1), s(2)}.

� In state s(0) both players have two available actions, whereas in states s(1)
and s(2) both players have a single available action.

� Each entry specifies the payoffs to Player 1, as well as the transitions (in
parentheses).

B

T

L R

State s(0) State s(1) State s(2)

1(0,0,1)

0(1,0,0) 1(0,0,1)

0(0,1,0) T

L

0(0,1,0) T

L

1(0,0,1)

Figure 7: The game in Example 4.4.
�
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4.1 On Histories and Strategies

The definitions of histories and strategies are analogous to the corresponding
definitions in Markov decision problems. For t ∈ N, the set of histories of length
t is

Ht := (S ×A)t−1 × S.

We let
H :=

⋃
t∈N

Ht

denote the set of all histories, and let

H∞ := (S ×A)N

denote the space of all infinite histories or plays. As for Markov decision
problems, we denote by Ht the algebra over the set H∞ that is spanned by the
cylinder sets of length t.

A strategy of player i ∈ I is a mapping σi that assigns to each history
ht = (s1, a1, . . . , at−1, st) ∈ H a mixed action in ∆(Ai(st)). The set of all
strategies of player i is denoted by Σi. A strategy σi of player i is pure if it
involves no randomization: |supp(σi(ht))| = 1 for all histories ht ∈ H.

A strategy σi of player i is stationary if the mixed action that is played after
a given history depends only on the current state: σi(ht) is a function of st (and
is independent of (s1, a1, . . . , st−1, at−1)). We identify a stationary strategy σi

of player i with a vector xi ∈
∏
s∈S ∆(Ai(s)). Under this identification, xi(s)

is the mixed action that player i implements whenever the current state is s.
Thus, the space of stationary strategies of player i is identified with the space
Xi :=

∏
s∈S ∆(Ai(s)).

A strategy profile is a vector σ = (σi)i∈I of strategies. We define X :=∏
i∈I X

i. This space is (identified with) the space of stationary strategy profiles.
Every pair (initial state s, strategy profile σ) induces a probability distri-

bution on the space of plays H∞, equipped with the sigma-algebra generated
by the finite cylinders. This probability distribution is denoted Ps,σ, and the
corresponding expectation operator is denoted by Es,σ.

4.2 Absorbing States and Absorbing Games

In this section we define absorbing states and the class of absorbing games,
which is a special class of stochastic games. A state is absorbing if once the play
reaches that state, it never leaves the state, regardless of what the players play.

Definition 4.5 A state s ∈ S is absorbing if for every action profile a ∈ A(s)
we have q(s | s, a) = 1.

Once the game reaches an absorbing state, it reduces to a repeated game. Since
every repeated game admits an equilibrium (e.g., the players repeatedly play
an equilibrium of the base game), if we are interested in the existence of an
equilibrium, we can assume without loss of generality that once the play reaches
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an absorbing state, the stream of payoffs is constant (and equals one of the
equilibrium payoffs of this repeated game). In other words, to every absorbing
state there corresponds an absorbing payoff, which is the payoff the players
receive at every stage once this state is reached.

A stochastic game is absorbing if all its states except one are absorbing.

Definition 4.6 An absorbing game is a stochastic game Γ in which all states
except one are absorbing.

For such games, we will assume that the initial state is the nonabsorbing state,
and that in each absorbing state the payoff is independent of the actions of the
players. Absorbing games form a simple class of stochastic games, in which the
state can change at most once along the play.

Since in absorbing games the play terminates once it leaves the initial state,
the only part of the strategy of the players that is relevant for calculating payoffs
is how they play as long as the play remains in the nonabsorbing state. Denoting
by s(0) the unique nonabsorbing state, a stationary strategy of player i ∈ I
reduces to a probability distribution in ∆(Ai(s(0))).

Example 4.4: continued.
The game in Example 4.4 is an absorbing game: the states s(1) and s(2)

are absorbing, and s(0) is the unique nonabsorbing state. To simplify the pre-
sentation of absorbing games, we will write down only the nonabsorbing state,
as shown in Figure 8. An asterisk indicates an entry where the transition leads
to an absorbing state with probability 1, whose payoff is equal to the payoff
displayed by that entry. In this representation we implicitly assume that the
stage payoff in the entry (T,R) is equal to the absorbing payoff this entry leads
to. This will be the case in all the examples of absorbing games we will study.

B

T

L R

State s(0)

1
∗

0 1
∗

0
∗

Figure 8: The absorbing game in Example 4.4 in a simplified form.
�

4.3 Comments and Extensions

As for Markov decision problems, the model of stochastic games can be ex-
tended to the case when the state and action spaces are Borel spaces. In such
a case, the transition rule and the payoff functions of the players are required
to be measurable, see, e.g., Başar and Olsder (1998), Nowak (2003a, 2003b), or
Jaśkiewicz and Nowak (2018a, 2018b). Some authors studied stochastic games
with a continuum of players, which led to the development of mean field games,
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see, e.g., Jovanovic and Rosenthal (1988), Khan and Sun (2002), or Chakrabarti
(2003). Others studied stochastic games when the time that elapses between
consecutive stages is small or the limit case, that is, continuous-time games, see,
e.g., Zachrisson (1964), Başar and Olsder (1998), Guo and Hernández-Lerma
(2005a, 2005b), Jasso-Fuentes (2005), Levy (2013), Neyman (2013, 2017), Wei
and Chen (2016), or Zhang (2018).

We assumed that players observe (and never forget) the current state and
the actions chosen by the other players. In the general model of stochastic
games, at every stage each player observes a private signal, which depends on
the current state and on the action profile that the players just chose. For the
general model, see, e.g., Mertens, Sorin, and Zamir (2015, Chapter IV).

Exercise 4.5 is adapted from Maschler (1967).

4.4 Exercises

1. Write down the parameters of the following three-player absorbing game
(sets of players, states, actions, transition, and payoffs). Here Player 1
chooses a row, Player 2 chooses a column, and Player 3 chooses a matrix.

Q1

C1

C2 Q2 C2 Q2
C3 Q3

1, 3, 0 ∗
0, 0, 0

1, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1, 0 ∗

2. Write down the parameters (sets of players, states, actions, transition, and
payoffs) of the following zero-sum two-player game.

B

T

L R

B

T

L R

State s(0) State s(1)

1( 2
3 ,

1
3 )

2(1,0)

1(0,1)

0( 1
2 ,

1
2 )

1( 1
3 ,

2
3 )

−1(1,0)

1( 3
4 ,

1
4 )

2(0,1)

3. Present the following situation as a stochastic game. The United States
and Russia are competing for military superiority. Each of the two coun-
tries can lead in military power, but they can also be equal in military
power. The “utility” of leading in military power is 10, while the “util-
ity” of being inferior is −10. The “utility” of equal power is 0 for both
countries. Each year both countries decide what their military budget is
independently and simultaneously: a high budget of 7 or a low budget
of 4. The total utility of a country in a given year is its utility from the
mutual position minus the military budget of that year. In a year in which
both countries make equal investments in armaments, the relative position
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of strength is maintained till the following year. In a year in which one
country invests more than its rival, that country improves its position the
following year with probability 0.6 and remains in the same position with
probability 0.4 (that is, if it was inferior that year, then with probability
0.6 it will tie the following year and with probability 0.4 it will remain
inferior; if it was a tie that year, then with probability 0.6 it will lead the
following year and with probability 0.4 it will remain a tie; finally, if it was
leading that year, then with probability 1 it will lead also the following
year).

4. Fishermen of the UK and Iceland share a certain region of the Atlantic
Ocean that lies between the two countries. At the beginning of the fishing
season, each of the two countries sets a fishing quota for its fishermen,
who fish the maximum amount they are allowed. For simplicity, assume
that the quota is the number of fish that the fishermen are allowed to
fish, and it cannot exceed half the number of fish in the region. The deci-
sion concerning this year’s quota is determined according to the average
number of fish in a square kilometer, a quantity that is measured at the
beginning of the fishing season. For further simplicity, assume that the
fish are uniformly spread in the region. The natural annual growth of the
fish population is 1− exp(−cx), where x is the current number of fish per
square kilometer and c is a fixed parameter. That is, if the number of fish
per square kilometer at the end of the fishing season is x, then the number
of fish at the beginning of the next fishing season is x · (1 − exp(−cx)).
The gain for a country when its fishermen fish x fish, and the fishermen
of the other country fish y fish, is given by the function R(x, y).

Present the situation as a stochastic game, where the state variable cap-
tures the average number of fish per square kilometer.

5. Back in the 60’s, US and USSR engaged in talks to abolish nuclear tests.
To ensure that the other country does not carry a test, it was suggested
that each country can perform each year K surprise inspections any-
where in the other country if the seismographs showed abnormal activity.
The seismographs could not distinguish between seismographic movements
that originate from real earthquakes and those that originate from nuclear
tests.

(a) What is the proper state variable to describe the situation as a
stochastic game?

(b) Present the situation as a stochastic game. View the situation as a
zero-sum game in which a country wins 1 for every undetected test
carried out, and loses 2 for every detected test carried out. Assume
that the measurement of the seismographs can be either high or low;
a nuclear test causes the measurement to be high with probability 1;
if no nuclear test takes place, then the probability of a high measure-
ment is p. Assume that a nuclear test is detected with probability 1
if an inspection is made within two days of the test.
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This material has been published by Cambridge University Press as “A
Course in Stochastic Game Theory” by Eilon Solan. This pre-publication ver-
sion is free to view and download for personal use only. Not for re-distribution,
re-sale or use in derivative works. @ Eilon Solan [2020]

5 Two-Player Zero-Sum Discounted Games

Abstract

In this chapter we extend the notion of discounted payoff to the model
of stochastic games, and we define the concept of discounted equilibrium.
We then prove that every two-player zero-sum stochastic game admits a
discounted value, and that each player has a stationary discounted optimal
strategy. The proof uses the same tools we employed in Chapter 2 to prove
that in Markov decision problems the decision maker has a stationary
discounted optimal strategy. We finally prove that the discounted value
is continuous in the parameters of the game, namely, the payoff function,
the transition rule, and the discount factor.

5.1 The Discounted Payoff

In this section we define the discounted payoff in stochastic games, and study
some of its properties.

Definition 5.1 For a discount factor λ ∈ (0, 1], an initial state s, and a strategy
profile σ ∈ Σ, the λ-discounted payoff associated with s and σ is

γiλ(s;σ) := Es,σ

[
λ

∞∑
t=1

(1− λ)t−1ri(st, at)

]

:= λ

∞∑
t=1

(1− λ)t−1Es,σ

[
ri(st, at)

]
.

Example 4.4: continued.
The two-player zero-sum absorbing game in this example is reproduced in

Figure 9.

B

T

L R

State s(0)

1
∗

0 1
∗

0
∗

Figure 9: The game in Example 4.4.

Recall that in absorbing games (with nonabsorbing state s(0)), a stationary
strategy of player i is equivalent to a probability distribution in ∆(Ai(s(0)).
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Consider the stationary strategy profile x1 in which Player 1 always plays T
and Player 2 always plays L. We denote this stationary strategy profile by
x1 = (T, L). The stage payoff is 0 at every stage, and therefore γλ(s(0);x1) = 0
for every discount factor λ ∈ (0, 1].

Consider now the stationary strategy profile x2 = (B,R). As in the previous
case, the stage payoff is 0 at every stage, hence γλ(s(0);x2) = 0 for every
discount factor λ ∈ (0, 1].

In general, a stationary strategy profile in this game is characterized by two
real numbers in [0, 1]: the per-stage probability according to which Player 1
chooses the action T , and the per-stage probability according to which Player 2
chooses the action L. Hence, a stationary strategy profile is a vector

x = ([c(T ), (1− c)(B)], [d(L), (1− d)(R)]),

with c, d ∈ [0, 1]. Let us calculate the λ-discounted payoff γλ(s(0);x) for every
discount factor λ ∈ (0, 1]. With probability cd the entry (T, L) is chosen, the
stage payoff is 0, and the payoff from the second stage and on is γλ(s(0);x) due
to the fact that x is a stationary strategy profile. With probability (1−c)(1−d)
the entry (B,R) is chosen, and the stage payoff as well as all future payoffs are
0. With probability (1 − c)d + c(1 − d) one of the entries (T,R) or (B,L) is
chosen, and the stage payoff as well as all future payoffs are 1. Consequently,

γλ(s(0);x) = cd (λ · 0 + (1− λ)γλ(s(0);x)) + ((1− c)d+ c(1− d)).

The solution of this equation is

γλ(s(0);x) =
c+ d− 2cd

1− cd(1− λ)
.

�

This example leads us to a general method to calculate the discounted payoff
of a stationary profile: this quantity is the solution of a certain system of linear
equations.

Theorem 5.2 Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game, and

let x = (x1, x2, . . . , xn) be a stationary strategy profile. Then (γiλ(s;x))s∈S is
the unique solution of the following system of |S| linear equations (one equation
for each state s ∈ S):

γiλ(s;x) =
∑

a∈A(s)

[(∏
i∈I

xi(s, ai)

)(
λri(s, a) + (1− λ)

∑
s′∈S

q(s′ | s, a)γiλ(s′;x)

)]
. (54)

Note that, by Theorem 1.32, this system of equations has a unique solution
for every stationary strategy profile x and every discount factor λ ∈ (0, 1].
Since this system is linear in λ, its solution is a rational function of λ. In
particular we deduce that the function λ 7→ γiλ(s;x) is a rational function. It is
interesting to note that the same conclusion holds for Markov decision problems,
see Theorem 1.33.
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Corollary 5.3 Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game. For

every stationary strategy profile x ∈ X, every player i ∈ I, and every state
s ∈ S, the function λ 7→ γiλ(s;x) is a rational function.

Proof of Theorem 5.2. Fix a player i ∈ I. Consider an auxiliary Markov
decision problem where the set of state is S, the set of actions at each state
s ∈ S is A(s), the payoff function is ri, and the transition is q. In other words,
we turn the stochastic game into a Markov decision process by assuming that
there is one entity, a mediator, who chooses actions for all the players.

Next, in the Markov decision problem consider the stationary strategy y
defined by

y(s, a) =
∏
i∈I

xi(s, ai), ∀s ∈ S, ∀a = (a1, a2, . . . , an) ∈ A(s).

This is the stationary strategy of the mediator in which she effectively follows x.
The probability of moving from state s to state s′ under the stationary strategy
y in the auxiliary Markov decision problem is

q(s′ | s, y(s)) = q(s′ | s, x(s)).

This quantity is also the probability to move from state s to state s′ under the
stationary strategy profile x in the stochastic game. Consequently, for every
s ∈ S, the λ-discounted payoff of player i under the strategy profile x, which is
γiλ(s1;x), coincides with the λ-discounted payoff of player i under the stationary
strategy y in the auxiliary Markov decision problem at the initial state s, which
is γλ(s1; y). The result now follows from Theorem 1.33.

The coefficients in Eq. (54) are determined by the strategies of the players,
the payoff function, the transition rule, and the discount factor. Moreover, these
coefficients are continuous in these parameters. By Cramer’s rule, it follows that
the solution of this system, (γiλ(s;x))s∈S , is continuous in these parameters as
well. Formally, denote by γiλ(s;x; r, q) the λ-discounted payoff at the initial
state s when the payoff function is r and the transition rule is q.

Theorem 5.4 For every player i ∈ I and every initial state s, the function

(λ, x, r, q) 7→ γiλ(s;x; r, q)

is continuous.

This theorem tells us that small perturbations in the data of the game or in the
strategies of the players do not have a large effect on the discounted payoff.

Recall that the support of a mixed action is the set of actions that are played
with positive probability under this mixed action. A strategy σi ∈ Σi is a best
response of player i against the strategy profile σ−i ∈ Σ−i of the other players
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if it attains to player i the maximal payoff when the other players follow σ−i at
all initial states, that is, if

γiλ(s;σi, σ−i) = max
σ′i∈Σi

γiλ(s;σ′i, σ−i), ∀s ∈ S.

The following lemma implies that for every stationary strategy profile x−i of
players I\{i}, the set of stationary best responses of player i in the λ-discounted
game is a polytope, the extreme points of which are pure stationary strategies.

Theorem 5.5 Let Γ be a stochastic game, let λ ∈ (0, 1], let i ∈ I be a player,
and let x−i ∈ X−i be a stationary strategy profile. Let xi ∈ Xi be a stationary
strategy of player i that is a best response in the λ-discounted game against x−i:

γiλ(s;xi, x−i) = max
zi∈∆(Ai)

γiλ(s; zi, x−i), ∀s ∈ S.

Let x′i ∈ Xi be a stationary strategy of player i such that supp(x′i(s)) ⊆
supp(xi(s)) for every state s ∈ S. Then x′i is also a best response in the
λ-discounted game against x−i:

γiλ(s;x′i, x−i) = γiλ(s;xi, x−i), ∀s ∈ S.

Proof. We will use the general observation that when the other players
use a stationary strategy profile, the decision problem of player i reduces to
a Markov decision problem. Indeed, given the stationary strategy profile x−i

of the other players, we introduce an auxiliary Markov decision problem Γ̂ =
〈S, (Ai(s))s∈S , q̂, r̂〉 as the Markov decision problem induced by the stochastic
game Γ when the players I \ {i} follow the stationary strategy profile x−i:

q̂(· | s, ai) :=
∑

a−i∈A−i(s)

∏
j 6=i

xj(aj)

 q(· | s, ai, a−i),

r̂(s, ai) :=
∑

a−i∈A−i(s)

∏
j 6=i

xj(aj)

 r(s, ai, a−i).

Since xi is a best response against x−i, the highest payoff for player i from
the initial state s when the other players follow x−i is γiλ(s;xi, x−i), hence

γiλ(s;xi, x−i) is the λ-discounted value of the auxiliary decision problem Γ̂.
Theorem 1.30 implies that the set of stationary strategies of player i that are

best responses against x−i is the set of all stationary strategies yi = (yi(s))s∈S ∈
Xi such that yi(s) maximizes the following quantity, for every initial state s ∈ S:

λri(yi(s), x−i(s)) + (1− λ)
∑
s′∈S

q(s′ | s, yi(s), x−i(s))γiλ(s′;xi, x−i). (55)

For each fixed state s ∈ S, the function in Eq. (55) is linear in yi. Since xi is a
best response against x−i, every action ai ∈ supp(xi(s)) maximizes the quantity
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in Eq. (55). This in turn implies that every mixed action x′i(s) ∈ ∆(Ai(s)
such that supp(x′i(s)) ⊆ supp(xi(s)) maximizes the quantity in Eq. (55). By
Theorem 1.30 once again, every stationary strategy x′i such that supp(x′i(s)) ⊆
supp(xi(s)) for every state s ∈ S is a best response against x−i, as claimed.

5.2 The Discounted Value

In this section we will study two-player zero-sum stochastic games. As for
strategic-form games, a two-player stochastic game is zero-sum if the sum of
the payoffs of the two players is always 0.

Definition 5.6 A two-player stochastic game is zero-sum if r1(s, a)+r2(s, a) =
0 for every state s ∈ S and every action profile a ∈ A(s).

In this case, we denote by r the payoff function of Player 1, and the payoff
function of Player 2 is −r. We also denote

γλ(s;σ1, σ2) := γ1
λ(s;σ1, σ2) = −γ2

λ(s;σ1, σ2).

Definition 5.7 Let s ∈ S be a state and let λ ∈ (0, 1] be a discount factor. The
real number vλ(s) is the λ-discounted value at the initial state s if

vλ(s) = sup
σ1∈Σ1

inf
σ2∈Σ2

γλ(s;σ1, σ2) = inf
σ2∈Σ2

sup
σ1∈Σ1

γλ(s;σ1, σ2).

Thus, the quantity vλ(s) is the λ-discounted value at the initial state s if Player 1
can guarantee that the discounted payoff does not fall below vλ(s), and Player 2
can guarantee that the discounted payoff does not exceed this quantity.

Definition 5.8 Let s ∈ S be a state and let λ ∈ (0, 1] be a discount factor.
Suppose that the value at the initial state s exists. A strategy σ ∈ Σ1 of Player 1
is λ-discounted optimal at the initial state s if

vλ(s) = inf
σ2∈Σ2

γλ(s;σ1, σ2).

Similarly, a strategy σ2 ∈ Σ2 of Player 2 is λ-optimal at the initial state s ∈ S
if

vλ(s) = sup
σ1∈Σ1

γλ(s;σ1, σ2).

A strategy of a player is λ-discounted optimal if it is λ-discounted optimal at all
initial states.

An optimal strategy of Player 1 guarantees that the discounted payoff does
not fall below vλ(s) at every initial state s. If both players use a λ-discounted
optimal strategy, then the discounted payoff is vλ(s), and no player can gain by
deviating.

The main result presented in this section is that in two-player zero-sum
stochastic games the λ-discounted value always exists, and, moreover, both
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players have stationary λ-discounted optimal strategies. As Example 3.13 shows,
the optimal strategy need not be pure.

Example 4.4: continued.

The two-player zero-sum absorbing game in this example is reproduced again
in Figure 9. Recall that the λ-discounted payoff when Player 1 plays the station-
ary strategy x1 = [c(T ), (1 − c)(B)] and Player 2 plays the stationary strategy
x2 = [d(L), (1− d)(R)] is

γλ(x1, x2) =
c+ d− 2cd

1− cd(1− λ)
.

Player 2

Player 1
B

T

L R

State s(0)

1
∗

0 1
∗

0
∗

Figure 9: The absorbing game in Example 4.4.

We claim that Player 1 does not have a pure optimal strategy. Indeed,
suppose Player 1 plays a pure strategy. Then Player 2 can ensure that the payoff
is 0: whenever Player 1 plays T , Player 2 will play L, and whenever Player 1
plays B, Player 2 will play R. However, by playing a mixed strategy, say c = 1

2 ,
Player 1 ensures that the λ-discounted payoff is positive. In particular, Player 1
does not have a pure optimal strategy. �

5.3 Existence of the Discounted Value

In this section we prove the following theorem, due to Shapley (1953).

Theorem 5.9 Every two-player zero-sum stochastic game admits a λ-discounted
value, for every λ ∈ (0, 1]. Moreover, both players have stationary λ-discounted
optimal strategies.

Our proof is analogous to the proof of Theorem 1.27, which states that in
every Markov decision problem the decision maker has a stationary optimal
strategy: we define a suitable mapping T : RS → RS , prove that it is con-
tracting, and prove that its unique fixed point is the λ-discounted value of the
game.

Let Γ be a stochastic game, and let w ∈ RS be an arbitrary mapping. For
each state s ∈ S, consider the following two-player zero-sum strategic-form game
Gs,λ(w):

� The set of players is {1, 2}.
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� The sets of actions of the two players are A1(s) and A2(s), respectively.

� The payoff function is

us,w(a1, a2;w) = λr(s, a1, a2) + (1− λ)
∑
s′∈S

q(s′ | s, a1, a2)w(s′).

The game Gs,λ(w) is the strategic-form game the players play at state s if the
continuation payoff from the second stage and on is captured by the vector w,
and λ measures the weight of the stage payoff at state s. By von Neumann’s
theorem (Theorem 3.10 on Page 49), this game has a value val(Gs,λ(w)).

Example 4.4: continued.
The game in this example is illustrated again in Figure 10, but here every

state is described separately. Let w ∈ RS be arbitrary.

B

T

L R

State s(0) State s(1) State s(2)

1(0,0,1)

0(1,0,0) 1(0,0,1)

0(0,1,0) T

L

0(0,1,0) T

L

1(0,0,1)

Figure 10: The absorbing game in Example 4.4.

The strategic-form games (Gs,λ(w))s∈S are described in Figure 11.

B

T

L R

Gs(0),λ(w)

λ+ (1− λ)w(s(2))

(1− λ)w(s(0)) λ+ (1− λ)w(s(2))

(1− λ)w(s(1))

B

L

B

L

Gs(1),λ(w) Gs(2),λ(w)

(1− λ)w(s(1)) λ+ (1− λ)w(s(2))

Figure 11: The strategic-form games (Gs,λ(w))s∈S in Example 4.4.
�
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Proof of Theorem 5.9. We consider RS as a metric space with the metric

d(w, v) := ‖w − v‖∞ = max
s∈S
|w(s)− v(s)|.

Define a mapping T : RS → RS by the formula

(T (w))(s) = val(Gs,λ(w))

= max
x1∈∆(A1(s))

min
x2∈∆(A2(s))

{
λr(s, x1, x2) + (1− λ)

∑
s′∈S

q(s′ | s, x1, x2)w(s′)

}
.

The mapping T is called the Shapley operator.

Step 1: The Shapley operator is contracting.

By Theorem 3.15 (Page 50),

|(T (w))(s)− (T (v))(s)| = |val(Gs,λ(w))− val(Gs,λ(v))|
≤ ‖us,w(a1, a2)− us,v(a1, a2)‖∞
= (1− λ)

∑
s′∈S

q(s′ | s, x1, x2)|w(s′)− v(s′)|

≤ (1− λ) max
s′∈S
|w(s′)− v(s′)|

= (1− λ)d(w, v),

whence

d(T (w), T (v)) = ‖T (w)− T (v)‖∞ ≤ (1− λ)d(w, v) < d(w, v).

By Theorem 1.26 there is a unique v∗ ∈ RS such that v∗ = T (v∗), that is,
v∗(s) = (T (v∗))(s) for every state s ∈ S. By the definition of T , we obtain

v∗(s) = (T (v∗))(s)

= val(Gs,λ(v∗))

= max
x1∈∆(A1(s))

min
x2∈∆(A2(s))

{
λr(s, x1, x2) + (1− λ)

∑
s′∈S

q(s′ | s, x1, x2)v∗(s′)

}
(56)

= min
x2∈∆(A2(s))

max
x1∈∆(A1(s))

{
λr(s, x1, x2) + (1− λ)

∑
s′∈S

q(s′ | s, x1, x2)v∗(s′)

}
.(57)

For every state s ∈ S let x1(s) ∈ ∆(A1(s)) be an element that maximizes
the quantity in the right-hand side of Eq. (56). Then x1 := (x1(s))s∈S is a
stationary strategy of Player 1. We show that γλ(s;x1, σ2) ≥ v∗(s) for every
initial state s ∈ S.

Step 2: supσ1∈Σ1 infσ2∈Σ2 γλ(s;σ1, σ2) ≥ v∗(s) for every initial state s ∈ S.
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Fix a strategy σ2 ∈ Σ2. Since x1 maximizes the quantity in the right-hand
side of Eq. (56), for every t ∈ N and every history ht ∈ H we have

λr(st, x
1
st , σ

2(ht)) + (1− λ)
∑
s′∈S

q(s′ | st, x1
st , σ

2(ht))v
∗(st+1) ≥ v(st).

This inequality is equivalent to

Es,x1,σ2

[
λr(st, a

1
t , a

2
t ) + (1− λ)v∗(st+1) | ht

]
≥ v(st).

By Lemma 1.28,
γλ(s;x1, σ2) ≥ v∗(s), ∀s ∈ S. (58)

Since the strategy σ2 is arbitrary, it follows that

sup
σ1∈Σ1

inf
σ2∈Σ2

γλ(s;σ1, σ2) ≥ inf
σ2∈Σ2

γλ(s;x1, σ2) ≥ v∗(s), ∀s ∈ S.

Step 3: infσ2∈Σ2 supσ1∈Σ1 γλ(s;σ1, σ2) ≤ v∗(s) for every initial state s ∈ S.

For every state s ∈ S let x2(s) ∈ ∆(A2(s)) be an element that minimizes
the quantity in the right-hand side of Eq. (57). Then x2 := (x2(s))s∈S is a
stationary strategy of Player 2. An analogous argument to that in Step 2 shows
that for every strategy σ1 of Player 1,

sup
σ1∈Σ1

γλ(s;σ1, x2)) ≤ v∗s , ∀s ∈ S,

and therefore
inf

σ2∈Σ2
sup
σ1∈Σ1

γλ(s;σ1, σ2)) ≤ v∗s , ∀s ∈ S.

Since
inf

σ2∈Σ2
sup
σ1∈Σ1

γλ(s;σ1, σ2)) ≥ sup
σ1∈Σ1

inf
σ2∈Σ2

γλ(s;σ1, σ2),

we deduce from Steps 2 and 3 that

v∗s ≥ inf
σ2∈Σ2

sup
σ1∈Σ1

γλ(s;σ1, σ2))

≥ sup
σ1∈Σ1

inf
σ2∈Σ2

γλ(s;σ1, σ2)

≥ v∗s ,

and therefore v∗(s) is the λ-discounted value of the game at the initial state s.
Eq. (58) implies that the stationary strategy x1 that was constructed in Step 2
is a λ-discounted optimal strategy of Player 1 at all initial states. An analogous
argument shows that the stationary strategy x2 that was constructed in Step 3
is a λ-discounted optimal strategy of Player 2.

The proof of Theorem 5.9 shows that the value function is a fixed point of
the Shapley operator. This yields the following result, which, as we will see
below, allows us to calculate the discounted value of games.
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Theorem 5.10 The value vλ = (vλ(s))s∈S is the unique vector in RS that
satisfies

vλ(s) = val(Gs,λ(vλ)), ∀s ∈ S.

Example 4.4: continued. The strategic-form games (Gs,λ(w))s∈S that cor-
respond to the game in this example are shown in Figure 11.

What is the fixed point of the Shapley operator T? This fixed point should
satisfy

w(s(0)) = (T (w))(s(0)) = val(Gs(0),λ(w)),

w(s(1)) = (T (w))(s(1)) = val(Gs(1),λ(w)),

w(s(2)) = (T (w))(s(2)) = val(Gs(2),λ(w)).

Since Gs(1),λ(w) and Gs(2),λ(w) are 1 × 1 games, their value is equal to the
unique number that appears in the payoff matrix:

w(s(1)) = (1− λ)w(s(1)) =⇒ w(s(1)) = 0.

w(s(2)) = λ+ (1− λ)w(s(2)) =⇒ w(s(2)) = 1.

Substituting w(s(1)) = 0 and w(s(2)) = 1 in Gs(1),λ(w), we see that w(s(0))
should be the value of the 2×2 two-player strategic-form game shown in Figure
12.

B

T

L R

1

(1− λ)w(s(0)) 1

0

Figure 12: The strategic-form game Gs(0),λ(w) in Example 4.4.

By Exercise 3.1, w(s(0)) ≤ 1, hence in the game Gs(0),λ(w) Player 1 does
not have a pure optimal strategy. Therefore, when Player 2 plays her optimal
strategy, Player 1 should be indifferent between T and B. Let [y(L), (1−y)(R)]
denote the optimal strategy of Player 2, and write w = w(s(0)) for short. Then

w = y = (1− λ)wy + 1− y.

Therefore,
0 = 1− 2w + (1− λ)w2,

which solves to

w =
1±
√
λ

1− λ
.

Since 1+
√
λ

1−λ > 1, while w = w(s(0)) must be between 0 and 1, we deduce that
the λ-discounted value at the initial state s(0) is given by

vλ(s(0)) =
1−
√
λ

1− λ
.
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Unlike the case of Markov decision problems (see Corollary 1.34 on Page 30), the
discounted value is not a piecewise-rational function in λ, but rather a rational
function in

√
λ. As we will see in Chapter 6, in every stochastic game and for

every initial state s, the function λ 7→ vλ(s) is a piecewise-rational function in
λ1/k, for some natural number k. �

5.4 Continuity of the Value Function

So far we restricted attention to a specific stochastic game Γ. In this section
we fix the set of states S and the sets of actions (A1(s))s∈S and (A2(s))s∈S
available to the players in the various states. We will allow the payoff function,
the transition rule, and the discount factor to vary, and we will prove that the
discounted value, regarded as a function of the payoff function, the transition
rule, and the discount factor, is continuous.

Continuity of the value function is important, since often the data of the
game are not known precisely, and can only be estimated via sampling. In this
case the precision of the data depends on the precision of the measurement, as
well as on the number of samples we have. If the value function is continuous,
then the value of the true game is close to the value of the approximating game
that is defined using the estimated parameters, and optimal strategies in the
approximating game are almost optimal in the true game.

Once the set of states S and the sets of actions (A1(s))s∈S and (A2(s))s∈S
are fixed, the set of all payoff functions is RSA, and the set of all transition rules
is (∆(S))SA. For a payoff function r : SA → R and a transition rule q : SA →
∆(S) we let vλ(s; r, q) denote the value of the two-player zero-sum stochastic
game 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉. Our main result in this section is the
following.

Theorem 5.11 For every s ∈ S, the function (λ, r, q) 7→ vλ(s; r, q) is continu-
ous.

We need the following technical result.

Lemma 5.12 Let X be a metric space and let Y be a compact space. Let
f : X × Y → R be a continuous function. Define two functions g, h : X → R by

g(x) := min
y∈Y

f(x, y), ∀x ∈ X,

h(x) := max
y∈Y

f(x, y), ∀y ∈ Y.

Then g and h are continuous.

Observe that since Y is compact and f is continuous, g and h are well
defined.

Proof. We prove that g is continuous; the proof for h is analogous. Let
(xn)n∈N be a sequence in X that converges to a limit x. To prove that g(x) =
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limn→∞ g(xn) we will show that lim supn→∞ g(xn) ≤ g(x) and lim infn→∞ g(xn) ≥
g(x).

We first prove that lim supn→∞ g(xn) ≤ g(x). Let y∗ be such that f(x, y∗) =
miny∈Y f(x, y) = g(x). Then g(xn) = miny∈Y f(xn, y) ≤ f(xn, y

∗) for all n ∈ N,
and therefore

lim sup
n→∞

g(xn) ≤ lim
n→∞

f(xn, y
∗) = f(x, y∗) = g(x).

Now let us prove that lim infn→∞ g(xn) ≥ g(x). For each n ∈ N, let
y∗n be such that f(xn, y

∗
n) = miny∈Y f(xn, y) = g(xn). Since Y is compact,

there is a subsequence (nk)k∈N such that limk→∞ g(xnk) exists and is equal to
lim infn→∞ g(xn), and that y∗ := limk→∞ y∗nk exists. Then

lim inf
n→∞

g(xn) = lim
k→∞

g(xnk)

= lim
k→∞

f(xnk , y
∗
nk

)

= f(x, y∗) ≥ min
y∈Y

f(x, y) = g(x).

Proof of Theorem 5.11. By Theorem 5.4 for each fixed initial state
s ∈ S, the function

(λ, x1, x2, r, q) 7→ γλ(s;x; r, q)

is continuous.
Since ∆(A2) is compact, Lemma 5.12 implies that the function

(λ, x1, r, q) 7→ min
x2∈∆(A2)

γλ(s;x1, x2; r, q)

is continuous. Since ∆(A1) is compact, using again Lemma 5.12 we deduce that
the function

(λ, r, q) 7→ max
x1∈∆(A1)

min
x2∈∆(A2)

γλ(s;x1, x2; r, q)

is continuous. Since both players have stationary optimal strategies,

max
x1∈∆(A1)

min
x2∈∆(A2)

γλ(s;x1, x2; r, q) = vλ(s; r, q).

In particular, the function

(λ, r, q) 7→ vλ(s; r, q)

is continuous, as desired.
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5.5 Comments and Extensions

In this section we studied two-player zero-sum stochastic games with finitely
many states and actions. Extensions of Shapley’s result (Theorem 5.9) to
stochastic games with more general sets of states and actions can be found
in, e.g., Maitra and Parthasarathy (1970), Couwenbourgh (1980), Kumar and
Shiau (1981), Nowak (1985b, 1986), and Jaśkiewicz and Nowak (2011). A recent
survey on these extensions is Jaśkiewicz and Nowak (2018a).

We were interested in the existence of the discounted value, the structure of
discounted optimal strategies, and the continuity of the value. Algorithms to
find the discounted value and optimal strategies of two-player zero-sum stochas-
tic games can be found in, e.g., Filar and Tolwinski (1991), Breton (1991) and
the references therein, Filar and Vrieze (1997), Raghavan and Syed (2003),
Hansen, Koucky, Lauritzen, Miltersen, and Tsigaridas (2011), and Bourque and
Raghavan (2014).

In Example 4.4 we have seen that even when the payoffs, the transitions,
and the discount factor are all rational numbers, the discounted value is not
necessarily a rational number. A natural question that arises concerns the
identification of classes of games where the discounted value lies in the smallest
field that contains the payoffs, the transitions, and the discount factor. Results
in this direction can be found in Raghavan and Filar (1991) and the references
therein and Raghavan (2003).

Exercise 5.2 is taken from Parthasarathy and Raghavan (1981). Exercise 5.5
is taken from Bewley and Kohlberg (1978). Exercises 5.7, 5.8, 5.12, 5.17, 5.15,
and 5.16, are taken from Maschler, Solan, and Zamir (2020).

5.6 Exercises

Exercise 5.14 is used in the proof of Theorem 10.4. Exercise 5.11 is used in the
solution of Exercise 5.12. Exercise 5.9 is used in the solution of Exercise 5.15.
Exercise 5.15 is used in the solution of Exercises 5.16, 5.17, and Exercise 9.18.

1. In this exercise we study the T -stage payoff. For T ∈ N, a state s ∈ S,
and a strategy profile σ ∈ Σ, the T -stage payoff under the strategy profile
σ at the initial state s is

γiT (s;σ) := Es,σ

[
1

T

T∑
t=1

ri(st, at)

]
.

Do the following:

(a) Prove that for every T , the stochastic game admits a T -stage equi-
librium, that is, a strategy profile σ∗ that satisfies

γiT (s;σ∗) ≥ γiT (s;σi, σ−i∗ ), ∀i ∈ I, s ∈ S, σi ∈ Σi.
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(b) Prove that for every T , the stochastic game admits a T -stage equilib-
rium σ∗ with the property that the mixed action played by a player at
stage t depends on t and st; that is, for every t ∈ {1, 2, . . . , T} and ev-
ery two histories ht = (s1, a1, . . . , at−1, st) and h′t = (s′1, a

′
1, . . . , a

′
t−1, s

′
t),

if st = s′t, then σi∗(ht) = σi∗(h
′
t) for every i ∈ I.

(c) For the following game, find all equilibrium payoffs in the one-stage
and two-stage games.

State s(0)

B

T

L R

8, 0(0,1,0)

2, 4(1,0,0)

2, 3(1,0,0)

5, 1(0,0,1)

T

L

0, 8(0,1,0)

State s(1)

T

L

3, 8(0,0,1)

State s(2)

2. Calculate the λ-discounted value at the initial state s(0) of the following
two-player zero-sum absorbing game for λ = 2

3 . Since the 2
3 -discounted

value at s(0) is irrational, it follows that even when the data that defines
the stochastic game are rational, the discounted value is not necessarily
rational.

B

T

L R

State s(0) State s(1)

0(0,1)

1(1,0)

3(1,0)

0(0,1)

T

L

2(0,1)

3. Calculate the discounted value of the following two-player zero-sum ab-
sorbing game.

B

T

L R

State s(0) State s(1)

4(0,1)

1( 1
3 ,

2
3 )

3( 1
2 ,

1
2 )

2(0,1)

T

L

2(0,1)

4. Calculate the discounted value of the following two-player zero-sum ab-
sorbing game.

B

T

L R

State s(0) State s(1) State s(2)

0(0,1,0)

1(1,0,0)

1(0,0,1)

0(1,0,0)

T

L

0(0,1,0) T

L

1(0,0,1)

5. Calculate the discounted value of the following two-player zero-sum game
where s(2) and s(3) are absorbing states.
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B

T

L R

State s(0)

−1(0,1,0,0)

−1(1,0,0,0)

−1(0,0,1,0)

−1(0,1,0,0)

B

T

L R

State s(1)

1(1,0,0,0)

1(0,1,0,0)

1(0,0,0,1)

1(1,0,0,0)

T

L

State s(2)

−1(0,0,1,0) T

L

State s(3)

1(0,0,0,1)

6. Consider the following game with two nonabsorbing states. Using the
symmetry between the two states, prove that the discounted value at state
s(1) is vλ(s(1)) = − λ

4−λ . What is the optimal discounted strategy of each
player?

B

T

B

T

L R L R

State s(0) State s(1)

−1(0,1)

1(1,0)

0
∗

−1(0,1)

1(1,0)

−1(0,1)

0
∗

1(1,0)

7. In the stochastic game described below there are four states, denoted by
s(0), s(1), s(2), and s(3). The states s(1), s(2), and s(3) are absorbing
states.

State s(0)

B

T

L R

2(0,1,0,0)

0(1,0,0,0)

0(0,0,1,0)

1(0,0,0,1)

T

L

1(0,1,0,0)

State s(1)

T

L

0(0,0,1,0)

State s(2)

T

L

3(0,0,0,1)

State s(3)

(a) Prove that for every λ ∈ (0, 1], the λ-discounted value at the initial
state s(0) is positive.

(b) Prove that Player 1 has no stationary optimal strategy that chooses
a pure action in state s(0).

(c) For every discount factor λ ∈ [0, 1), compute the λ-discounted value
and stationary optimal strategies of the two players.
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8. The following game is a two-player zero-sum stochastic game with nonde-
terministic transitions and one absorbing state.

B

T

L R

0(0.4,0.6)

1(0.6,0.4)

2(0.5,0.5)

1(0.3,0.7)

State s(0)

T

L

0(0,1)

State s(1)

For every discount factor λ ∈ [0, 1), compute the λ-discounted value of the
game and stationary optimal strategies of the players.

9. Let σ1 be a strategy of Player 1 that satisfies the following property: for
every finite history ht = (s1, a1, . . . , st) ∈ H, the mixed action σ1(ht) is
an optimal strategy of Player 1 in the auxiliary game Gst,λ(vλ). Prove
that σ1 is a λ-discounted optimal strategy of Player 1.

10. Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-sum stochas-
tic game, and let σ2 be a stationary strategy of Player 2. Prove that there
exists a pure stationary strategy σ1 such that

γ1
λ(s;σ1, σ2) = max

σ′1∈Σ2
γ1
λ(s;σ′1, σ2),

that is, for every stationary strategy σ2 of Player 2, Player 1 has a pure
stationary best response.

11. Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-sum stochas-
tic game. Suppose that there exists a real number c such that the value
of the one-stage game at all initial states is c, that is,

c = v1(s), ∀s ∈ S.

Prove that c is the λ-discounted value at all initial states s ∈ S and every
discount factor λ ∈ (0, 1].

12. A two-player zero-sum stochastic game is symmetric if the following con-
ditions are satisfied for every state s ∈ S:

(a) The two players have the same set of actions in state s, that is,
A1(s) = A2(s).

(b) The payoff matrix in state s is skew-symmetric:

r(s, a1, a2) = −r(s, a2, a1), ∀a1 ∈ A1(s), a2 ∈ A2(s).
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(c) The transition probabilities are symmetric:

q(s, a1, a2) = q(s, a2, a1), ∀a1 ∈ A1(s), a2 ∈ A2(s).

Prove that for every discount factor λ ∈ (0, 1], the λ-discounted value of a
two-player zero-sum symmetric stochastic game is 0 for every initial state.

13. Let Γ be a two-player zero-sum stochastic game with countably many
states and finitely many actions available to each player in each state.
Suppose that the payoffs are between 0 and 1, that is, r(s, a) ∈ [0, 1]
for all pairs (s, a) ∈ SA. Prove that for every discount factor λ ∈ (0, 1]
the λ-discounted value exists at all initial states and both players have
stationary λ-discounted optimal strategies.

14. Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-sum stochas-
tic game. For each player i = 1, 2 and every state s ∈ S, let Xi(s) ⊆
∆(Ai(s)) be a compact subset of mixed actions available to player i in
state s. Denote by ΣiX the set of strategies of player i such that the mixed
action that is played when the game is in state s must belong to Xi(s):

ΣiX := {σi ∈ Σi : σi(ht) ∈ Xi(st), ∀ht ∈ H}.

Denote the two players by i and j. Define

viλ(s) := sup
σi∈ΣiX

inf
σj∈ΣjX

γiλ(s;σi, σj), (59)

and
viλ(s) := inf

σj∈ΣjX

sup
σi∈ΣiX

γiλ(s;σi, σj). (60)

The quantity viλ(s) is the max-min value of player i. It represents the
maximum amount that player i can guarantee in the game. The quantity
viλ(s) is the min-max value of player i. It represents the maximum amount
that player i can defend in the game.

(a) Show that the supremum in Eq. (59) and the infimum in Eq. (60)
are attained by stationary strategies.

(b) Let i ∈ {1, 2}, and suppose that Xi(s) = ∆(Ai(s)) for every state s ∈
S. Show that for every strategy σj ∈ ΣjX , there is a pure stationary
strategy σi ∈ ΣiX that attains the supremum in Eq. (59).

(c) Show that if all the sets (Xi(s))s∈S , i = 1, 2, are convex, then viλ(s) =
viλ(s) for i ∈ {1, 2}.

15. Exercises 15–16 deal with stochastic games with perfect information. An
infinite stochastic game has perfect information if in every state s ∈ S at
least one player has a single action, that is, |A1(s)| = 1 or |A2(s)| = 1.

Prove that in every two-player zero-sum stochastic game with perfect in-
formation, each player has a pure λ-discounted optimal strategy.
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16. Consider a two-player zero-sum stochastic game with perfect information.

(a) Prove that for every pair of strategies (σ1, σ2) ∈ Σ and for every ini-
tial state s ∈ S, the function λ 7→ γλ(s;σ1, σ2) is a rational function;
that is, it is the ratio of two polynomials in λ.

(b) Prove that for every stationary strategy σ2 ∈ Σ2 of Player 2 and for
every discount factor λ ∈ (0, 1], Player 1 has a best reply that is a
stationary pure strategy.

(c) Use the fact that Player 2 has a finite number of pure stationary
strategies to conclude that there exist a pure stationary strategy σ1

of Player 1 and a discount factor λ0 ∈ [0, 1) such that σ1 is a λ-
discounted optimal strategy for every λ ∈ (λ0, 1).

17. A (finite) directed graph is a pair (V,E), where V is a finite set of vertices
(or nodes) and E is a finite set of directed edges. In other words, E ⊆ V ×V
and an element e = (v1, v2) ∈ E is a directed edge from the vertex v1 to
the vertex v2. A game on a graph is a two-player zero-sum game given by

� A directed graph (V,E) with the property that (v, v) ∈ E for each
vertex v ∈ V . In other words, from every vertex v there is a directed
edge to v itself.

� A mapping i : V → {1, 2} assigning each vertex to one of the players.

� A function u : V → R assigning a payoff to each vertex.

� An initial vertex v1 ∈ V .

The game is played in stages as follows:

� At every stage the play is at one of the vertices, with v1 being the
initial vertex.

� At stage t ∈ N, the following takes place:

– Player 2 pays Player 1 the amount of u(vt), where vt is the vertex
at stage t.

– Player i(vt) chooses an edge starting at vt, say the edge (vt, v̂).

– Stage t is over, and the state for the next stage, stage (t+ 1), is
vt+1 := v̂.

Do the following:

(a) Describe the game on a graph as a stochastic game.

(b) Prove that for every λ ∈ [0, 1), each player has a λ-discounted optimal
strategy that is pure and stationary.

(c) Assume that the two players follow optimal pure stationary strate-
gies. Is it necessarily true that there exist a vertex v∗ and a stage
t0 ∈ N such that vt = v∗ for every t ≥ t0? Justify your answer.
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6 Semi-Algebraic Sets and the Limit of the Dis-
counted Value

Abstract

In this chapter we define semi-algebraic sets and study their basic
properties. We then apply our findings to prove that for every initial
state s the limit limλ→0 vλ(s) exists.

6.1 Semi-Algebraic Sets

Definition 6.1 A subset A ⊆ Rn is a basic semi-algebraic set if there is a
polynomial P : Rn → R such that

A = {x ∈ Rn : P (x) = 0}

or
A = {x ∈ Rn : P (x) > 0}.

Note that ∅ and Rn are basic semi-algebraic sets for every n ∈ N.
Recall that an algebra A is a family of sets that contains the empty set

and is closed under finite unions and under complements: if (Ai)
n
i=1 is a finite

collection of sets in A, then
⋃n
i=1Ai ∈ A, and if A ∈ A, then Ac ∈ A. From De

Morgan’s laws19 it follows that if (Ai)
n
i=1 is a finite collection of sets in A, then⋂n

i=1Ai ∈ A.

Definition 6.2 A subset A ⊆ Rn of a Euclidean space is semi-algebraic if it
belongs to the algebra generated by the family of basic semi-algebraic sets.

Example 6.3 Let P1, P2, . . . , PK , PK+1, . . . , PK+L, PK+L+1, . . . , PK+L+M be K+
L+M polynomials on Rn. Then the set

A := {x ∈ Rn : P1(x) > 0, . . . , PK(x) > 0, PK+1(x) ≥ 0, . . . , PK+L(x) ≥ 0

PK+L+1 = 0, . . . , PK+L+M = 0}
19Augustus De Morgan (Madurai, Madras Presidency, British Empire (present-day India),

June 27, 1806 – London, UK, March 18, 1871) was a British mathematician and logician. He
formulated De Morgan’s laws and introduced the term mathematical induction, making its
idea rigorous.
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is semi-algebraic. Indeed,

A =

(
K⋂
k=1

{x ∈ Rn : Pk(x) > 0}

)

∩

(
K+L⋂
k=K+1

({x ∈ Rn : Pk(x) > 0} ∪ {x ∈ Rn : Pk(x) = 0})

)

∩

(
K+L+M⋂
k=K+L+1

{x ∈ Rn : Pk(x) = 0}

)
.

�

Let us give several examples of semi-algebraic sets.

1. The boundary of a disc in R2:{
(x, y) ∈ R2 : x2 + y2 = 1

}
.

2. The double solid cone{
(x, y, z) ∈ R3 : x2 + y2 ≤ z2

}
.

3. The set of common zeros of two polynomials (the set of all points where
two polynomials vanish): for every two polynomials P,Q : Rn → R,

{x ∈ Rn : P (x) = 0 and Q(x) = 0} =
{
x ∈ Rn : P 2(x) +Q2(x) = 0

}
.

4. The graph of a polynomial: for every polynomial P : Rn → R,{
(y1, y2, . . . , yn+1) ∈ Rn+1 : P (y1, y2, . . . , yn) = yn+1

}
.

5. For every two polynomials P,Q : Rn → R such that Q never vanishes, the
graph of the rational function P

Q :{
(y1, y2, . . . , yn+1) ∈ Rn+1 :

P (y1, y2, . . . , yn)

Q(y1, y2, . . . , yn)
= yn+1

}
.

6. An annulus in R2: {
(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 2

}
.

Definition 6.4 Let A ⊆ Rn be a semi-algebraic set. A mapping f : A → Rm
is semi-algebraic if its graph is a semi-algebraic subset of Rn+m.

As we have seen, every rational function whose denominator never vanishes is
semi-algebraic.
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Example 6.5 The function
√
x is semi-algebraic.

Indeed,{
(x, y) ∈ R2 :

√
x = y

}
=

{
(x, y) ∈ R2 : x ≥ 0, x = y2

}
=

{
(x, y) ∈ R2 : x ≥ 0

}
∩
{

(x, y) ∈ R2 : x− y2 = 0
}
.

As the two sets {(x, y) ∈ R2 : x ≥ 0} and {(x, y) ∈ R2 : x − y2 = 0} are
semi-algebraic, so is their intersection. Consequently, the function

√
x is semi-

algebraic. �

Example 6.6 The value and optimal strategies of strategic-form games.
The space of all two-player zero-sum strategic-form games in which Player 1

has n actions and Player 2 has m actions is isomorphic to Rnm. A mixed action
of Player 1 is a probability distribution x on {1, 2, . . . , n}, and a mixed action
of Player 2 is a probability distribution y on {1, 2, . . . ,m}. Let B denote the set
of all vectors (u, v, x, y) ∈ Rnm+1+n+m such that v is the value of the strategic-
form game defined by the payoff function u, x is an optimal strategy of Player 1
in this game, and y is an optimal strategy of Player 2 in this game. The set B
is a subset of Rnm+1+n+m, and it is the set of all vectors (u, v, x, y) that satisfy
the following polynomial equalities and inequalities:

xi ≥ 0, ∀i ∈ {1, 2, . . . , n},
n∑
i=1

xi = 1,

yj ≥ 0, ∀j ∈ {1, 2, . . . ,m},
m∑
j=1

yj = 1,

n∑
i=1

xiu(i, j) ≥ v, ∀j ∈ {1, 2, . . . ,m},

m∑
j=1

yju(i, j) ≤ v, ∀i ∈ {1, 2, . . . , n}.

By Example 6.3, the set B is semi-algebraic. �

We list now three properties of semi-algebraic sets and semi-algebraic func-
tions, which will be useful in the study of discounted games. We will not provide
proofs for these results, because the proofs we are aware of are too lengthy for
this textbook. The interested reader is referred to Benedetti and Risler (1990)
or Bochnak, Coste, and Roy (2013).

� The projection of a semi-algebraic subset of Rn+1 to the first n coordinates
is a semi-algebraic subset of Rn (Theorem 6.7).
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� Every semi-algebraic function can be expressed in a neighborhood of 0 as
a Laurent series in fractional powers of λ (Theorem 6.9).

� Let A be a semi-algebraic subset of Rn+1, and let B be its projection to
the first coordinate. Then there is a semi-algebraic mapping f : B → Rn
such that the graph of f is a subset of A (Theorem 6.11).

The following theorem states that a projection of a semi-algebraic set is
semi-algebraic.

Theorem 6.7 Let A ⊆ Rn+1 be a semi-algebraic set. Then the set

B = {(x1, x2, . . . , xn) ∈ Rn : ∃xn+1 ∈ R such that (x1, x2, . . . , xn, xn+1) ∈ A}

is semi-algebraic.

Every semi-algebraic function from R to R is locally a solution of a polyno-
mial equation. This is the content of the next result, whose proof is left to the
reader (Exercise 6.8).

Theorem 6.8 Every semi-algebraic function f : R → R is a piecewise solu-
tion of a polynomial equation: there is a partition of R into a finite number
of intervals I1, I2, . . . , IK , and for each k ∈ {1, 2, . . . ,K} there is a polynomial
Pk : R2 → R, such that Pk(x, f(x)) = 0 for every x ∈ Ik.

As a conclusion we obtain that every semi-algebraic function is locally a
Laurent series in fractional powers.20 Such a representation is called a Puiseux
series.21

Theorem 6.9 Let f : (0, 1] → R be a semi-algebraic function. There exists a
point x0 ∈ (0, 1], a positive integer L, an integer K, and real numbers (ak)∞k=K

such that:

f(x) =

∞∑
k=K

akx
k/L, ∀x ∈ (0, x0]. (61)

That is, for every x ∈ (0, x0] the series in the right-hand side of Eq. (61) is
summable,22 and its sum is equal to f(x).

The summability of the right-hand side of Eq. (61) implies that for every
k ∈ N the term akx

k/M dominates the tail
∑∞
l=k+1 alx

l/M , that is,

lim
x→0

∑∞
l=k+1 alx

l/M

akxk/M
= 0

(see Exercise 6.15). In particular, we obtain the following (see Exercise 6.16).

20Pierre Alphonse Laurent (Paris, France, July 18, 1813 – Paris, France, September 2, 1854)
was a French mathematician best known as the discoverer of the Laurent series. His work was
not published until after his death.

21Victor Alexandre Puiseux (Argenteuil, France, April 16, 1820 – Frontenay, France,
September 9, 1883) was a French mathematician and astronomer. He contributed to alge-
braic functions and uniformization.

22A sequence (zn)n∈N is summable if
∑∞
n=1 |zn| < +∞.
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Corollary 6.10 Let f : (0, 1]→ R be a semi-algebraic function and let f(x) =∑∞
k=K akx

k/M be its Puiseux series representation.

1. The limit limx→0 f(x) exists and is given by

lim
x→0

f(x) =


0, if K > 0,

a0, if K = 0,

+∞, if K < 0, a0 > 0,

−∞, if K < 0, a0 < 0.

2. There is an x0 ∈ (0, 1] such that f is monotone in the interval (0, x0).

Example 4.4: continued. We have already calculated the λ-discounted value
of the two-player zero-sum absorbing game that is depicted in Figure 13 (see
Page 68), and found out that it is given by

vλ(s(0)) =
1−
√
λ

1− λ
.

B

T

L R

State s(0)

1
∗

0 1
∗

0
∗

Figure 13: The game in Example 4.4.

Therefore,

vλ(s(0)) =
(

1−
√
λ
)

(1 + λ+ λ2 + · · · ) = 1− λ 1
2 + λ− λ 3

2 + λ2 − · · · .

Thus, vλ(s(0)) is a Puiseux series with K = 0, M = 2, and ak = (−1)k. Observe
that the limit of the discounted value at s(0) is limλ→0 vλ(s(0)) = 1. �

The third property of semi-algebraic sets that we need is the following.

Theorem 6.11 Let A ⊆ Rn+1 be a semi-algebraic set and let B := {x ∈
R : ∃y ∈ Rn such that (x, y) ∈ A} be its projection on the first coordinate. Then
there exists a semi-algebraic mapping f : B → Rn such that the graph of f is a
subset of A.

6.2 Semi-Algebraic Sets and Zero-Sum Stochastic Games

In this section we present some consequences of the theory of semi-algebraic
sets for two-player zero-sum stochastic games. In Section 8.4 we will derive
analogous results for multiplayer stochastic games.
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Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-sum stochas-
tic game. Let B(Γ) be the set of all vectors (λ, v, x1, x2), where λ ∈ (0, 1] is a
discounted factor, v = (v(s))s∈S is the vector of λ-discounted values at all initial
states, x1 = (x1

s)s∈S is a stationary λ-discounted optimal strategy of Player 1,
and x2 = (x2

s)s∈S is a stationary λ-discounted optimal strategy of Player 2.

Theorem 6.12 For every two-player zero-sum stochastic game Γ the set B(Γ)
is semi-algebraic.

Proof. The set B(Γ) is a subset of R×RS×R
∑
s∈S |A

1(s)|×R
∑
s∈S |A

2(s)| and,
by Theorem 5.10, it contains all vectors (λ, vλ, x, y) that satisfy the following
finite list of polynomial equalities and inequalities:

λ > 0,

λ ≤ 1,

x1
s(a

1) ≥ 0, ∀s ∈ S, a1 ∈ A1(s),∑
a1∈A1(s)

x1
s(a

1) = 1, ∀s ∈ S,

x2
s(a

2) ≥ 0, ∀s ∈ S, a2 ∈ A2(s),∑
a2∈A2(s)

x2
s(a

2) = 1, ∀s ∈ S,

v(s) ≤
∑

a∈A1(s)

x1
s(a)

(
λr(s, a1, a2) + (1− λ)

∑
s′∈S

q(s′ | s, a1, a2)v(s′)

)
,

∀s ∈ S, ∀a2 ∈ A2(s),

v(s) ≥
∑

a∈A2(s)

x2
s(a)

(
λr(s, a1, a2) + (1− λ)

∑
s′∈S

q(s′ | s, a1, a2)v(s′)

)
,

∀s ∈ S, ∀a1 ∈ A1(s).

By Example 6.3 the set B(Γ) is semi-algebraic.

Since the set B(Γ) is semi-algebraic, repeated use of Theorem 6.7 implies
the following.

Corollary 6.13 For every two-player zero-sum stochastic game Γ, the function
λ 7→ vλ(s) is semi-algebraic for every fixed initial state s ∈ S.

From Corollary 6.13 and Theorem 6.9 we deduce that in a neighborhood of
0 the function λ 7→ vλ(s) can be expressed as a Puiseux series. This result is
due to Bewley and Kohlberg (1976).

Theorem 6.14 Let Γ be a two-player zero-sum stochastic game. For every
state s ∈ S there exists a λ0 ∈ (0, 1], a positive integer M , a non-negative
integer K, and real numbers (ak)∞k=K with a

K
6= 0, such that

vλ(s) =

∞∑
k=K

akλ
k/M , ∀λ ∈ (0, λ0].
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Moreover, there exists a λ1 ∈ (0, λ0] such that for every s ∈ S the function vλ(s)
is monotone in the interval (0, λ1).

Proof. The only point that requires explanation is why K can be chosen to
be non-negative. This follows from Corollary 6.10 and the fact that the function
λ 7→ vλ(s1) is bounded by ‖r‖∞.

In particular we obtain that the limit of the discounted value as the discount
factor goes to 0 exists.

Corollary 6.15 In every two-player zero-sum stochastic game the limit limλ→0 vλ(s)
exists for every fixed initial state s ∈ S.

Another corollary of Theorem 6.12 asserts that there is a semi-algebraic map-
ping that assigns a stationary λ-discounted optimal strategy for every discount
factor λ ∈ (0, 1].

Corollary 6.16 For every two-player zero-sum stochastic game and each player
i ∈ {1, 2} there is a semi-algebraic mapping λ 7→ xiλ that assigns to every dis-
count factor λ ∈ (0, 1] a stationary λ-discounted optimal strategy xiλ for player i.

6.3 Comments and Extensions

In this chapter we studied semi-algebraic properties of two-player zero-sum dis-
counted stochastic games. As mentioned before, semi-algebraic properties of
multiplayer discounted stochastic games will be discussed in Section 8.4.

The properties of semi-algebraic sets that we needed for the study of stochas-
tic games are

� Every set that is defined by finitely many polynomial inequalities is semi-
algebraic.

� The projection of a semi-algebraic set in Rn+1 to Rn is a semi-algebraic
set.

� If the projection of a semi-algebraic subset A of Rn+1 to its first coordinate
contains an interval (a, b), then there is a semi-algebraic mapping f :
(a, b)→ Rn such that the graph of f is a subset of A.

� Every semi-algebraic subset of R is a finite union of intervals.

There are other families of sets that satisfy these properties. Suppose that for
every n ∈ N we are given an algebraAn of subsets of Rn. The collection (An)n∈N
is an o-minimal structure if the following conditions are satisfied:

� If A ∈ An, then A× R and R×A are in An+1.

� If A ∈ An+1, then the natural projection of A to its first n coordinates is
in An.
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� For every polynomial P in n real variables, the set of solutions (zero set)
of P is in An.

� A set is in A1 if and only if it is a finite unions of intervals.

The family of semi-algebraic sets is one example of an o-minimal structure.
Stochastic games in which the sets of actions are members of an o-minimal
structure and the graphs of the payoff functions are members of the same o-
minimal structure were studied in Bolte, Gaubert, and Vigeral (2015).

We used the theory of semi-algebraic sets to prove that limλ→0 vλ(s) exists
for every initial state s ∈ S. Alternative proofs that use other tools were given
by Szczechla, Connell, Filar, and Vrieze (1997) and Oliu-Barton (2014).

When the set of states or the sets of actions of the players are not finite,
the limit limλ→0 vλ(s) may fail to exist. This was shown by Vigeral (2013) for
a game with four states and compact action sets, and by Ziliotto (2016c) for a
game with countable compact set of states and finitely many actions, see also
Sorin and Vigeral (2015).

The concept of θ-evaluations, which generalizes the discounted evaluation
and T -stage evaluations, was described in Section 2.3. Let θ = (θt)

∞
t=1 be a

sequence of non-negative reals that sum to 1. Then the θ-payoff of a pair of
strategies (σ1, σ2) at the initial state s in a two-player zero-sum stochastic game
is the quantity

γθ(s;σ
1, σ2) := Es,σ1,σ2

[ ∞∑
t=1

θtr(st, at)

]
,

and the θ-value at the initial state s is the quantity

vθ(s) := min
σ2∈Σ2

max
σ1∈Σ1

γθ(s;σ
1, σ2).

The relation between the limit limλ→0 vλ(s1) and the limit of vθ(s1) as maxt∈N θt
goes to 0 was studied by Ziliotto (2016b, 2018). An analog of Theorem 6.14
to the values of the T -stage games has been proven in Bewley and Kohlberg
(1976b).

Exercise 6.17 is taken from Kocel-Cynk, Paw lucki, and Valette (2014).

6.4 Exercises

Exercise 6.2 is used in Section 10. Exercise 6.3 and 6.4 are used in the solution of
Exercise 6.11. Exercise 6.5 is used in the solution of Exercise 6.14. Exercise 6.6
is used in the solution of Exercise 6.7. Exercise 6.8 is used in the solution
of Exercise 6.9. Exercise 6.10 is used in the proof of Theorems 10.4, 12.8,
and 13.7, and in the solution of Exercise 6.16. Exercise 6.11 is used in the proof
of Theorems 9.13 and 9.26, and in the solution of Exercise 6.16. Exercise 6.13
is used in the solution of Exercise 6.14. Exercise 6.15 is used in the solution of
Exercise 6.16. Exercise 6.17 is used in the solution of Exercise 8.9.

83



1. Among the six examples of semi-algebraic sets provided on Page 77, which
are basic semi-algebraic sets?

2. Prove that any composition of semi-algebraic mappings is a semi-algebraic
mapping.

3. Let A ⊆ Rn+1 be a semi-algebraic set. Prove that the set

B := {(x1, . . . , xn) ∈ Rn : ∀xn+1 ∈ R one has (x1, . . . , xn, xn+1) ∈ A} .

is semi-algebraic.

4. Show that if f, g : X → R are semi-algebraic functions, then the function
h : X → R that is defined by

h(x) := max{f(x), g(x)}, ∀x ∈ X,

is semi-algebraic as well.

5. Let X and Y be two semi-algebraic sets and let f, g : X → Y be two
semi-algebraic mappings. Prove that the set {x ∈ X : f(x) = g(x)} is
semi-algebraic.

6. Let X and Y be two semi-algebraic sets, with Y compact. Let f : X×Y →
R be continuous and semi-algebraic. Define two functions g, h : X → R
by

g(x) := max
y∈Y

f(x, y), ∀x ∈ X,

h(x) := min
y∈Y

f(x, y), ∀x ∈ X.

Prove that the functions g and h are semi-algebraic.

7. In this exercise we provide an alternative proof to Corollary 6.13. Use Ex-
ercise 6.6 to show that for every two-player zero-sum stochastic game and
every fixed initial state s ∈ S, the function λ 7→ vλ(s) is semi-algebraic.

8. Prove Theorem 6.8: for every semi-algebraic function f : R → R there
is a partition of R into a finite number of intervals I1, I2, . . . , IK , and
for each k ∈ {1, 2, . . . ,K} there is a polynomial Pk : R2 → R such that
Pk(x, f(x)) = 0 for every x ∈ Ik.

Hint: Use Bézout’s Theorem.23

9. Show that the exponential function ex is not semi-algebraic.

Hint: Use Exercise 6.8.

23Étienne Bézout (Nemours, France, March 31, 1730 – Avon, France, September 27, 1783)
was a French mathematician who contributed to the study of algebraic equations and to
mathematics education.
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10. Let f : (0, 1) → R be a semi-algebraic function. Prove that there is an
x0 > 0 such that either f(x) = 0 for all x ∈ (0, x0), or f(x) > 0 for all
x ∈ (0, x0), or f(x) < 0 for all x ∈ (0, x0).

11. Let f : (0, 1) → R be a semi-algebraic function. Prove that f is differ-
entiable everywhere, except possible at a finite number of points. Prove
that the derivative of f is a semi-algebraic function.

12. Let G be a strategic-form game with finitely many players and finitely
many actions for each player. Show that the set of Nash equilibria of G is
semi-algebraic.

13. Let X and Y be two semi-algebraic sets, and let f : X×Y → R be a semi-
algebraic function. Is the function x 7→ supy∈Y f(x, y) semi-algebraic?
Prove or provide a counterexample.

14. Let X and Y be two semi-algebraic sets, and let f : X × Y → R be
a semi-algebraic function. Define a correspondence (set-valued function)
G : X → Y by

G(x) := argmaxy∈Y f(x, y) = {y ∈ Y : f(x, y) ≥ f(x, z) ∀z ∈ Y }, ∀x ∈ X.

Prove that G is semi-algebraic.

15. Let f : (0, 1] → R be a semi-algebraic function. Suppose that f(x) =∑∞
k=K akx

k/M for every x ∈ (0, x0]. Prove that

lim
x→0

∑∞
l=k+1 alx

l/M

akxk/M
= 0.

16. Prove Corollary 6.10: Let f : (0, 1] → R be a semi-algebraic function.
Prove that

(a) The limit limx→0 f(x) exists and is given by

lim
x→0

f(x) =


0, if K > 0,

a0, if K = 0,

+∞, if K < 0, a0 > 0,

−∞, if K < 0, a0 < 0.

(b) There is an x0 ∈ (0, 1] such that f is monotone in the interval (0, x0).

17. Let A ⊆ (0, 1] × Rn be a bounded semi-algebraic set which is relatively
closed24 in (0, 1]×Rn. For every λ ∈ (0, 1] denote Aλ := {x ∈ Rn : (λ, x) ∈

24A set A is relatively closed in the set B if for every sequence (xk)k∈N of points in A that
converges to a limit x in B we have x ∈ A. The set (0, 1] is relatively closed in (0,∞), but
not relatively closed in R.
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A}. Define the set of all accumulation points of sequences in Aλ, as λ goes
to 0, by

A0 := lim sup
λ→0

Aλ =
⋂
µ>0

⋃
0<λ≤µ

Aλ.

In other words, A0 is the set of all points x ∈ Rn for which there exists a
sequence (λk)k∈N of real numbers in (0, 1], and for each k ∈ N there exists
xk ∈ Aλk such that limk→∞ λk = 0 and limk→∞ xk = x.

(a) Prove that the set A0 is compact.

(b) Prove that the set A0 is semi-algebraic.

(c) Prove that the sets Aλ converge to the set A0 in the Hausdorff dis-
tance:25 for every ε > 0 there is a λ0 > 0 such that d(A0, Aλ) < ε for
all λ ∈ (0, λ0], where

d(A0, Aλ) := max

{
sup
x∈A0

inf
y∈Aλ

‖x− y‖∞, sup
y∈Aλ

inf
x∈A0

‖x− y‖∞
}
.

18. Denote by R[x] the set of all real-valued polynomials. A polynomial game
is a vector G = 〈I, (Ai)i∈I , (ui)i∈I〉, where I is a finite set of players, and
for every player i ∈ I, Ai is a finite set of actions, and ui is a function that
assigns to each action profile a ∈ A :=

∏
i∈I A

i a polynomial ui,a ∈ R[x].
For each x ∈ R the polynomial game G determines a strategic-form game
Gx = 〈I, (Ai)i∈I , (uix)i∈I〉, where uix(a) := ui,a(x) for every a ∈ A. Prove
that the set

E :=
{

(x, z) ∈ R× R
∑
i∈I |A

i| : x ∈ R, z is an equilibrium of Gx

}
is semi-algebraic in R1+

∑
i∈I |A

i|.

19. Express the discounted value of the game in Exercise 5.5 (Page 71) as a
Puiseux series.

20. Consider the following zero-sum absorbing game:

d

c

b

a

A B C D

State s(0)

1
∗

0

0

0

0
∗

1
∗

0

0

0
∗

0
∗

1
∗

0

0
∗

0
∗

0
∗

1
∗

Do the following.

25Felix Hausdorff (Breslau, Kingdom of Prussia, November 8, 1868 – Bonn, Germany, Jan-
uary 26, 1942) was a German mathematician who is considered to be one of the founders
of modern topology and who contributed significantly to set theory, descriptive set theory,
measure theory, function theory, and functional analysis.
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(a) Prove that the λ-discounted value is positive for every λ ∈ (0, 1].

(b) Prove that for every discount factor λ ∈ (0, 1], the λ-discounted op-
timal strategy of Player 1 (the row player) gives positive probability
to all actions.

(c) Calculate the discounted value.

(d) Express the discounted value as a Puiseux series. What is M?

(e) Express the stationaryλ-discounted optimal strategy of Player 2 as a
Puiseux series.

(f) Can you find for every positive integer M a game whose discounted
value can be expressed as a Laurent series in λ1/M?
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7 B-Graphs and the Continuity of the Limit
limλ→0 vλ(s; q, r)

Abstract

In Section 6.4 we proved that the discounted value is continuous in the
parameters of the game, see Theorem 6.11. One weakness of this result
is that it does not bound the Lipschitz constant of the value function
(λ, q, r) 7→ vλ(s; q, r). In this chapter we will strengthen Theorem 6.11,
and, using the concept of B-graphs, develop a bound on the Lipschitz
constant of the value function. Our technique will allow us to study the
continuity of the limit limλ→0 vλ(s; q, r) as a function of q and r.

7.1 B-Graphs

Definition 7.1 Let S be a finite set of states, let B ⊂ S be a nonempty set,
let g : B → S be a mapping, and let s ∈ B. The g-path that starts at s is
the longest sequence s = s1, s2, . . . , sk of states in S such that sj+1 = g(sj) for
every j ∈ {1, 2, . . . , k − 1}.

A g-path is finite if it ends outside B, that is, if g(sk) 6∈ B, and it is infinite
if it is a loop, that is, if there are i, j ∈ N, i 6= j, such that si = sj .

The fundamental concept that we will study in this section is that of B-
graph.

Definition 7.2 Let S be a set of states and let B ⊂ S be a nonempty set. A
B-graph is a mapping g : B → S that contains no loops: every g-path ends
outside B.

The set of all B-graphs is denoted G(B). For a given pair of states s ∈ B
and z 6∈ B, the set of all B-graphs g with the property that the g-path that
starts at s ends at z is denoted by Gs→z(B).

Example 7.3 |B| = 1.
Suppose that B contains a single state, denoted s. Denote by z1, z2, . . . , zK

the states outside of B (see Figure 14). The number of B-graphs is K; for every
k ∈ {1, 2, . . . ,K}, the B-graph gk is defined by gk(s) = zk. �
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z1 z2 z3 zK

s
B

S

Figure 14: The case |B| = 1.

Example 7.4 |S| = 4, |B| = 2.
Suppose that there are two states in B and two states outside B. Denote

B = {s1, s2} and S \B = {z1, z2} (see Figure 15). There are eight B-graphs:

g1(s1) = z1, g1(s2) = z2,

g2(s1) = z1, g2(s2) = z1,

g3(s1) = z1, g3(s2) = s1,

g4(s1) = s2, g4(s2) = z1,

g5(s1) = z2, g5(s2) = z1,

g6(s1) = s2, g6(s2) = z2,

g7(s1) = z2, g7(s2) = s1,

g8(s1) = z2, g8(s2) = z2,

The first four B-graphs are in Gs1→z1(B), and the last four B-graphs are in
Gs1→z2(B).

z1 z2

s1 s2
B

S

Figure 15: The case |S| = 4 and |B| = 2.
�

A Markov chain is a pair 〈S, p〉, where S is a finite set of states and p :
S → ∆(S) is a transition rule. In every stage the chain is in one of its states.
The chain starts at the initial state s1 ∈ S, and, given the state st in stage t,
the state st+1 in stage t+ 1 is chosen according to the probability distribution
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p(· | st). Thus, a Markov chain is equivalent to a stochastic game in which all
players have a single action in all states.

Definition 7.5 The weight of a B-graph g in a Markov chain 〈S, p〉 is given
by

w(g) :=
∏
s∈B

p(g(s) | s).

Denote the sum of the weights of all B-graphs in a Markov chain 〈S, p〉 by

W (B) :=
∑

g∈G(B)

w(g),

and the sum of the weights of all B-graphs in Gs→z(B) by

Ws→z(B) :=
∑

g∈Gs→z(B)

w(g).

Let 〈S, p〉 be a Markov chain, let B ⊂ S be a nonempty set, let s ∈ B, and
let z 6∈ B. Denote by Qs(z;B) the probability that, when the initial state of
the Markov chain is s, the first state outside B that the process reaches is z.

The following result, which provides an expression for Qs(z;B) using the
weights of B-graphs, follows from a more general result proved by Freidlin and
Wentzell (1986).

Theorem 7.6 Let 〈S, p〉 be a Markov chain and let B be a nonempty proper
subset of S. If

∑
z 6∈B Qs(z;B) > 0 for every state s ∈ B then

Qs(z;B) =
Ws→z(B)

W (B)
. (62)

The condition
∑
z 6∈B Qs(z;B) > 0 for every state s ∈ S implies that in

the Markov chain, given any initial state s, the process leaves B with positive
probability. This in turn implies that the process leaves B with probability 1.

Proof of Theorem 7.6. We prove the result by induction on |B|, the
number of states in B.

Step 1: Without loss of generality we can assume that p(s | s) = 0, for every
state s ∈ B.

Let B ⊂ S be a nonempty subset such that
∑
z 6∈B Qs(z;B) > 0 for each

state s ∈ B. Let p̂ : B → ∆(S) be the normalized version of p: for every state
s ∈ S,

p̂ (z | s) :=


p(z | s)

1− p(s | s)
, if z 6= s,

0, if z = s.
(63)
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Since
∑
t6∈B Qs(z;B) > 0 for every state s ∈ B, it follows that p(s | s) < 1 for

every state s ∈ B, and therefore the denominator in Eq. (63) is positive.

For every state s ∈ B and every state z 6∈ B, denote by Q̂s(z;B) the proba-
bility that when the initial state is s, in the Markov chain 〈S, p̂ 〉 the first state
outside B that is reached is z. The probability to stay in a state does not affect
the probability distribution Qs(·;B), and therefore

Qs(z;B) = Q̂s(z;B), ∀s ∈ B, ∀z ∈ S. (64)

The weight ŵ(g) of a B-graph g in the Markov chain 〈S, p̂ 〉 is given by

ŵ(g) =
∏
s∈B

p̂ (g(s) | s) =
∏
s∈B

p(g(s) | s)
1− p(s | s)

=
w(g)∏

s∈B(1− p(s | s))
. (65)

Denote the sum of the weights of all B-graphs in a Markov chain 〈S, p̂〉 by

Ŵ (B) :=
∑

g∈G(B)

ŵ(g),

and the sum of the weights of all B-graphs in Gs→z(B) by

Ŵs→z(B) :=
∑

g∈Gs→z(B)

ŵ(g).

Since the denominator in the right-hand side of Eq. (65) is independent of
g, it follows that

Ws→z(B)

W (B)
=
Ŵs→z(B)

Ŵ (B)
. (66)

Eqs. (64) and (66) shows that if we prove that

Q̂s(z;B) =
Ŵs→z(B)

Ŵ (B)
, ∀z, s ∈ B,

then it will follow that

Qs(z;B) =
Ws→z(B)

W (B)
, ∀z, s ∈ B.

We thus assume from now on that p(s | s) = 0 for every state s ∈ B.

Step 2: The case |B| = 1.

Suppose that B = {s}. The weight of a B-graph g ∈ G(B) is w(g) = p(g(s) |
s). The number of B-graphs is |S| − 1, since g(s) can have |S| − 1 values. The
only B-graph in which the path from s leads to z is the one in which g(s) = z.
We then have

Qs(z;B) = p(z | s) =
p(z | s)∑
s′ 6=s p(s

′ | s)
=
Ws→z(B)

W (B)
,
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where the second equality holds by Step 1.

Step 3: The general case.

Let k ≥ 2. Assume by induction that Eq. (62) holds whenever B contains
at most k − 1 states, and let B be a subset of S that contains k states.

Let s ∈ B and z 6∈ B. By the induction hypothesis, for every state s′ ∈
B \ {s},

Qs′(z;B \ {s}) =
Ws′→z(B \ {s})
W (B \ {s})

.

To reach state z from state s in the Markov chain 〈S, p〉 (without reaching any
other state not in B), we can either move from s directly to z; or move from s
to some state s′ ∈ B \ {s}, and then move from s′ to z; or move from s to some
state s′ ∈ B \ {s}, then move back to s, and then move from s to z. This leads
to the following expression for Qs(z;B):

Qs(z;B) = p(z | s) +
∑

s′∈B\{s}

p(s′ | s)Qs′(z;B \ {s})

+
∑

s′∈B\{s}

p(s′ | s)Qs′(s;B \ {s})Qs(z;B). (67)

It follows that

Qs(z;B) =
p(z | s) +

∑
s′∈B\{s} p(s

′ | s)Qs′(z;B \ {s})
1−

∑
s′∈B\{s} p(s

′ | s)Qs′(s;B \ {s})
(68)

=
p(z | s) +

∑
s′∈B\{s} p(s

′ | s)Ws′→z(B\{s})
W (B\{s})

1−
∑
s′∈B\{s} p(s

′ | s)Qs′(s;B \ s)
(69)

=
p(z | s)W (B \ {s}) +

∑
s′∈B\{s} p(s

′ | s)Ws′→z(B \ {s})(
1−

∑
s′∈B\{s} p(s

′ | s)Qs′(s;B \ s)
)
·W (B \ {s})

(70)

=
Ws→z(B)(

1−
∑
s′∈B\{s} p(s

′ | s)Qs′(s;B \ s)
)
·W (B \ {s})

, (71)

where Eq. (68) follows from Eq. (67), Eq. (69) follows from the induction hy-
pothesis, and Eq. (71) holds because a g-path leads from s to z either if g(s) = z
(first summand in the numerator in Eq. (70)), or if g(s) = s′ and the g-path
that starts at s′ ends at z (second summand in the numerator in Eq. (70)).

Since the denominator in Eq. (71) is independent of z, it follows that

Qs(z;B) =
Ws→z(B)∑

z′ 6∈BWs→z′(B)
=
Ws→z(B)

W (B)
,

where the last equality holds since every path that leaves s ends in some state
z′ 6∈ B. We thus proved the induction step, which completes the proof of the
theorem.
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7.2 The Mean Discounted Time

Let 〈S, p〉 be a Markov chain. For every discount factor λ ∈ (0, 1] and every
state z ∈ S, the mean λ-discounted time the process spends in state z, when the
initial state is s, is given by

tλ(s, p; z) := Es,p

[
λ
∑
t∈N

(1− λ)t−11{st=z}

]
, (72)

where 1{st=z} is the indicator function.
Comparing Eq. (72) and Eq. (9) we see that tλ(s, p; z) is the λ-discounted

payoff of a Markov decision problem with state space S, where the decision
maker has a single action in each state, the transition is given by p, and the
payoff is 1 in state z and 0 in all other states.

Our basic observation is that the function p 7→ tλ(s, p; z) is a rational func-
tion of p, and that the two polynomials that define this rational function have
non-negative coefficients.

Proposition 7.7 For every initial state s, every state z ∈ S, and every discount
factor λ ∈ (0, 1], there exist two polynomials h1(p) and h2(p) in the |S|2 variables
(p(u | r))r,u∈S such that (i) both h1(p) and h2(p) have degree at most |S| and
non-negative coefficients, and (ii) tλ(s, p; z) = h1(p)/h2(p) for every transition
rule p over S.

Proof. Fix λ ∈ (0, 1]. Define an auxiliary Markov chain 〈Ŝ, p̂ 〉 as follows.

1. The state space is Ŝ = S′ ∪S′′, where S′ and S′′ are two disjoint copies of
S. For every state s ∈ S, we denote by s′ and s′′ the corresponding states
in S′ and S′′, respectively.

2. States in s′′ ∈ S′′ are absorbing: p̂ (s′′ | s′′) = 1 for each state s′′ ∈ S′′.

3. The transition rule from each state s′ ∈ S′ is given by

p̂ (s′′ | s′) = λ,

p̂ (z′ | s′) = (1− λ)p(z | s) ∀z ∈ S, and

p̂ (z′′ | s′) = 0 ∀z ∈ S \ {s}.

In words, from state s′ the process either moves with probability λ to state
s′′, where it is absorbed, or, with the complementary probability 1−λ, continues
as in the original Markov chain. Another way to view this construction is that
in every stage there is a fixed probability of λ that the process “terminates”
and gets stuck in the current state; the transition from the current state s′ ∈ S′
to its copy s′′ ∈ S′′ , which is absorbing, corresponds to the termination of the
process.

We claim that

tλ(s, p; z) = Qs(z
′′;S′), ∀s, z ∈ S;
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that is, the mean discounted time tλ(s, p; z) in the original Markov chain 〈S, p〉 is

nothing but the probability that the Markov chain 〈Ŝ, p̂〉 is absorbed at state z′′.
Indeed, for a fixed state z ∈ S, both vectors (tλ(s, p; z))s∈S and (Qs(z

′′;S′))s∈S
are solutions of the system of linear equations

x(s) = λ1{s=z} + (1− λ)
∑
r∈S

p(r | s)x(r) ∀s ∈ S; (73)

but this system has a unique solution. By Theorem 7.6,

tλ(s, p; z) =
Ws→z′′(S

′)

W (S′)
, ∀s, z ∈ S,

and the result follows, since the weight w(g) of every B-graph g is a product of
the terms λ, (1− λ), and (p(u | r))r,u∈S .

Comment 7.8 To prove that the function p 7→ tλ(s, p; z) is a rational function
of p, it is sufficient to show that it is the solution of the system of linear equa-
tions (73). We used B-graphs to show that the two polynomials that define this
rational function have non-negative coefficients.

Corollary 7.9 For every initial state s ∈ S, every discount factor λ ∈ (0, 1],
and every collection of non-negative scalars (θz)z∈S, the function p 7→

∑
z∈S θztλ(s, p; z)

is the ratio of two polynomials in the variables (p(u | r))r,u∈S of degree at most
|S| with non-negative coefficients.

Proof. By Proposition 7.7, for every fixed pair of states s, z ∈ S, the
function p 7→ tλ(s, p; z) is the ratio of two polynomials in (p(u | r))r,u∈S . By
Theorem 7.6 and the proof of Proposition 7.7, all these ratios have the same
denominator, which has non-negative coefficients and degree at most |S|, as
do each of the numerators. Since (θz)z∈S are non-negative scalars, the result
follows.

7.3 The Mean Discounted Time and Stochastic Games

Fix a two-player zero-sum stochastic game Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉.
In this section we will vary the transition rule and the payoff function, and de-
note by γλ(s, q, r;x) the λ-discounted payoff at the initial state s under the
stationary strategy profile x when the transition rule is q and the payoff func-
tion is r.

Every vector x of stationary strategies induces a Markov chain over the set
of states S with the transition rule p defined by

p(z | s) := q(z | s, x(s)), ∀s, z ∈ S;

that is, the probability to move from state s to state z in the Markov chain
〈S, p〉 is the probability that under the stationary strategy profile x the play
moves from state s to state z. We denote by tλ(s, q, x; z) the λ-discounted time
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that the Markov chain induced by the stationary strategy profile x spends at
state z when the initial state is s.

The concept of mean discounted time can be used to express the discounted
payoff.

Lemma 7.10 Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-
sum stochastic game. For every initial state s ∈ S, every stationary strategy
profile x, and every discount factor λ ∈ (0, 1], we have

γλ(s, q, r;x) =
∑
z∈S

r(z, x(z))tλ(s, q, x; z).

Proof. The lemma follows from the following list of equalities.

γλ(s, q, r;x) = Es,x

[
λ
∑
t∈N

(1− λ)t−1r(st, at)

]
(74)

= Es,x

[
λ
∑
t∈N

(1− λ)t−1r(st, x(st))

]
(75)

=
∑
z∈S

Es,x

[
λ
∑
t∈N

(1− λ)t−1r(st, x(st))1{st=z}

]
(76)

=
∑
z∈S

r(z, x(z))Es,x

[
λ
∑
t∈N

(1− λ)t−11{st=z}

]
(77)

=
∑
z∈S

r(z, x(z))tλ(s, q, x; z), (78)

where Eq. (74) follows from the definition of the discounted payoff, Eq. (75)
holds because Es,x[r(st, at) | ht] = r(st, x(st)), Eqs. (76) and (77) hold be-
cause expectation is linear, and Eq. (78) follows from the definition of the mean
discounted time.

7.4 A Distance Between Transition Rules

In this section we introduce and study a semi-metric d(·, ·) between transition
rules in stochastic games. Recall that a semi-metric satisfies symmetry and
separation (d(q, q′) = 0 if and only if q = q′), but it does not necessarily satisfies
the triangle inequality.

Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-sum stochas-
tic game. Denote by Q∗ = (∆(S))S×A1×A2 the set of all transition rules. Define
a function d : Q∗ ×Q∗ → [0,+∞] as follows: for every q, q′ ∈ Q∗,

d(q, q′) = max

{
q(z | s, a1, a2)

q′(z | s, a1, a2)
,
q′(z | s, a1, a2)

q(z | s, a1, a2)
| s, z ∈ S, a1 ∈ A1, a2 ∈ A2

}
−1,

where by convention x/0 = +∞ for x > 0, and 0/0 = 1. Let us list a few simple
properties of the non-negative valued function d(·, ·):
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A.i) d(q, q′) = 0 if and only if q = q′;

A.ii) Symmetry: d(q, q′) = d(q′, q);

A.iii) d(q, q′) < +∞ if and only if q and q′ have the same supports, that is,
supp(q(· | s, a) = supp(q′(· | s, a)) for every (s, a) ∈ SA; and

A.iv) d(qn, q) → 0 if and only if qn → q in the Euclidean norm and q and qn
have the same support for all sufficiently large n ∈ N.

As the following example shows, d(·, ·) does not necessarily satisfy the triangle
inequality, hence it is not a metric.

Example 7.11 Let S = {s, s′}, and take |A1| = |A2| = 1;, thus, the stochastic
game reduces to a Markov chain. Fix ε ∈ (0, 1

4 ), and consider the three Markov
chains displayed in Figure 16. Formally, for k = 1, 2, 4, define a transition rule
qk : S → ∆(S) by qk(s | z) = 1 − pk(s′ | z) = kε for each state z ∈ S. Since
ε ∈ (0, 1

4 ) one has

d(q1, q2) = max

{
ε

2ε
,

2ε

ε
,

1− ε
1− 2ε

,
1− 2ε

1− ε

}
= 1,

d(q2, q4) = max

{
2ε

4ε
,

4ε

2ε
,

1− 2ε

1− 4ε
,

1− 4ε

1− 2ε

}
= 1,

and

d(q1, q4) = max

{
ε

4ε
,

4ε

ε
,

1− ε
1− 4ε

,
1− 4ε

1− ε

}
= 2.5.

Therefore, d(q1, q2) + d(q2, q4) < d(q1, q4), and the triangle inequality does not
hold.

1− ε

ε
ε1− ε

ss′

Markov chain 〈S, q1〉
1− 2ε

2ε
2ε1− 2ε

ss′

Markov chain 〈S, q2〉

1− 4ε

4ε
4ε1− 4ε

ss′

Markov chain 〈S, q5〉

Figure 16: The Markov chains in Example 7.11.
�
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7.5 Continuity of the Value

The next result estimates the maximal change in the discounted value as one
changes the transition rule and the payoff function.

Theorem 7.12 Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-
sum stochastic game, let q′ : S × A1 × A2 → ∆(S) be an arbitrary transition
rule, and let r′ : S × A1 × A2 → R be an arbitrary payoff function. Then for
every λ ∈ (0, 1] and every initial state s ∈ S,

|vλ(s; q′, r′)− vλ(s; q, r)| ≤ 4|S|d(q, q′)‖r‖∞ + ‖r − r′‖∞.

Theorem 7.12 implies that the difference between the discounted values of
two stochastic games that share the same set of states and actions can be
bounded by a constant that is independent of the discount factor. To prove
Theorem 7.12, we need the following technical result.

Lemma 7.13 Let f(x1, . . . , xk) be a polynomial in x1, . . . , xk with non-negative
coefficients and degree at most n, and let ε ≥ 0. Let y, y′ ∈ Rk be two non-

negative vectors such that
1

1 + ε
≤ yi
y′i
≤ 1 + ε for every i = 1, . . . , k. Then

1

1 + ε−n
≤ f(y)

f(y′)
≤ (1 + ε)n.

Recall that 0
0 = 1, and therefore the condition

1

1 + ε
≤ yi
y′i
≤ 1 + ε implies

that yi = 0 if and only if y′i = 0.

Proof. Denote f(x) =
∑I
i=1 ai

∏ni
j=1 xki,j , where I ∈ N, and for every

i = 1, . . . , I, ai ≥ 0, 0 ≤ ni ≤ n, and 1 ≤ ki,j ≤ k for each j = 1, . . . , ni. Since
y and y′ are non-negative vectors, the condition in the lemma implies that for
every i = 1, . . . , I we have

1

(1 + ε)n

ni∏
j=1

y′ki,j ≤
ni∏
j=1

yki,j ≤ (1 + ε)n
ni∏
j=1

y′ki,j . (79)

Since (ai)
I
i=1 are non-negative, multiplying Eq. (79) by ai and summing over

i = 1, . . . , I we obtain

1

(1 + ε)n
f(y′) ≤ f(y) ≤ (1 + ε)nf(y′),

and the result follows since y, y′, and the coefficients of f are non-negative.

The next lemma states that if the payoff function is non-negative, then one

can uniformly bound the ratio
γλ(s1, q

′, r;x1, x2)

γλ(s1, q, r;x1, x2)
over the set of stationary

strategy pairs (x1, x2).

A payoff function r : SA→ R is non-negative if r(s, a) ≥ 0 for all (s, a) ∈ SA.
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Lemma 7.14 Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-
sum stochastic game with a non-negative payoff function r, and let q′ ∈ Q∗ be a
transition rule that satisfies d(q, q′) < 1

2|S| . Then for every stationary strategy

profile x one has

(1− d(q, q′))2|S| ≤ γλ(s1, q
′, r;x)

γλ(s1, q, r;x)
≤ 1

(1− d(q, q′))2|S| . (80)

Proof. Fix a stationary strategy profile x. As mentioned before, x naturally
defines a Markov chain over S with transition rule p defined by

p(z | s) = q(z | s, x(s)), ∀z, s ∈ S.

By Lemma 7.10, for every λ ∈ (0, 1],

γλ(s, q, r;x) =
∑
z∈S

r(z, x(z))tλ(s, q, x; z). (81)

By Eq. (81) and Corollary 7.9, with θz = r(z, x(z)) for every z ∈ S, and since
r is non-negative, for each state s ∈ S there exist two polynomials h1 and h2

in the |S|2 variables (q(u | x(z)))u,z∈S of degrees at most |S| and non-negative
coefficients, such that

γλ(s, q′, r;x)

γλ(s, q, r;x)
=

h1(q)

h1(q′)
· h2(q′)

h2(q)
. (82)

Set ε = d(q, q′) < 1
2|S| < 1. By the definition of d(q, q′), for each (z, s, a1, a2) ∈

S2 ×A1 ×A2 the two quantities

q(z | s, a1, a2)

q′(z | s, a1, a2)
and

q′(z | s, a1, a2)

q(z | s, a1, a2)

are between 1
1+ε and 1 + ε. Eq. (82) and Lemma 7.13, with k = |S|2 · |A| · |B|,

imply that

(1 + d(q, q′))−2|S| ≤ γλ(s1, q
′, r;x)

γλ(s1, q, r;x)
≤ (1 + d(q, q′))2|S|.

Since for every y ∈ [0, 1] one has 1 − y ≤ 1/(1 + y) and 1 + y ≤ 1/(1 − y), we
obtain Eq. (80).

Lemma 7.15 Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-
sum stochastic game, and let q′ ∈ Q∗ satisfy d(q, q′) < 1

2|S| . Then for every

initial state s ∈ S,

|vλ(s; q, r)− vλ(s; q′, r)| ≤ 4|S|d(q, q′)‖r‖∞. (83)

Proof. Define a payoff function r′ : SA→ R by

r′(s, a) := r(s, a) + ‖r‖∞, ∀(s, a) ∈ SA,
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which is non-negative. Fix an initial state s ∈ S. By Lemma 7.14,

(1−d(q, q′))2|S| ·γλ(s1, q, r
′;x) ≤ γλ(s, q′, r′;x) ≤ 1

(1− d(q, q′))2|S| ·γλ(s, q, r′;x),

for every stationary strategy profile x ∈ X. For every y ∈ (0, 1
2|S| ] we have

1− 2|S|y ≤ (1− y)2|S|

and
1

(1− y)2|S| ≤
1

1− 2|S|y
≤ 1 + 4|S|y,

and since by assumption d(q, q′) < 1
2|S| , we deduce that

(1− 2|S|d(q, q′))·γλ(s1, q, r
′;x) ≤ γλ(s, q′, r′;x)

≤ (1 + 4|S|d(q, q′)) · γλ(s, q, r′;x), ∀x ∈ X.
(84)

It follows that

(1− 2|S|d(q, q′)) · max
x1∈X1

min
x2∈X2

γλ(s, q, r′;x) ≤ max
x1∈X1

min
x2∈X2

γλ(s, q′, r′;x)

≤ (1 + 4|S|d(q, q′)) · max
x1∈X1

min
x2∈X2

γλ(s, q, r′;x).

This in turn implies that

(1− 2|S|d(q, q′)) · vλ(s; q, r′) ≤ vλ(s; q′, r′) ≤ (1 + 4|S|d(q, q′)) · ·vλ(s; q, r′). (85)

By Exercise 3.3,

vλ(s1, q, r
′) = vλ(s1, q, r) + ‖r‖∞,

vλ(s1, q
′, r′) = vλ(s1, q

′, r) + ‖r‖∞.

We deduce that

(1− 2|S|d(q, q′)) · vλ(s; q, r)− 2|S|d(q, q′)‖r‖∞ ≤ vλ(s; q′, r)

≤ (1 + 4|S|d(q, q′)) · ·vλ(s; q, r′) + 4|S|d(q, q′)‖r‖∞,

and Eq. (83) follows.

We now turn to prove Theorem 7.12.

Proof of Theorem 7.12. By Theorem 3.15 (Page 50), for every initial
state s ∈ S, every transition rule q, every pair of payoff functions (r, r′), and
every λ ∈ (0, 1],

|vλ(s, q, r)− vλ(s, q, r′)| ≤ ‖r − r′‖∞.
By the triangle inequality it is therefore sufficient to prove that

|vλ(s, q′, r)− vλ(s, q, r)| ≤ 4|S|d(q, q′)‖r‖∞.

This inequality holds trivially when d(q, q′) ≥ 1/(2|S|). Indeed, in this case the
right-hand side is at least 2‖r‖∞, while the left-hand side is at most 2‖r‖∞.

Assume then that d(q, q′) < 1/(2|S|). In this case, Lemma 7.15 yields the
desired result.
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Corollary 7.16 Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-
sum stochastic game, let (λn)n∈N be a sequence of discount factors that converges
to 0, let (qn)n∈N be a sequence of transition rules that satisfies limn→∞ d(qn, q) =
0, and let (rn)n∈N be a sequence of payoff functions that satisfies limn→∞ ‖rn−
r‖∞ = 0. Then

lim
n→∞

vλn(s; qn, rn) = lim
λ→0

vλ(s; q, r), ∀s ∈ S.

Proof. Fix an initial state s ∈ S. By the triangle inequality,

|vλn(s; qn, rn)− lim
λ→0

vλ(s; q, r)| ≤ |vλn(s; qn, rn)− vλn(s; q, r)|

+|vλn(s; q, r)− lim
λ→0

vλ(s; q, r)|.

The first term goes to 0 by Theorem 7.12, and the second term goes to 0 by
Corollary 6.15.

Let S be a set of states, and let (A1(s))s∈S and (A2(s))s∈S be the action
sets of the two players. For every initial state s ∈ S, every transition rule
q : SA → ∆(S), and every payoff function r : SA → R, denote the limit of the
λ-discounted value at the initial state s by

v0(s; q, r) := lim
λ→0

vλ(s; q, r).

As a conclusion of Corollary 7.16 we deduce that the function (q, r) 7→
v0(s; q, r) is continuous (See Exercise 7.5).

Corollary 7.17 Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-
sum stochastic game, let (qn)n∈N be a sequence of transition rules that satisfies
limn→∞ d(qn, q) = 0, and let (rn)n∈N be a sequence of payoff functions that
satisfies limn→∞ ‖rn − r‖∞ = 0. Then

lim
n→∞

v0(s; qn, rn) = v0(s; q, r), ∀s ∈ S.

7.6 Comments and Extensions

Theorem 7.6 provides an expression for the exit probability from a set using B-
graphs. In Exercise 7.6 we provide an expression for the invariant distribution
of a Markov chain using B-graphs. More general expressions of these type were
obtained by Freidlin and Wentzell (1986, Section 6.3). They also provided an
expression for the expected time until the process leaves a given set B using
B-graphs. The first to introduce B-graphs to Game Theory was Vieille (2000b,
2000c), in his study of two-player stochastic games. Theorem 7.12 is due to Solan
(2003). It was used in the literature to characterize the limit v0(s; q, r) or to
compute it, see, e.g., Chatterjee, Majumdar, and Henzinger (2008), Chatterjee,
Alfaro, and Henzinger (2009), or Oliu-Barton (2014).
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7.7 Exercises

1. Let 〈S, p〉 be a Markov chain with state space is S = {s1, s2, s3, s4}, and
let B = {s1, s2}. Using the tools developed in this section, calculate
Qs1,p(s3 | B) in each of the following cases (all transitions from states in
B that are not mentioned equal 0).

(a)
p(s2 | s1) = 1

4 , p(s3 | s1) = 3
4 ,

p(s1 | s2) = 1
7 , p(s3 | s2) = 2

7 , p(s4 | s2) = 4
7 .

(b)
p(s2 | s1) = 1

4 , p(s3 | s1) = 1
2 , p(s4 | s1) = 1

4 ,

p(s1 | s2) = 1
5 , p(s3 | s2) = 2

5 , p(s4 | s2) = 2
5 .

2. Let 〈S, p〉 be a Markov chain with state space is S = {s1, s2, s3, s4, s5}, and
let B = {s1, s2, s3}. Using the tools developed in this section, calculate
Qs1,p(s4 | B) in each of the following cases (all transitions from states in
B that are not mentioned equal 0).

(a)

p(s2 | s1) = 1
9 , p(s3 | s1) = 3

9 , p(s4 | s1) = 3
9 , p(s5 | s1) = 2

9 ,

p(s1 | s2) = 5
11 , p(s3 | s2) = 3

11 , p(s4 | s2) = 2
11 , p(s5 | s2) = 1

11 ,

p(s1 | s3) = 1
3 , p(s2 | s3) = 2

3 .

(b)

p(s2 | s1) = 1
9 , p(s3 | s1) = 3

9 , p(s4 | s1) = 3
9 , p(s5 | s1) = 2

9 ,

p(s1 | s2) = 5
11 , p(s3 | s2) = 3

11 , p(s4 | s2) = 2
11 , p(s5 | s2) = 1

11 ,

p(s1 | s3) = 1
7 , p(s2 | s3) = 2

7 , p(s4 | s3) = 3
7 , p(s5 | s3) = 1

7 .

3. Let 〈S, p〉 be a Markov chain, and let B ⊂ S be a non-empty set.

(a) Can W (B) be strictly larger than 1?

(b) Can W (B) be strictly smaller than 1?

Justify your answers.

4. Explain where in the proof of Lemma 7.15 we used the assumption that
d(q, q′) < 1/(2|S|).

5. Prove Corollary 7.17: Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-
player zero-sum stochastic game, let (qn)n∈N be a sequence of transition
rule that satisfies limn→∞ d(qn, q) = 0, and let (rn)n∈N be a sequence of
payoff functions that satisfies limn→∞ ‖rn − r‖∞ = 0. Show that

lim
n→∞

v0(s; qn, rn) = v0(s; q, r), ∀s ∈ S.
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6. In this exercise we provide an expression for the invariant distribution of a
Markov chain using B-graphs. Let 〈S, p〉 be a Markov chain. Assume that
for every initial state states s ∈ S and every state z ∈ S there is a positive
probability that the process reaches z, that is, Ps,p(∃t ∈ N such that st =
z) > 0. Let µ be the unique invariant measure of the Markov chain, that
is, µ is the unique solution of the system of linear equations

µ(s) =
∑
s′∈S

µ(s′)p(s | s′), ∀s ∈ S. (86)

Prove that for every state s ∈ S we have

µ(s) =
W (S \ {s})∑
s∈SW (S \ {s})

. (87)

Hint: Substitute Eq. (87) in Eq. (86).
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8 Kakutani’s Fixed-Point Theorem and Multi-
Player Discounted Stochastic Games

Abstract

In this chapter we prove Kakutani’s Fixed Point Theorem, which is
an extension of Brouwer’s Fixed Point Theorem to correspondences (set-
valued functions). We then define the concept of λ-discounted equilibrium,
and using Kakutani’s Fixed Point Theorem we prove that every multi-
player stochastic game admits a stationary λ-discounted equilibrium, for
every discount factor λ ∈ (0, 1].

8.1 Kakutani’s Fixed Point Theorem

We here state Kakutani’s Fixed Point Theorem (Kakutani, 1941),26 and prove
it using Brouwer’s Fixed Point theorem.27

Definition 8.1 A correspondence (or set-valued mapping) F between a set X
and a set Y , denoted F : X ⇒ Y , is a mapping that assigns to each point x ∈ X
a subset of Y . In other words, it is a mapping from X to the collection of all
subsets of Y .

If F is a correspondence, a point x ∈ X such that x ∈ F (x) is called a fixed
point of F .

Theorem 8.2 (Kakutani) Let X ⊆ Rn be a nonempty, compact, and convex
set. Let F : X ⇒ X be a correspondence that satisfies the following conditions.

1. For every x ∈ X, the set F (x) is nonempty and convex.

2. The graph of F , Graph(F ) :=
{

(x, y) ∈ R2n | x ∈ X, y ∈ F (x)
}

, is com-
pact.

Then F has a fixed point.

26Shizuo Kakutani (Osaka, Japan, August 28, 1911 – New Haven, Connecticut, August
17, 2004) was a Japanese-American mathematician, best known for the fixed-point theorem
that carries his name. Kakutani’s other well-known mathematical contributions include the
Kakutani skyscraper, a concept in ergodic theory, and his solution of the Poisson equation
using methods of stochastic analysis.

27Luitzen Egbertus Jan Brouwer (Rotterdam, Netherlands, February 27, 1881 – Blaricum,
Netherlands, December 2, 1966), was a Dutch mathematician who worked in topology, set
theory, measure theory, and complex analysis.
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Kakutani’s Fixed Point Theorem is an extension of Brouwer’s Fixed Point
Theorem, which we state now. There are many proofs for Brouwer’s Fixed Point
Theorem, see, e.g., Border (1985).

Theorem 8.3 (Brouwer) Let X ⊂ Rn be a nonempty, compact, and convex
set, and let f : X → X be a continuous mapping. Then there is point x ∈ X
such that x = f(x).

Comment 8.4 To see that Brouwer’s Fixed Point Theorem is a special case of
Kakutani’s Fixed Point Theorem, let f : X → X be a continuous mapping and
define a correspondence F : X ⇒ X by

F (x) := {f(x)}, ∀x ∈ X.

Clearly, F has nonempty and convex values, and since f is continuous, F has a
compact graph. By Kakutani’s Fixed Point Theorem, the correspondence F has
a fixed point x, which is also a fixed point of f .

Carathéodory’s Theorem states that if a point in Rn is a convex combination
of n+ 2 points, then it is a convex combination of n+ 1 of those points.

Theorem 8.5 (Carathéodory) Let x, x1, . . . , xn+2 ∈ Rn, and assume that

x =
∑n+2
i=1 αixi, for some non-negative real numbers α1, . . . , αn+2 that sum up

to 1. Then there are non-negative real numbers β1, . . . , βn+2 that sum up to 1
such that at least one of them is 0 and x =

∑n+2
i=1 βixi.

Proof. If there is an index i ∈ {1, . . . , n + 2} such that αi = 0, then the
conclusion is immediate. Assume then that αi > 0 for all i ∈ {1, 2, . . . , n+ 2}.

Consider the following system of n + 1 linear equations with the n + 2 real
unknowns z1, . . . , zn+2:

n+2∑
i=1

zixi = x,

n+2∑
i=1

zi = 1.

(88)

Since x1, . . . , xn+2 ∈ Rn, the first equation contributes n equations, one for
each coordinate. Hence the system (88) is a system of n + 1 linear equations
with n + 2 unknowns, and by assumption it has at least one solution in the
non-negative orthant – α1, . . . , αn+2. Since the system is linear, its solution set
is an affine subspace of Rn+2. Since the number of variables is larger than the
number of equations, if the system has at least one solution, then the dimension
of the solution set is at least 1. It follows that there is a line ` of solutions that
passes through the point α = (α1, . . . , αn+2).

The point α = (α1, . . . , αn+2) lies in the simplex

∆(n+ 2) :=

{
z ∈ Rn+2 : z1, . . . , zn+2 = 0,

n+2∑
i=1

zi = 1

}
,
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which is a compact set. Since the line ` is infinite, it must intersect the boundary
of ∆(n+2) in some point (in fact, in two points). Denote one of the intersection
points of ` and ∆(n+2) by β. Since β lies on `, it solves the system (88). Since it
lies on the boundary of ∆(n+ 2), it satisfies βi ≥ 0 for every i ∈ {1, . . . , n+ 2},
and βi = 0 for at least one i. Therefore, β satisfies the requirements of the
theorem.

Induction on k yields the following corollary of Theorem 8.5.

Corollary 8.6 Let k ≥ 2, and let x, x1, . . . , xn+k ∈ Rn. Assume that x =∑n+k
i=1 αixi, for some non-negative real numbers α1, . . . , αn+k that sum up to 1.

Then there are non-negative real numbers β1, . . . , βn+k that sum up to 1 such

that at most n+ 1 of the βi’s are not 0 and x =
∑n+k
i=1 βixi.

We are now ready to prove Kakutani’s Fixed Point Theorem.

Proof of Theorem 8.2. Fix for the moment m ∈ N. Since X is compact,
there exist a positive integer K = Km ∈ N and points xm1 , x

m
2 , . . . , x

m
K ∈ X such

that the open balls with centers xmi and radius 1/m cover X:

X ⊆
K⋃
k=1

B(xmk , 1/m). (89)

Denote by Bc
k = Rn \ B(xmk , 1/m) the complement of B(xmk , 1/m). For each

k = 1, . . . ,K, choose ymk ∈ F (xmk ). Since F (x) 6= ∅ for every x ∈ X, such a
choice is possible.

Define a mapping fm : X → Rn by

fm(x) :=

K∑
k=1

d(x,Bc
k)∑K

k=1 d(x,Bc
k)
· ymk , ∀x ∈ X. (90)

Thus, fm(x) is a convex combination of ym1 , . . . , y
m
K . By Eq. (89), every x ∈ X

lies inside at least one of the open balls (B(xmk , 1/m))Kk=1. It follows that the
denominator in Eq. (90) is positive for every x ∈ X, and therefore the mapping
fm is well defined.

Let us verify that fm satisfies the conditions of Brouwer’s Fixed Point The-
orem. Since the function x 7→ d(x,Bc

k) is continuous on X, so is the mapping
fm. Further, since ymk ∈ F (xmk ) ⊆ X, and since X is convex, fm(x) ∈ X for
every x ∈ X. By Brouwer’s Fixed Point Theorem, the mapping fm has a fixed
point: there is a point xm ∈ X such that xm = fm(xm). That is,

xm = fm(xm) =

K∑
k=1

d(xm, Bc
k)∑K

l=1 d(xm, Bc
l )
· ymk .

Thus, xm is a convex combination of ym1 , . . . , y
m
K , and the coefficient of ymk is

positive if and only if d(xm, xmk ) < 1
m .

By Carathéodory’s Theorem, there are numbers km1 , . . . , k
m
n+1 ∈ {1, . . . ,K}

and βm1 , . . . , β
m
n+1 such that
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(A.1) βmi ≥ 0 for i = 1, . . . , n+ 1.

(A.2)
∑n+1
i=1 β

m
i = 1.

(A.3) βmi > 0 implies that d(xm, xmkmi
) < 1/m.

(A.4) xm =
∑n+1
i=1 β

m
i y

m
kmi

.

This construction is valid for every m ∈ N. Since X is compact, there is a
subsequence (ml)l∈N such that

� The sequence (xml)l∈N converges to a limit x∗.

� For each i = 1, . . . , n+ 1, the sequence (yml
k
ml
i

)l∈N converges to a limit y∗i .

� For each i = 1, . . . , n+ 1, the sequence (βmli )l∈N converges to a limit β∗i .

Taking the limit m→∞, Conditions (A.1)–(A.4) have several consequences.

By conditions (A.1) and (A.2),
∑n+1
i=1 β

∗
i = 1 and β∗i ≥ 0 for every i ∈ {1, . . . , n}.

Since d(xm, xml
k
ml
i

) < 1/ml for every l ∈ N, and since (xml)l∈N converges to x∗,

the sequence (xml
k
ml
i

)l∈N converges to x∗ as well. Since yml
k
ml
i

∈ F (xml
k
ml
i

), and

since the set Graph(F ) is closed, y∗i ∈ F (x∗i ) = F (x∗) for each i = 1, . . . , n+ 1.

Condition (A.4) implies that x∗ =
∑n+1
i=1 β

∗
i y
∗
i . Since F (x∗) is convex, x∗ ∈

F (x∗), and therefore x∗ is a fixed point of F .

8.2 Discounted Equilibrium

Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game. Recall that for every

strategy profile σ ∈ Σ, every state s ∈ S, and every player i ∈ I, the λ-
discounted payoff of player i under σ at the initial state s is

γiλ(s;σ) := Es,σ

[
λ

∞∑
t=1

(1− λ)t−1ri(st, at)

]

:= λ

∞∑
t=1

(1− λ)t−1Es,σ

[
ri(st, at)

]
.

The concept of λ-discounted equilibrium in stochastic games is the adap-
tation of the concept of λ-discounted optimal strategies in Markov decision
problems that was introduced in Definition 1.21.

Definition 8.7 Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game, let

s ∈ S, and let λ ∈ (0, 1]. A strategy profile σ∗ = (σi∗)i∈I ∈ Σ is a λ-discounted
equilibrium at the initial state s if for every player i ∈ I and every strategy
σi ∈ Σi we have

γiλ(s;σ∗) ≥ γiλ(s;σi, σ−i∗ ).

A strategy profile σ∗ is a λ-discounted equilibrium if it is a λ-discounted equi-
librium at all initial states.
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Recall that the space of strategies of player i is the set Σi of all mappings

σi : (s1, a1, . . . , at, st+1) 7→ ∆(A(st+1)).

This set is compact in the product topology. In this topology, a sequence of
stationary strategies (σik)k∈N converges to σi if and only if

lim
k→∞

σik(ht) = σi(ht), ∀ht ∈ H.

Moreover, the λ-discounted payoff is continuous in this topology (Exercise 8.1):
if limk→∞ σik = σi for every i ∈ I, then

lim
k→∞

γλ(s;σ1
k, σ

2
k, . . . , σ

n
k ) = γλ(s;σ1, σ2, . . . , σn).

It follows that the set of λ-discounted equilibria is compact.

Theorem 8.8 Let (σk)k∈N be a sequence of λ-discounted equilibria in a stochas-
tic game Γ that converges to a limit σ ∈ Σ. Then σ is a λ-discounted equilibrium.

The proof of Theorem 8.8 is left for the reader as an exercise (Exercise 8.2).
Since the image of a compact set under a continuous function is compact, we
deduce the following result.

Theorem 8.9 Let Γ be a stochastic game and let Eλ(s) ⊆ Rn denote the set
of all λ-discounted equilibrium payoffs at the initial state s in Γ. Then Eλ(s) is
compact.

In the next section we prove that there always exists a λ-discounted equilib-
rium in stationary strategies.

8.3 Existence of Stationary Discounted Equilibria

Here we prove that any multiplayer stochastic game has at least one discounted
equilibrium in stationary strategies, for every discount factor. Our approach
is analogous to the one we used for zero-sum games. The main difference is
that we use Kakutani’s Fixed Point Theorem (Theorem 8.2) instead of the fixed
point theorem for contracting mappings. This is done because the mapping that
assigns to every strategic-form game its set of equilibria is not non-expansive
(see Exercise 3.4 on Page 50).

We need the following technical Lemma.

Lemma 8.10 Let X,Y ⊂ Rn be two compact sets, and let f : X × Y → R be a
continuous function. Define a correspondence F : X ⇒ Y by

F (x) := argmaxy∈Y f(x, y) =

{
y ∈ Y | f(x, y) = max

z∈Y
f(x, z)

}
.

Then
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1. F (x) is nonempty for every x ∈ X.

2. Graph(F ) ⊆ X × Y is a compact set.

3. If moreover f(x, y) is linear in y for every fixed x, then the set F (x) is
convex for every x ∈ X.

Proof. The first claim holds because f is continuous and Y is compact.
Let us prove the second claim. Since X and Y are compact and since

Graph(F ) ⊆ X × Y , it is sufficient to prove that Graph(F ) is closed. Let
(xk, yk)k∈N be a sequence that satisfies the following properties:

� For every k ∈ N, xk ∈ X, yk ∈ Y , and yk ∈ F (xk), and

� The limits x = limk→∞ xk, and y = limk→∞ yk exist.

We prove that y ∈ F (x); that is, f(x, y) ≥ f(x, z) for every z ∈ Y . Let z ∈ Y
be arbitrary. For every k we have yk ∈ F (xk), hence f(xk, yk) ≥ f(xk, z). Since
f is continuous, f(x, y) ≥ f(x, z).

Finally, we prove the third claim. Assume that f(x, y) is linear in y for each
fixed x. If y1, y2 ∈ F (x), then f(x, y1) = f(x, y2). By the linearity of f , we
have f(x, αy1 + (1 − α)y2) = f(x, y1) for every α ∈ [0, 1]. This implies that
αy1 + (1− α)y2 ∈ F (x), for every α ∈ [0, 1], and therefore F (x) is convex.

As for the zero-sum case, we define for every state s ∈ S, every discount
factor λ, and every mapping w : S → Rn an auxiliary strategic-form game
Gs,λ(w), where the payoff is the sum of the stage payoff in state s (with weight
λ) and a continuation payoff that is derived from w (with weight 1 − λ). Let
Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r

i)i∈I〉 be a stochastic game, and let w : S → Rn be
an arbitrary mapping (recall that n is the number of players). For each state
s ∈ S consider the following strategic-form game Gs,λ(w):

� The set of players is I = {1, 2, . . . , n}.

� The set of actions of player i is Ai(s).

� The payoff function of player i is

ui(a) := λri(s, a) + (1− λ)
∑
s′∈S

q(s′ | s, a)wi(s′), ∀a ∈ A(s).

We can now state and prove the main result of this section.

Theorem 8.11 Any stochastic game admits a stationary λ-discounted equilib-
rium, for every λ ∈ (0, 1].

Proof. Step 1: Application of Kakutani’s Fixed Point Theorem.
Set

M := max
i∈I
‖ri‖∞.
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This is a bound on all the payoffs in the game. Consider the set

XW :=

(∏
i∈I

∏
s∈S

∆(Ai(s))

)
× [−M,M ]n×|S| ⊆ R

∑
i∈I

∑
s∈S |A

i(s)|+n|S|.

The set XW is compact and convex. An element of X will be denoted by(
(xi(s))i∈Is∈S , (w

i(s))i∈Is∈S
)
, where xi(s) ∈ ∆(Ai(s)) and wi(s) ∈ [−M,M ] for every

i ∈ I and every s ∈ S. The coordinates xi = (xi(s))s∈S should be thought of
as a stationary strategy of player i, and the coordinates wi = (wi(s))s∈S should
be thought of as continuation payoffs for player i if the game reaches state s.

We now define a correspondence F : XW ⇒ XW as follows. The coordi-
nates of F will be denoted by

F = (F i,sX , F i,sW )i∈Is∈S ,

where F i,sX (x,w) ⊆ ∆(Ai(s)) and F i,sW (x,w) is a singleton in [−M,M ] for every

i ∈ I, s ∈ S, and (x,w) ∈ XW . Since F i,sW (x,w) is a singleton, we will abuse

notation and denote this singleton by F i,sW (x,w). The correspondence F is
defined by:

F i,sX (x,w) :=

:= argmaxyi∈∆(Ai(s))

(
λri(s, yi, x−i(s)) + (1− λ)

∑
s′∈S

q(s′ | s, yi, x−i(s))wi(s′)

)
,

and
F i,sW (x,w) := λri(s, x(s)) + (1− λ)

∑
s′∈S

q(s′ | s, x(s))wi(s′).

Let us explain the motivation behind this definition. Consider the strategic-
form game Gs,λ(w). Then (F i,sW (x,w))i∈I is the expected payoff in this game

when the players use the mixed action profile x. The quantity F i,sX (x,w) is the
set of all best replies of player i to the mixed action profile x−i(s) of the other
players in this strategic-form game.

By Lemma 8.10, the correspondence F has nonempty and convex values
and a compact graph. By the continuity of the functions x(s) 7→ ri(x(s)) and
x(s) 7→ q(s′ | s, x(s)), the correspondence F has nonempty values. Hence, we
can apply Kakutani’s Fixed Point Theorem (Theorem 8.2), which guarantees
the existence of a fixed point (x∗, w∗) ∈ XW for F . We prove that x∗ is a sta-
tionary λ-discounted equilibrium, and that w∗ is the corresponding λ-discounted
equilibrium payoff.

Step 2: γiλ(s;x∗) = wi∗(s) for every player i ∈ I and every initial state s ∈ S.

Fix a player i ∈ I. Since (x∗, w∗) is a fixed point of F , we have

wi∗(s) = λri(s, x∗(s)) + (1− λ)
∑
s′∈S

q(s′ | s, x∗(s))wi∗(s′), ∀i ∈ I, ∀s ∈ S.
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By Lemma 1.28 (Page 25), γiλ(s;x∗) = wi∗(s) for every initial state s ∈ S.

Step 3: γiλ(s;σi, x−i∗ ) ≤ wi∗(s) for every i ∈ I, every strategy σi of player i,
and every initial state s ∈ S.

Fix a player i ∈ I and a strategy σi ∈ Σi. By the definition of F , for every
state s ∈ S we have wi∗(s) = F i,sW (x∗, w∗). That is, xi∗(s) is a best reply of
player i to x−i∗ in the strategic-form game Gs,λ(w∗). It follows that for every
mixed action yi ∈ ∆(Ai(s)) we have:

λri(s, yi, x−i∗ (s)) + (1− λ)
∑
s′∈S

q(s′ | s, yi, x−i∗ (s))wi∗(s
′)

≤ λri(s, x∗(s)) + (1− λ)
∑
s′∈S

q(s′ | s, x∗(s))wi∗(s′) = F i,sW (x∗) = wi∗(s).
(91)

For each history ht ∈ H, substitute s = st and yi = σi(ht) in Eq. (91). We
deduce that

λri(st, σ
i(ht), x

−i
∗ (st)) + (1− λ)

∑
s′∈S

q(s′ | st, σi(ht), x−i∗ (st))w
i
∗(s
′) ≤ wi∗(st).

By Lemma 1.28 (Page 25), it follows that γiλ(s;σi, x−i∗ ) ≤ wi∗(s) for every initial
state s ∈ S.

8.4 Semi-Algebraic Sets and Discounted Stochastic Games

In this section we will apply the results on semi-algebraic sets obtained in Chap-
ter 6 to discounted stochastic games.

Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game. Let B(Γ) be the

set of all vectors (λ, g, x) ∈ (0, 1]× RS×I ×
(∏

s∈S,i∈I ∆(Ai(s))
)

such that:

� λ is a discount factor;

� x is a stationary λ-discounted equilibrium in Γ with payoff γλ(s;x) = g(s),
for every state s ∈ S.

Theorem 8.12 For every stochastic game Γ the set B(Γ) is semi-algebraic.

Proof. The set B is a subset of the Euclidean space of dimension 1 + |S| ·
|I|+

∑
s∈S

(∏
i∈I |Ai(s)|

)
, and it contains all vectors (λ, g, x) that are solutions
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of the following finite list of polynomial equalities and inequalities:

λ > 0,

λ ≤ 1,

xis(a
i) ≥ 0, ∀s ∈ S, i ∈ I, ai ∈ Ai(s),∑

ai∈Ai(s)

xis(a
i) = 1, ∀s ∈ S, i ∈ I,

gi(s) =
∑

a∈A(s)

∏
i∈I

xis(a
i)

(
λri(s, a) + (1− λ)

∑
s′∈S

q(s′ | s, a1, a2)gi(s′)

)
, ∀s ∈ S, i ∈ I,

gj(s) ≥
∑

a−j∈A−j(s)

∏
i∈I\{j}

xis(a
i)

(
λr(s, a−j , aj) + (1− λ)

∑
s′∈S

q(s′ | s, a−j , aj)g(s′)

)
, ∀s ∈ S, i ∈ I.

Indeed, the first two inequalities imply that λ is a discount factor, the next
inequality and equation imply that x is a stationary strategy profile, the fifth
equality implies that g(s) = γλ(s;x) for every initial state s ∈ S, and the
last inequality implies that no player has a profitable deviation, so that x is a
λ-discounted equilibrium. It follows that the set B is indeed semi-algebraic.

A repeated application of Theorem 6.7 (Page 79) yields the following corol-
lary of Theorem 8.12.

Theorem 8.13 For every stochastic game Γ and every discount factor λ, the
set of all stationary λ-discounted equilibria of Γ is semi-algebraic.

By Theorem 8.12, a repeated application of Theorem 6.7 (Page 79), and
Theorem 6.11 (Page 80), there exists a semi-algebraic mapping λ 7→ xλ that
assigns to each discount factor λ a stationary λ-discounted equilibrium.

Corollary 8.14 For every stochastic game Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 there

is a semi-algebraic mapping λ 7→ xλ that assigns to every discount factor
λ ∈ (0, 1] a stationary λ-discounted equilibrium xλ ∈

∏
s∈S

∏
i∈I ∆(Ai(s)).

8.5 Comments and Extensions

In this Chapter we proved that a discounted stationary equilibrium always ex-
ists. How does one find such an equilibrium? Methods to do this have been
proposed by, e.g., Nowak and Raghavan (1993), Herings and Peeters (2004),
Govindan and Wilson (2010), Bourque and Raghavan (2014), and Eibelshäuser
and Poensgen (2019).

Theorem 8.11, which was proved by Fink (1964) and Takahashi (1964), is
valid whenever the sets of players, states, and actions are finite. When the
number of players is countable, an equilibrium need not exist even in strategic-
form games (see Peleg, 1969). When the number of states is countable and
the sets of actions are finite, a stationary discounted equilibrium exists, see
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Exercise 8.16. When the number of states is finite and the sets of actions are
compact, a stationary discounted equilibrium exists under suitable continuity
conditions on the payoff function and transitions (Takahashi, 1964). When the
set of states is general and the sets of actions are compact, the existence of a dis-
counted equilibrium, not necessarily stationary, was established under suitable
continuity conditions on the payoff function and transitions, see, e.g., Nowak
(1985a), Mertens and Parthasarathy (1987), Parthasarathy and Sinha (1989),
Amir (1996) Solan (1998), Nowak (2003c), Horst (2005), or He and Sun (2017).
Levy (2013) and Levy and McLennan (2015) provided examples of multiplayer
non-zero-sum stochastic games with general sets of states and actions that do
not have measurable discounted equilibria. Levy’s (2013) example can be turned
into a two-player non-zero-sum stochastic game with no measurable discounted
equilibria.

When stationary discounted equilibrium is not known to exist, stationary
discounted correlated equilibrium may still exist, see, e.g., Nowak and Raghavan
(1992), Duffie, Geanakoplos, Mas-Colell, and McLennan (1994), and Harris,
Reny, and Robson (1995).

In Chapter 6 we proved that the discounted value at a given initial state
converges to a limit as the discount factor goes to 0. One can wonder whether
the set of stationary discounted equilibria at a given initial state converges to a
limit. We answer this question in the affirmative in Exercise 8.9. While the set
of stationary discounted equilibria converges to a limit as the discount factor
goes to 0, the set of (not necessarily stationary) discounted equilibrium payoffs
does not necessarily converge to a limit as the discount factor goes to 0. For an
example, see Renault and Ziliotto (2020a).

The game in Exercise 8.3 is taken from Flesch, Thuijsman, and Vrieze (1997).
The game in Exercise 8.4 is taken from Sorin (1986). The game in Exercise 8.13
was proposed by Tristan Tomala.

8.6 Exercises

1. Prove that the λ-discounted payoff is continuous on the space of stationary
strategies, endowed with the product topology.

2. Prove Theorem 8.8: Let (σk)k∈N be a sequence of λ-discounted equilibria
in a stochastic game Γ that converges to a limit σ ∈ Σ. Show that σ is a
λ-discounted equilibrium.

3. Find the unique symmetric stationary λ-discounted equilibrium in the
following three-player game,28 where Player 1 chooses a row, Player 2
chooses a column, and Player 3 chooses a matrix. There is no need to
calculate the strategy explicitly; it suffices to write down the polynomial
that defines it.

28A strategy profile is symmetric if all players use the same strategy.
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Q1

C1

C2 Q2 C2 Q2

C3 Q3

1, 3, 0 ∗
0, 0, 0

1, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1, 0 ∗

4. For every discount factor λ ∈ (0, 1], find a λ-discounted equilibrium of the
following two-player absorbing game.

Player 2

Player 1
B

T

L R

0, 2 ∗
1, 0

1, 0 ∗
0, 1

State s(0)

5. Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game. Suppose that

there exists a c ∈ Rn such that for every state s ∈ S the vector c is an
equilibrium payoff in the strategic-form game with player set I, action
set Ai(s) for player i, and payoff r(s, a). Prove that c is a λ-discounted
equilibrium payoff at every initial state s ∈ S.

6. Consider the following repeated game:29

C

D

D C

0, 4

1, 1

3, 3

4, 0

(a) Find all stationary λ-discounted equilibria, for every discount factor
λ ∈ (0, 1].

(b) Show that if λ ≤ 2/3 there exists a nonstationary λ-discounted equi-
librium with payoff (3, 3).

(c) Can you find a λ-discounted equilibrium with a different payoff than
in the first two parts?

7. Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game. Denote by

E =

{
(λ, x, w) ∈ (0, 1]×

∏
i∈I

∏
s∈S

∆(Ai(s))× Rn×|S| :

x is a λ-discounted stationary equilibrium with payoff w} .

Show that the set E is semi-algebraic.

29A repeated game is a stochastic game with a single state.
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8. Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game. Show that there

exists a semi-algebraic mapping w : (0, 1] → Rn×|S| such that w(λ) is a
λ-discounted equilibrium payoff for every λ ∈ (0, 1].

9. In this exercise we prove that the limit of the sets of stationary discounted
equilibria has a limit as the discount factor goes to 0.

(a) Let X be a nonempty and compact subset of Rn, and let E ⊆
(0, 1] × X be a semi-algebraic set such that for every λ ∈ (0, 1] the
set Eλ := {x ∈ X : (λ, x) ∈ E is nonempty. Prove that there ex-
ists a nonempty, semi-algebraic, and compact set E0 ⊆ X such that
limλ→0 d(Eλ, E0) = 0, where

d(X,Y ) := max

{
max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)

}
is the Hausdorff distance between two sets.

(b) Prove that the result in Part (a) do not hold when X is not bounded.

(c) Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game, and let

s ∈ S be a state. Let Eλ(s) be the set of λ-discounted stationary equi-
libria at the initial state s. Prove that there exists a nonempty, semi-
algebraic, and compact set E0(s) such that limλ→0 d(Eλ(s), E0(s)) =
0.

10. Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game. For every state

s ∈ S and every discount factor λ ∈ (0, 1] define

y(s;λ) := max
σ∈Σ

∑
i∈I

γiλ(s;σ). (92)

That is, the goal is to maximize the sum of discounted payoffs of the
players.

(a) Prove that the maximum in Eq. (92) is attained by a pure stationary
strategy profile.

(b) Show that the function y(s;λ) is semi-algebraic.

(c) Show that there is a semi-algebraic mapping λ 7→ x(λ) such that the
stationary strategy x(λ) attains the maximum in Eq. (92) for every
λ.

(d) Show that the mapping λ 7→ x(λ) can be chosen to be piecewise
constant.

11. Consider the following two-player nonzero-sum stochastic game with two
nonabsorbing states, where transition is such that at every nonabsorbing
state, the play is either absorbed or moves to the other state.
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B

T

L R

0, 0 ∗
0, 0(0,1)

3, 1 ∗
0, 0 ∗

State s(0)

B

T

L R

1, 3 ∗
0, 0(1,0)

3, 1 ∗
1, 3 ∗

State s(1)

(a) For every discount factor λ ∈ (0, 1], find a stationary λ-discounted
equilibrium in which in state s(0) the players play (T, L).

(b) For every discount factor λ ∈ (0, 1], find a stationary λ-discounted
equilibrium in which in state s(0) the players play (B,R).

(c) For which discount factors λ ∈ (0, 1] does the game have a completely
mixed stationary λ-discounted equilibrium? Find these equilibria.

12. Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-sum stochas-
tic game, and let σ2 be a strategy of Player 2. Prove that there exists a
pure strategy σ1 such that

γ1
λ(s;σ1, σ2) = max

σ′1∈Σ2
γ1
λ(s;σ′1, σ2),

that is, for every strategy σ2 of Player 2, Player 1 has a pure best response.

13. A stochastic game Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 has perfect information

if in each state all players, except possibly for one, have one action; that
is, for every state s ∈ S there is a player is ∈ I such that |Ai(s)| = 1 for
every i ∈ I \ {is}.
In this exercise we show that in stochastic games with perfect information,
a pure stationary discounted equilibrium need not exist. Consider the
following two-player nonzero-sum stochastic game with two states:

State s(0)

B

T

2, 3(1,0)

2, 1(0,1)

State s(1)

L R

3, 2(1,0) 1, 2(0,1)

(a) Prove that for every λ ∈ (0, 1) there is no pure stationary λ-discounted
equilibrium.

(b) Find the unique λ-discounted equilibrium in this game, for any λ ∈
(0, 1).

14. Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game. Let (Ws)s∈S

be subsets of Rn with the following property: for every s ∈ S and every
w ∈Ws there are points (wa,s′)a∈A(s),s′∈S such that

� wa,s′ ∈Ws′ for every a ∈ A(s) and every s′ ∈ S.
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� w is an equilibrium of the strategic-form game with player set I,
action set Ai(s) for each player i ∈ I, and payoff function λr(s, a) +
(1− λ)

∑
s′∈S q(s

′ | s, a)wa,s′ , for a ∈ A(s).

Prove that for every s ∈ S, every point w ∈Ws is a λ-discounted equilib-
rium payoff at the initial state s.

15. Let us generalize the model of stochastic games by allowing different dis-
count factors for different players. That is, for every player i ∈ I there is
a corresponding discount factor λi ∈ [0, 1) and the payoff to player i given
the strategy profile σ and the initial state s1 is γλii (s1, σ). Prove that in
this generalized model there exists a discounted equilibrium in stationary
strategies for every vector of discount factors (λi)i∈I .

16. In this exercise we generalize Theorem 8.11 on page 108 to the case where
the state space is a countable set and each player has a finite number of
actions in each state: let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r

i)i∈I〉 be a stochastic

game where the set S is countable, the sets I and (Ai(s))i∈Is∈S are finite, and
the payoff function r is bounded. Prove that the game admits a stationary
λ-discounted equilibrium for every λ ∈ (0, 1].

17. Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game, let i ∈ I, let

s ∈ S, and let λ ∈ (0, 1]. The λ-discounted min-max value of player i at
the initial state s is

viλ(s) := inf
σ−i∈Σ−i

sup
σi∈Σi

γiλ(s;σi, σ−i). (93)

Prove that for every λ-discounted equilibrium σ∗ we have

γiλ(s;σ∗) ≥ viλ(s), ∀s ∈ S.

18. In this exercise we characterize the set of λ-discounted equilibria in stochas-
tic games.

Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game, let λ ∈ (0, 1],

and let σ be a strategy profile.

For every history ht = (s1, a1, . . . , at−1) (without the state at stage t), the
continuation strategy at the history ht, denoted σi|ht , is the strategy given
by the formula

σi|ht(s
′
1, a
′
1, . . . , a

′
j−1, s

′
j) := σi(s1, a1, . . . , at−1, s

′
1, a
′
1, . . . , a

′
j−1, s

′
j).

This is the strategy that is played from stage t and on, conditioned that
the play until stage t is ht. We denote the continuation strategy profile at
ht by

σ|ht = (σi|ht)i∈I .
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For every history ht = (s1, a1, . . . , st) denote by Pσ(ht) the probability
that the history ht occurs under σ when the initial state is s1:

Pσ(ht) :=

(
t∏

k=1

∏
i∈I

σi(ait | hk)

)
·

(
t−1∏
k=1

q(sk+1 | sk, ak)

)
.

Denote by Ght,λ the following strategic-form game:

� The set of players is I, and the set of actions of each player i ∈ I is
Ai(st).

� The payoff function of each player i ∈ I, denoted Riht,λ, is as follows.

For every a ∈ A(st), if
∏
i∈I σ

i(ai | ht) > 0,

Riht,λ(a) := λri(st, a) + (1− λ)
∑
s′∈S

q(s′ | st, a)γiλ(s′;σ|(ht,s′,a)),

while if
∏
i∈I σ

i(ai | ht) = 0,

Riht,λ(a) := λri(st, a) + (1− λ)
∑
s′∈S

q(s′ | st, a)viλ(s′).

Thus, action profiles that can be played under σ(ht) lead to a continuation
payoff given by the continuation strategy, while action profiles that cannot
be played under σ(ht) lead to a continuation payoff that coincide with the
min-max value, which is defined in Exercise 8.17.

We say that two strategy profiles σ and σ′ are path-equivalent if σ(h) =
σ′(h) for every history h with Pσ(h) > 0.

Prove that the following two conditions are equivalent:

(a) σ is path-equivalent to some λ-discounted equilibrium.

(b) For every history ht with Pσ(ht) > 0, the mixed action profile σ(ht)
is an equilibrium of Ght,λ.
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9 Uniform Equilibrium

Abstract

In Chapter 3 we studied uniform ε-optimality in hidden Markov deci-
sion problems. In this chapter we define the analogous concept for mul-
tiplayer stochastic games and prove its existence for two-player zero-sum
stochastic games.

In Exercise 4.4 (Page 71) we presented the two-player zero-sum absorbing
game called the “Big Match”. This game is depicted in Figure 17.

B

T

L R

0
∗

1

1
∗

0

State s(0)

Figure 17: The “Big Match”.

For every discount factor λ ∈ (0, 1], the λ-discounted value at the initial
state s(0) is vλ(s(0)) = 1

2 , the unique λ-discounted optimal strategy of Player 2
is [ 1

2 (L), 1
2 (R)], and the unique λ-discounted optimal strategy of Player 1 is[

1
1+λ (T ), λ

1+λ (B)
]
. The λ-discounted optimal strategy of Player 2 is indepen-

dent of λ. This is not the case with Player 1: to play optimally, she must know
the exact discount factor. Actually, if she does not properly evaluate the dis-
count factor λ and plays a λ̂-optimal strategy with λ 6= λ̂, and if Player 2 exploits
that error, then the λ-discounted payoff might be very low (Exercise 9.1).

Thus, in stochastic games there need not exist a uniformly optimal strategy.
This example stands in sharp contrast to Markov decision problems, in which
a uniformly optimal strategy always exists. Later in this chapter we will see
that uniformly ε-optimal strategies exist in every two-player zero-sum stochastic
game.

9.1 Definition of Uniform Equilibrium

We next introduce the concept of uniform ε-equilibrium, which we already stud-
ied in the setup of hidden Markov decision problems (see Definition 2.4).

Definition 9.1 Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game, let

ε ≥ 0, let s ∈ S, and let T ∈ N. A strategy profile σ∗ is a T -stage ε-equilibrium
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at the initial state s if for each player i ∈ I and every strategy σi ∈ Σi,

γiT (s;σ∗) ≥ γiT (s;σi, σ−i∗ )− ε.

A strategy profile is a T -stage ε-equilibrium if no player can gain more than ε
in the T -stage game by deviating. We can also define ε-equilibria in the context
of discounted games.

Definition 9.2 Let ε ≥ 0, let s ∈ S, and let λ ∈ (0, 1]. A strategy profile σ∗ is
a λ-discounted ε-equilibrium at the initial state s if for each player i ∈ I and
every strategy σi ∈ Σi of player i,

γiλ(s;σ∗) ≥ γiλ(s;σi, σ−i∗ )− ε.

Definition 9.3 Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game, let

s ∈ S, and let ε > 0. A strategy profile σ∗ = (σi∗)i∈I is a uniform ε-equilibrium
at the initial state s if there exist λ0 ∈ (0, 1] and T0 ∈ N such that the following
conditions hold:

(UE1) For every λ ∈ (0, λ0), the strategy profile σ∗ is a λ-discounted ε-
equilibrium at the initial state s.

(UE2) For every T ≥ T0 the strategy profile σ∗ is a T -stage ε-equilibrium at
the initial state s.

A strategy profile σ∗ that is uniformly ε-optimal at all initial states is a
uniform ε-equilibrium.

The interest in the concept of uniform equilibrium stems from its robustness.
If a uniform equilibrium σ∗ exists, then by playing this strategy profile the
players ensure that no player can gain more than ε by deviating, regardless
of the length of the game (provided it is sufficiently long), and regardless of
the value of the discount factor (provided it is sufficiently low). It is also not
necessary that all players have the same discount factor, or use the same criterion
to evaluate the stream of payoffs (some of the players may try to maximize the
discounted payoff, while others may try to maximize the T -stage payoff. As
long as all players use a sufficiently low discount factor or a sufficiently large T ,
the strategy σ∗ is an ε-equilibrium.

We first prove that Condition (UE2) implies Condition (UE1). Example 9.5
below shows that the converse is false.

Theorem 9.4 If the strategy profile σ satisfies Condition (UE2) with a given
ε > 0, then it also satisfies Condition (UE1) with 3ε.

Proof. Fix ε > 0 and an initial state s ∈ S. Denote the expected payoff at
stage t under σ by

xt := Es,σ[r(st, at)].
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Then

γT (s;σ) =
1

T

T∑
t=1

xt, and

γλ(s;σ) = λ

T∑
t=1

(1− λ)t−1xt.

Since the strategy profile σ satisfies Condition (UE2), there is a T0 ∈ N such
that for every player i ∈ I, every strategy σ′i ∈ Σi, and every T ≥ T0 we have

γiT (s;σ) ≥ γiT (s;σ′i, σ−i)− ε.

Now fix a strategy σ′i ∈ Σi and set

yt := Es,σ′i,σ−i [r(st, at)], ∀t ∈ N.

Condition (UE2) implies that

1

T

T∑
t=1

xt = γiT (s;σ) ≥ γiT (s;σ′i, σ−i)− ε ≥ 1

T

T∑
t=1

yt − ε, ∀T ≥ T0.

Let λ0 > 0 be sufficiently small so that λ ·
(
1− (1− λ)T0

)
· ‖r‖∞ < ε for every

λ ∈ (0, λ0]. From Eqs. (24)–(30) we deduce that

γiλ(s;σ) = λ

∞∑
t=1

(1− λ)t−1xt ≥ λ
∞∑
t=1

(1− λ)t−1yt − 3ε

= γiλ(s;σ′i, σ−i)− 3ε, ∀λ ∈ (0, λ0].

Since this inequality holds for every player i ∈ I and every strategy σ′i ∈ Σi,
it follows that σ is a λ-discounted 3ε-equilibrium for every λ ∈ (0, λ0], as we
wanted to show.

The following example shows that a strategy profile that satisfies Condi-
tion (UE1) with a given ε > 0 need not satisfy Condition (UE2) with Cε, for
every fixed C > 0. It is based on Example 13.33 in Maschler, Solan, and Zamir
(2020).

Example 9.5 Let (xt)
∞
t=1 be a sequence of zeros and ones satisfying

lim sup
T→∞

∑T
t=1 xt
T

> lim sup
λ→0

λ

∞∑
t=1

(1− λ)t−1xt.

For details on how to construct such a sequence, see Exercise 9.19. Let c be a
real number satisfying

lim sup
T→∞

∑T
t=1 xt
T

> c > lim sup
λ→0

λ

∞∑
t=1

(1− λ)t−1xt. (94)
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Consider the two-player repeated game displayed in Figure 9.18. In this game,
the payoff to Player 2 is 2, under every action profile. Consequently, to prove
that a pair of strategies is a λ-discounted ε-equilibrium or a T -stage ε-equilibrium,
it is sufficient to show that Player 1 cannot profit more than ε by deviating.

B

A

D E F

0, 2

0, 2

1, 2

1, 2

c, 2

c, 2

Figure 18: The payoff matrix of the game in Example 9.5.

Define the following strategy σ2 of Player 2:

� In the first stage, play F .

� If in the first stage Player 1 played A, play F in all the remaining stages
of the game.

� If in the first stage Player 1 played B, play D or E in all of the remaining
stages of the game, according to the sequence (xt)

∞
t=1: if xt = 0, play D

in stage t, and if xt = 1, play E in stage t.

The strategy σ2 does not depend on Player 1’s actions after the first stage. More-
over, the stage payoff of Player 1 is determined only by the action of Player 2.
In particular, the only part of the strategy of Player 1 that affects her payoffs in
the game is her action in the first stage. Let σ1

A be a strategy of Player 1 where
she plays the action A in the first stage, and let σ1

B be a strategy of Player 2
where she plays the action B in the first stage.

The reader can verify that

γ1
T (σ1

A, σ
2) = c, ∀T ∈ N, (95)

γ1
T (σ1

B , σ
2) =

1

T

(
c+

T−1∑
t=1

xt

)
, ∀T ∈ N, (96)

γ1
λ(σ1

A, σ
2) = c, ∀λ ∈ (0, 1], (97)

γ1
λ(σ1

B , σ
2) = λ

(
c+

∞∑
t=1

(1− λ)txt

)
, ∀λ ∈ (0, 1]. (98)

Eqs. (94), (97), and (98) imply that for every discount factor λ sufficiently close
to 1, one has γ1

λ(σ1
A, σ

2) > γ1
λ(σ1

B , σ
2). It follows that (σ1

A, σ
2) is a λ-discounted

equilibrium with payoff (c, 2), for every discount factor λ sufficiently close to 1.
In particular, the strategy pair (σ1

A, σ
2) satisfies Condition (UE1).

We next show that (σ1
A, σ

2) does not satisfy Condition (UE2). Set ε0 :=
1
2

(
lim supT→∞

∑T
t=1 xt
T − c

)
, By Eqs. (94), (95), and (96), for every T ∈ N

such that 1
T

(
c+

∑T−1
t=1 xt

)
> c+ ε0 we have γ1

T (σ1
B , σ

2) > γ1
T (σ1

A, σ
2) + ε0, and

therefore (σ1
A, σ

2) is not a T -stage ε-equilibrium for ε ∈ (0, ε0). �
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When σ is a uniform ε-equilibrium, the T -stage payoff for various T ’s and the
λ-discounted payoff for various λ’s may differ. When all those payoffs are within
ε of some vector w = (wi(s))i∈Is∈S ∈ RS×I , we call w a uniform ε-equilibrium
payoff. When a sequence of uniform ε-equilibrium payoffs converges to a limit,
we call the limit a uniform equilibrium payoff.

Definition 9.6 The payoff vector w = (wi(s))i∈Is∈S ∈ RS×I is a uniform equilib-
rium payoff if for every ε > 0 there exist a uniform ε-equilibrium σ, λ0 ∈ (0, 1],
and T0 ∈ N such that

‖γλ(s;σε)− w(s)‖∞ ≤ ε, ∀s ∈ S, ∀λ ∈ (0, λ0),

and
‖γT (s;σε)− w(s)‖∞ ≤ ε, ∀s ∈ S, ∀T ≥ T0.

When a strategic-form game is a two-player zero-sum game, the notion of
equilibrium reduces to optimal strategies, and all equilibrium payoffs are equal
to the value of the game. Similarly, when a stochastic game is a two-player zero-
sum game, we will talk about uniformly ε-optimal strategies and the uniform
value.

Definition 9.7 Let Γ = 〈{1, 2}, S, (Ai(s))i=1,2
s∈S , q, (ri)i∈I〉 be a two-player zero-

sum stochastic game. The vector w = (w(s))s∈S ∈ RS is the uniform value if
for every ε > 0 there exist strategies σ1

ε ∈ Σ1 and σ2
ε ∈ Σ2, λ0 ∈ (0, 1] and

T0 ∈ N such that

� γλ(s;σ1
ε , σ
′2) ≥ w(s) − ε for every initial state s ∈ S, every λ ∈ (0, λ0),

and every strategy σ′2 ∈ Σ2.

� γλ(s;σ′1, σ2
ε ) ≤ w(s) + ε for every initial state s ∈ S, every λ ∈ (0, λ0),

and every strategy σ′1 ∈ Σ1.

� γT (s;σ1
ε , σ
′2) ≥ w(s) − ε for every initial state s ∈ S, every T ≥ T0, and

every strategy σ′2 ∈ Σ2.

� γT (s;σ′1, σ2
ε ) ≤ w(s) + ε for every initial state s ∈ S, every T ≥ T0, and

every strategy σ′1 ∈ Σ1.

The strategy σiε is said to be uniformly ε-optimal for player i. The quantity w(s)
is called the uniform value at the initial state s.

If the uniform value at the initial state s exists, it is equal to limλ→0 vλ(s) and
to limT→∞ vT (s) (Exercise 9.3).

An alternative formulation of the uniform value is given by the amount a
strategy can guarantee.

Definition 9.8 Let Γ = 〈{1, 2}, S, (Ai(s))i=1,2
s∈S , q, (ri)i∈I〉 be a two-player zero-

sum stochastic game, let c ∈ R, and let s ∈ S. A strategy σ1 ∈ Σ1 uniformly
guarantees c at the initial state s if there exist λ0 ∈ (0, 1] and T0 ∈ N such that

γλ(s;σ1, σ2) ≥ c, ∀σ2 ∈ Σ2,∀λ ∈ (0, λ0),
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and
γT (s;σ1, σ2) ≥ c, ∀σ2 ∈ Σ2,∀T ≥ T0.

A strategy σ2 ∈ Σ2 uniformly guarantees c at the initial state s if there exist
λ0 > 0 and T0 ∈ N such that

γλ(s;σ1, σ2) ≤ c, ∀σ1 ∈ Σ1,∀λ ∈ (0, λ0),

and
γT (s;σ1, σ2) ≤ c, ∀σ1 ∈ Σ1,∀T ≥ T0.

Using the last definition, the uniform value can be defined as follows.

Definition 9.9 Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, (r
i)i∈I〉 be a two-player

zero-sum stochastic game, and let s ∈ S. The real number v(s) is the uniform
value at the initial state s if for every ε > 0 Player 1 has a strategy that uniformly
guarantees v(s)− ε at s, and Player 2 has a strategy that uniformly guarantees
v(s) + ε at s.

9.2 The “Big Match”

Before studying the uniform value in the general setup, we will analyze the “Big
Match”, which we reproduce in Figure 19.

B

T

L R

0
∗

1

1
∗

0

State s(0)

Figure 19: The “Big Match”.

This game was presented by Gillette (1957) and studied by Blackwell and
Ferguson (1968). As mentioned before (see Page 118), the strategy [ 1

2 (L), 1
2 (R)]

of Player 2 guarantees that the expected payoff at every stage is 1
2 , and therefore

it uniformly guarantees 1
2 .

As we show now, Player 1 cannot guarantee any positive payoff using sta-
tionary strategies.

Lemma 9.10 Let x1 ∈ ∆(A1(s(0))) be a stationary strategy of Player 1 in the
“Big Match”. Then there is a strategy σ2 ∈ Σ2 of Player 2 such that

lim
λ→0

γλ(x1, σ2) = 0.
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Proof. Denote by x1(T ) and x1(B) the probability by which Player 1 plays
the actions T and B, respectively, under the stationary strategy x1. Denote by
σ2
L the stationary strategy of Player 2 where she always plays the action L, and

by σ2
R the stationary strategy of Player 2 where she always plays the action R.

By Theorem 5.2,

γλ(x1, σ2
L) = x1(T ) · (λ+ (1− λ)γλ(x, σ2

L)),

which solves to

γλ(x1, σ2
L) =

λx1(T )

1− x1(T ) + λx1(T )
.

Applying again Theorem 5.2,we obtains

γλ(x1, σ2
R) = x1(T ) · (1− λ)γλ(x, σ2

R) + 1− x1(T ),

which solves to

γλ(x1, σ2
R) =

1− x1(T )

1− x1(T ) + λx1(T )
.

If x1(T ) = 1, then γ1
λ(x1, σ2

R) = 0 for every λ ∈ (0, 1]. If x1(T ) < 1, then for
every λ ∈ (0, 1],

γ1
λ(x1, σ2

L) =
λx1(T )

1− x1(T ) + λx1(T )
<

λ

1− x1(T )
,

which goes to 0 as λ goes to 0. The claim follows.

We will prove the following.

Theorem 9.11 For every ε > 0 Player 1 has a strategy that uniformly guaran-
tees 1

2 − ε.

As a corollary we will deduce that the uniform value of the “Big Match”
exists, and is equal to 1

2 .

Proof. Fix throughout M ∈ N. In the proof we construct a history-
dependent strategy σ1

M that uniformly guarantees M
2(M+1) − δ, for every δ > 0.

For every t ∈ N define three random variables, lt, rt, and kt as follows:

� lt is the number of times before stage t (not including stage t) in which
Player 2 played L.

� rt is the number of times before stage t (not including stage t) in which
Player 2 played R.

� kt := lt − rt.
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Note that lt + rt = t− 1 for every t ∈ N, so

kt = lt − (t− 1− lt) = 2lt − t+ 1. (99)

Suppose that the game was not absorbed by stage t. If Player 2 played
mainly L, then Player 1’s average payoff so far is high, and kt is large; Player 1
is quite happy from playing T , hence she wants to increase the probability of
playing T . If Player 2 played mainly R, then Player 1’s average payoff so far is
low, and kt is low (negative) as well; Player 1 wants to increase the probability
of playing B, in the hope that when the game is absorbed, the absorbing payoff
is 1.

Define a strategy σ1
M that reflects this idea as follows: at stage t, if the play

hasn’t been absorbed yet, play T with probability 1 − 1
(kt+M+1)2 , and B with

probability 1
(kt+M+1)2 . Observe that once kt = −M , Player 1 plays B with

probability 1, and the play is absorbed. In particular, all subsequent choices of
the players do not affect the payoff.

It is not clear at all that this σ1
M uniformly guarantees an amount close to 1

2 ,
because Player 1 bases her decision on the actions played before stage t, while
the absorbing payoff that will be realized if the game is absorbed at stage t
depend on Player 2’s action at stage 2. Surprisingly, though, the strategy σ1

M

does uniformly guarantee M
2M+1 − δ for every δ > 0.

We will prove below that for every sequence of actions ~a2 = (a2
1, a

2
2, . . .) of

Player 2 one has

γit(s(0);σ1
M ,~a

2) ≥ M

2(M + 1)
− M + 1

2t
, ∀t ∈ N.

Since every (not necessarily pure) strategy of Player 2 is a mixture of pure
strategies, this implies that

γit(s(0);σ1
M , σ

2) ≥ M

2(M + 1)
− M + 1

2t
, ∀σ2 ∈ Σ2, ∀t ∈ N,

and therefore σ1
M uniformly guarantees M

2(M+1) − δ for every δ > 0, as claimed.

A useful property of the strategy σ1
M relates the play under σ1

M from the
second stage on to either σ1

M−1 or σ1
M+1:

� If a2
1 = R (Player 2 plays R at the first stage), then the play under σ1

M

from the second stage on coincides with σ1
M−1.

� If a2
1 = L (Player 2 plays L at the first stage), then the play under σ1

M

from the second stage on coincides with σ1
M+1.

For example, suppose that a2
1 = L. Then l2 = 1, r2 = 0 and k2 = 1. Under

σ1
M , Player 1 plays T at the second stage with probability 1− 1

(M+2)2 . But this

is exactly what she plays at the first stage under σ1
M+1.
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Let t∗ denote the first stage in which Player 1 plays B. From that stage on,
the actions of the players do not affect the payoffs, so the game essentially ends
at stage t∗.

Define for every t ∈ N the random variable Xt as follows.

Xt =


1
2 , if t∗ > t,

1, if t∗ ≤ t, a2
t∗ = R,

0, if t∗ ≤ t, a2
t∗ = L.

If the game has ended before or at stage t, Xt represents the stage payoff to
Player 1. Otherwise, it is 1

2 . As we will prove, the value of the game for the
initial state s(0) is 1

2 , and therefore Xt represents the value of the state at
stage t.

Claim 9.12 For every sequence of actions ~a2 = (a2
1, a

2
2, . . .) of Player 2 and

every t ∈ N one has

Es(0)σ1
M ,~a

2 [Xt] ≥
M

2(M + 1)
.

Proof. We proceed by induction on m.
For t = 1:

� If a2
1 = R, then

Es(0),σ1
M ,~a

2 [X1] =
1

2

(
1− 1

(M + 1)2

)
+

1

(M + 1)2
>

1

2
>

M

2(M + 1)
.

� If a2
1 = L, then

Es(0),σ1
M ,~a

2 [X1] =
1

2

(
1− 1

(M + 1)2

)
=
M2 + 2M

2(M + 1)2

=
M(M + 2)

2(M + 1)2
>

M

2(M + 1)
.

Suppose now that the claim holds for t = t0; let us prove that it holds for
t = t0 + 1 as well.

� If a2
1 = R, then

Es(0),σ1
M ,~a

2 [Xt0+1] =
1

(M + 1)2
+

(
1− 1

(M + 1)2

)
Eσ1

M−1,~a
2 [Xt0 ]

≥ 1

(M + 1)2
+

(
1− 1

(M + 1)2

)
M − 1

2M

=
M

2(M + 1)
.
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� If a2
1 = L, then

Es(0),σ1
M ,~a

2 [Xt0+1] =

(
1− 1

(M + 1)2

)
Eσ1

M+1,~a
2 [Xt0 ]

≥
(

1− 1

(M + 1)2

)
M + 1

2(M + 2)

=
M

2(M + 1)
.

N

For t ∈ N denote
t := min{t∗, t}.

The random variable t is the stage in which the game is absorbed if t∗ ≤ t, and
t otherwise. Since once kt = −M Player 1 plays B with probability 1 and the
game is absorbed, kt is always at least −M . In view of Eq. (99),

lt ≥
t − 1−M

2
, ∀t ∈ N. (100)

We note that

γit−1(s(0);σ1
M ,~a

2) = Es(0),σ1
M ,~a

2

[
lt + (t− t )P(a2

t = R)

t− 1

]
. (101)

Indeed, if t = t, then the first term in the numerator on the right-hand side of
Eq. (101) counts the number of stages up to stage t− 1 in which the payoff was
1 and the second term vanishes. If, on the other hand, t = t∗, then the first
term in the numerator on the right-hand side of Eq. (101) counts the number
of stages up to stage t∗ − 1 in which the payoff was 1 and the second term is
equal to the expected payoff between stages t∗ and t− 1. Therefore,

γit−1(s(0);σ1
M ,~a

2) = Es(0),σ1
M ,~a

2

[
lt + (t− t )P(a2

t = R)

t− 1

]

≥ Es(0),σ1
M ,~a

2

[
t −M−1

2 + (t− t )P(a2
t = R)

t− 1

]

= Es(0),σ1
M ,~a

2

[
t · 1

2 + (t− t )P(a2
t = R)

t− 1

]
− M + 1

2(t− 1)

=
1

t− 1

t−1∑
j=1

Es(0)[Xj ]−
M + 1

2(t− 1)

≥ M

2(M + 1)
− M + 1

2(t− 1)
,

where the first inequality follows from Eq. (100) and the last inequality follows
from Claim 9.12.
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9.3 Existence of the Uniform Value in Two-Player Zero-
Sum Stochastic Games

In the present section we prove the following result due to Mertens and Neyman
(1981).

Theorem 9.13 Every two-player zero-sum stochastic game has a uniform value.

Proof. As already mentioned, if the uniform value at the initial state s
exists, then it must be equal to v0(s) := limλ→0 vλ(s). We will prove that for
every initial state s ∈ S and every ε > 0 Player 1 can guarantee v0(s)− ε in the
T -stage game, for all sufficiently large T . Analogous arguments show that for
every ε > 0 Player 2 can uniformly guarantee v0(s)+ ε in the T -stage game that
starts in state s, for all sufficiently large T . By Theorem 9.4 it will then follow
that v0(s) is the uniform value at the initial state s.

By Shapley’s Theorem (Theorem 5.9 on Page 63), for every discount fac-
tor λ ∈ (0, 1] Player 1 has a stationary λ-discounted optimal strategy x1

λ =
(x1
λ(s))s∈S . In fact, by Corollary 8.14, a stronger result holds: there is a semi-

algebraic mapping λ 7→ x1
λ such that x1

λ is a stationary λ-discounted optimal
strategy, for every λ ∈ (0, 1]. In particular, the limit x1

0 = limλ→0 x
1
λ exists.

Since for every λ ∈ (0, 1] the stationary strategy x1
λ is λ-discounted optimal,

we have

λr(s, x1
λ(s), x2(s)) + (1− λ)

∑
s′∈S

q(s′ | s, x1
λ(s), x2(s))vλ(s′) ≥ vλ(s),

∀s ∈ S, ∀x2(s) ∈ ∆(A2(s)), ∀λ ∈ (0, 1]. (102)

Letting λ→ 0 we obtain∑
s′∈S

q(s′ | s, x1
0(s), y)v0(s′) ≥ v0, ∀s ∈ S, ∀y ∈ ∆(A2(s)).

In other words, if Player 1 plays the stationary strategy x1
0 = (x1

0(s))s∈S , then
for every strategy of Player 2, the process (v0(st))t∈N does not decrease in
expectation: it is a submartingale. That is, as long as Player 1 plays this
stationary strategy, his expected potential gain, measured by v0(st), does not
decrease:

Es,x1
0,σ

2 [v0(st)] ≥ v0(s), ∀σ2 ∈ Σ2.

This is what happens in the “Big Match”: as long as Player 1 plays T , the play
remains in state s(0), where v0(s(0)) = 1

2 . Unfortunately for Player 1, while her
potential gain remains high, there is no guarantee that her actual payoff will be
high.

The uniformly ε-optimal strategy of Player 1 that we will construct will not
play the stationary strategy x1

0. Rather, at every stage t, when the play is in
state st, Player 1 will play the mixed action x1

λt
(st), where λt ∈ (0, 1] is history

dependent and close to 0. One delicate aspect of the proof is the definition of
the process (λt)t∈N, which on the one hand will always be close to 0, so that
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Es,σ1,σ2 [v0(st)] will be close to v0(s) for every σ2 ∈ Σ2, and on the other hand
will allow Player 1 to obtain a high payoff. To obtain a high payoff, at every
stage t Player 1 will consider her past average payoff. If this past average payoff
is high, Player 1 can think about future opportunities, which translates into
lowering λ, because in the discounted payoff the weight of the payoff in the
current stage is λ, and the payoff from tomorrow on is 1−λ. If the past average
payoff is low, Player 1 should think about her short-term gains, which translates
into increasing λ. This idea is a generalization of the construction of Blackwell
and Ferguson (1968) that we have seen in Section 9.2.

We have already mentioned that the discount factor measures the importance
of short-term gains versus long-term gains. When studying the uniform value,
the discount factor may be arbitrarily low, hence future opportunities always
outweigh present gains. However, if a players does not collect high stage payoffs,
she will never utilize her future opportunities, and therefore her overall payoff
will be low. The mechanism we described, of adapting the discount factor
dynamically as a function of past performance, allows the player to properly
balance between stage payoffs and future opportunities.

We now turn to the formal proof. Set

M := ‖r‖∞,

and fix throughout ε ∈ (0,M).
By Theorem 6.14 (Page 81), for every state s ∈ S the function λ 7→ vλ(s) is

semi-algebraic, and can therefore be represented as a Puiseux series in a small
neighborhood of 0. That is, there exists a λ∗ ∈ (0, 1] such that

vλ(s) =

∞∑
k=0

ak(s)λk/L, ∀λ ∈ (0, λ∗), ∀s ∈ S.

Since the set of states is finite, the constant L can be chosen to be independent
of s ∈ S. By Corollary 6.10 (Page 80), the function λ 7→ vλ(s) is monotone
in a neighborhood of 0, and, by Exercise 6.11 (Page 85), its derivative is also
semi-algebraic. In particular, there exists a λ∗∗ ∈ (0, λ∗] such that

v′λ(s) =

∞∑
k=1

kak(s)

L
· λ

k−L
L , ∀λ ∈ (0, λ∗∗).

The series on the right-hand side has a positive radius of convergence, and
therefore there is a constant C > 0 such that

v′λ(s) <
C

L
· λ−

L−1
L , ∀λ ∈ (0, λ∗∗). (103)

Define a function ψ : (0, 1]→ R by

ψ(λ) :=
C

L
· λ−

L−1
L . (104)
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Note that the function ψ is integrable:∫ 1

0

ψ(λ)dλ =
C

L

∫ 1

0

λ−
L−1
L dλ = Cλ1/L

∣∣∣1
0

= C.

By the fundamental theorem of calculus, Eqs. (103) and (104) imply that for
every λ1, λ2 ∈ (0, λ∗∗] such that λ1 < λ2 and every state s ∈ S,

|vλ1(s)− vλ2(s)| ≤
∫ λ2

λ1

ψ(λ)dλ.

Consequently, there exists a λ0 ∈ (0, λ∗∗] such that |vλ1
(s) − vλ2

(s)| ≤ ε for
every λ1, λ2 ∈ (0, λ0] and every s ∈ S. Define a function D : (0, λ0]→ R by the
formula

D(y) :=
12M

ε

∫ λ0

y

ψ(λ)

λ
dλ+

1
√
y
. (105)

Note that for every y ∈ (0, λ0] the integral in Eq. (105) is finite, hence D(y) is
well defined. We next exhibit several properties of D.

Claim 9.14 The function D is integrable:
∫ λ0

0
D(y)dy <∞.

Proof. We show that the two terms in the expression of D are integrable.
We start with the second term:∫ λ0

0

y−1/2dy = 2
√
y
∣∣λ0

0
= 2
√
λ0.

We now turn to the first term. By Tonelli’s Theorem30 we can exchange the
order of integration, and obtain∫ λ0

0

(∫ λ0

y

ψ(λ)

λ
dλ

)
dy =

∫ λ0

0

(∫ λ

0

ψ(λ)

λ
dy

)
dλ

=

∫ λ0

0

ψ(λ)dλ = C(λ0)1/L ≤ C.

The result follows. N

Claim 9.15 The function D is decreasing in the range [0, λ0].

Proof. D is the sum of two terms, the first of which is nonincreasing in y,
while the second is strictly decreasing in y. The claim follows. N

30Leonida Tonelli (Gallipoli, Italy, April 19, 1885 – Pisa, Italy, March 12, 1946) was an
Italian mathematician, noted for creating a variation of Fubini’s theorem that bears his name,
and for introducing semicontinuity methods as a common tool for the direct method in the
calculus of variations.

130



Claim 9.16 For every a ∈ (0, 1),

lim
y→0

(D(ay)−D(y)) = +∞.

Proof. By the definition of D,

D(ay)−D(y)

=

∫ y

ay

ψ(λ)

λ
dλ+

1
√
ay
− 1
√
y

=

∫ y

ay

ψ(λ)

λ
dλ+

1
√
y

(
1√
a
− 1

)
.

The first term is positive for every y > 0, while the second term goes to +∞
when y → 0. The claim follows. N

Recalling that D is decreasing, we define a function ϕ(λ) as the shaded area
in Figure 20.

λ λ0

D(λ)

D(λ0)

D(y)

y

ϕ(λ)

Figure 20: The functions D and ϕ.

Formally,

ϕ(λ) :=

∫ λ

0

D(y)dy − λD(λ).

By Claim 9.14, the function D is integrable, which implies

Claim 9.17 limλ→0 ϕ(λ) = 0.

Let λ1 ∈ (0, λ0) be sufficiently small such that ϕ(λ1) < ε, and the following
two inequalities hold:

D
(

(1− ε

6M
)y
)
−D(y) > 6M, ∀y ≤ λ1, (106)

D(y)−D
(

(1 +
ε

6M
)y
)
> 6M, ∀y ≤ λ1. (107)

By Claim 9.17, and by Claim 9.16 applied twice, with a = 1 − ε
6M to obtain

Eq. (106) and with a = 1

1+
ε

6M
to obtain Eq. (107), such λ1 exists.
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Define for every t ∈ N two random variables dt and λt as follows.

d1 := D(λ1),

dt+1 := max{D(λ1), dt + r(st, a
1
t , a

2
t )− vλt(st+1) + 4ε}, (108)

λt+1 := D−1(dt+1).

Observe that dt ≥ D(λ0) for all t ∈ N, and therefore λt ≤ λ0.
Recall that x1

λ is a λ-discounted stationary optimal strategy of Player 1 for
every λ ∈ (0, λ1]. Define a strategy σ1 for Player 1 as follows: at stage t,
Player 1 plays the mixed action x1

λt
(st). That is, she plays a mixed action that

is optimal in the strategic-form game Gλt,st(vλt). Set

T0 = max

{
D(λ1)

ε
,

2M2

ε2λ1

}
.

We will prove that the strategy σ1 guarantees v0(s) − 9ε in the T -stage game,
for every T ≥ T0:

γT (s;σ1, σ2) ≥ v0(s)− 9ε, ∀T ≥ T0, ∀σ2 ∈ Σ2. (109)

To prove that Eq. (109) holds we will need to study properties of the se-
quences (λt)t∈N and (dt)t∈N. To this end we will define additional random
variables.

Define for every t ∈ N a random variable Zt by

Zt := vλt(st)− ϕ(λt).

When λt is small, Zt is close to v0(st). As we will prove below, the strategy
σ1 ensures that, for every initial state s ∈ S and every σ2 ∈ Σ2 we have
limt→∞ λt = 0 with probability 1, and Es,σ1,σ2 [Zt+1 | Ht] > Zt, where Ht
is the algebra over the set H∞ of plays that is spanned by the cylinder sets
that correspond to histories of length t. This will imply in particular that
limt→∞ vλt(st) exists with probability 1.

We now show that dt+1 cannot be too far from dt. This follows from Eq. (108)
since |r(st, a1

t , a
2
t )|, |vλt(st+1)|, and ε are all at most M .

Claim 9.18 |dt+1 − dt| ≤ 6M .

As a corollary we bound the difference between λt+1 and λt.

Claim 9.19 |λt+1 − λt| ≤ ελt
6M .

Proof. Suppose first that λt+1 ≤ λt. We need to prove that λt+1 ≥
λt
(
1− ε

6M

)
. Suppose that this is not the case, i.e., λt+1 < λt

(
1− ε

6M

)
. Then,

by Eq. (106), |dt+1 − dt| > 6M , which contradicts Claim 9.18.
Suppose now that λt+1 > λt. We need to prove that λt+1 ≤ λt

(
1 + ε

6M

)
.

Suppose this is not the case, i.e., λt+1 > λt
(
1 + ε

6M

)
. Then, by Eq. (107),

|dt+1 − dt| > 6M , which again contradicts Claim 9.18. N
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Define:

Ct1 := ϕ(λt)− ϕ(λt+1),

Ct2 := vλt+1(st+1)− vλt(st+1),

Ct3 := λt(r(st, a
1
t , a

2
t )− vλt(st+1)).

The following result relates the sequence (Zt)t∈N to the sequences (Ct1, C
t
2, C

t
3)t∈N.

Claim 9.20 For every state s ∈ S, every strategy σ2 ∈ Σ2, and every t ∈ N,

Es,σ1,σ2 [Zt+1 − Zt | Ht] ≥ Es,σ1,σ2 [Ct1 + Ct2 − Ct3 | Ht].

Proof. Since at every stage t ∈ N Player 1 plays a λt-discounted optimal
strategy, by Eq. (102) we have:

Es,σ1,σ2 [λtr(st, a
1
t , a

2
t ) + (1− λt)vλt(st+1) | Ht] ≥ vλt(st).

Therefore

Es,σ1,σ2 [λtr(st, a
1
t , a

2
t ) + (1− λt)vλt(st+1)− vλt(st) | Ht] ≥ 0.

We add and subtract the terms vλt+1
(st+1), ϕ(λt), and ϕ(λt+1), and obtain

Es,σ1,σ2 [λtr(st, a
1
t , a

2
t ) + (1− λt)vλt(st+1)− vλt(st)

+ vλt+1
(st+1)− vλt+1

(st+1)

+ ϕ(λt)− ϕ(λt)

+ ϕ(λt+1)− ϕ(λt+1) | Ht] ≥ 0.

(110)

Substituting Ct1, Ct2, Ct3, Zt, and Zt+1 in Eq. (110) we obtain

Es,σ1,σ2 [Ct3 − Ct2 − Ct1 + Zt+1 − Zt | Ht] ≥ 0,

or equivalently,

Es,σ1,σ2 [Zt+1 − Zt | Ht] ≥ Es,σ1,σ2 [Ct1 + Ct2 − Ct3 | Ht],

as stated. N

We will now bound Ct1, Ct2, and Ct3.

Claim 9.21 Ct1 ≥ λt(dt+1 − dt)− ελt (see Figure 21).

Proof. We consider the case λt+1 < λt. As can be seen in Figure 2,

Ct1 = ϕ(λt)− ϕ(λt+1)

≥ λt+1(dt+1 − dt)
= λt(dt+1 − dt)− (λt − λt+1)(dt+1 − dt)
≥ λt(dt+1 − dt)− ελt,

133



where the last inequality follows from Claims 9.18 and 9.19. The case λt+1 > λt
is analogous. N

λtλt+1

dt

dt+1

D(y)

y

Ct1 = ϕ(λt)− ϕ(λt+1)

Figure 21: The quantity Ct1.

Claim 9.22 |Ct2| ≤ ελt.

Proof. By Claim 9.19, for every y between λt and λt+1 we have 2λt ≥ y,
and therefore

λt
y
≥ 1

2
.

Hence,

|Ct2| = |vλt+1
(st+1)− vλt(st+1)| ≤

∣∣∣∣∣
∫ λt+1

λt

ψ(λ)dλ

∣∣∣∣∣ ≤ 2λt ·

∣∣∣∣∣
∫ λt+1

λt

ψ(λ)

λ
dλ

∣∣∣∣∣ .(111)

By the definition of the function D (see Eq. (105)),

dt+1 − dt = D(λt+1)−D(λt) (112)

=
12M

ε

∫ λt

x=λt+1

ψ(λ)

λ
dλ+

1√
λt+1

− 1√
λt
.

Eq. (112) implies that∫ λt

λt+1

ψ(λ)

λ
dλ =

ε

12M

(
D(λt+1)−D(λt)−

1√
λt+1

+
1√
λt

)
(113)

=
ε

12M

(
dt+1 − dt −

1√
λt+1

+
1√
λt

)
.

Assume that λt > λt+1; in particular, − 1√
λt+1

+ 1√
λt
< 0 and dt < dt+1. By
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Eqs. (111) and (113),

|Ct2| ≤ 2λt

∫ λt

λt+1

ψ(λ)

λ
dλ

=
ελt
6M

(
dt+1 − dt −

1√
λt+1

+
1√
λt

)

≤ ελt
6M

(dt+1 − dt) ≤ ελt,

where the last inequality holds by Claim 9.18. Assume now that λt < λt+1; in
particular, − 1√

λt
+ 1√

λt+1

< 0 and dt > dt+1. Hence, by Eqs. (111) and (113),

|Ct2| ≤ 2λt

∫ λt+1

λt

ψ(λ)

λ
dλ

=
ελt
6M

(
dt − dt+1 −

1√
λt

+
1√
λt+1

)

≤ ελt
6M

(dt − dt+1) ≤ ελt.

N

Claim 9.23 Ct3 ≤ λt(dt+1 − dt)− 4ελt.

Proof. By the definition of dt+1,

dt+1 − dt ≥ r(st, a1
t , a

2
t )− vλt(st+1) + 4ε.

Therefore,

Ct3 = λt(r(st, a
1
t , a

2
t )− vλt(st+1)) ≤ λt(dt+1 − dt)− 4ελt,

which is what we wanted to prove. N

The following result is a corollary of Claims 9.21–9.23.

Claim 9.24 For every initial state s ∈ S, every strategy σ2 ∈ Σ2, and every
T ∈ N,

Es,σ1,σ2 [ZT ] ≥ 2εEs,σ1,σ2

[
T−1∑
t=1

λt

]
+ Z1. (114)

Proof. Consider the following chain of inequalities:

Es,σ1,σ2 [Zt+1 − Zt | Ht] ≥ Es,σ1,σ2 [Ct1 + Ct2 − Ct3 | Ht]
≥ Es,σ1,σ2 [λt(dt+1 − dt)− ελt − ελt − λt(dt+1 − dt) + 4ελt

≥ 2ελt

> 0.

By summation over t = 1, 2, . . . , T − 1 and the law of iterated expectation, we
obtain Eq. (114). N
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Comment 9.25 We note that the proof of Claim 9.24 implies in particular
that the process (Zt)t∈N is a submartingale. We will not use this property in the
proof.

Fix an initial state s ∈ S and a strategy σ2 ∈ Σ2. From Claim 9.24 it follows
that Es,σ1,σ2 [Zt] ≥ Z1 for every t ∈ N. By substituting Zt = vλt(st)− ϕ(λt) in
Eq. (114) we deduce that the λt-discounted value at state st is high:

Es,σ1,σ2 [vλt(st)] ≥ vλ1
(s) + Es,σ1,σ2 [ϕ(λt]− ϕ(λ1)

≥ vλ1
(s)− ϕ(λ1) (115)

≥ v0(s)− 2ε.

Further, since |Zt| ≤ 2M for every t ∈ N, we deduce from Eq. (114) that

Es,σ1,σ2

[ ∞∑
t=1

λt

]
≤ M

ε
. (116)

Since λt ≤ λ1 for every t ∈ N, Eq. (116) bounds the number of times that λt
can be equal to λ1:

Es,σ1,σ2

[ ∞∑
t=1

1{λt=λ1}

]
≤ M

ελ1
. (117)

We are now ready to bound the T -stage payoff under (σ1, σ2). By the
definition of dt+1,

dt+1 − dt ≤ r(st, a1
t , a

2
t )− vλt(st+1) + 4ε+ 2M1{λt+1=λ1}. (118)

Summing Eq. (118) over t = 1, 2, . . . , T , and taking expectations, we obtain

Es,σ1,σ2

[
T∑
t=1

r(st, a
1
t , a

2
t )

]
≥ Es,σ1,σ2

[
T∑
t=1

vλt(st+1)

]
+ Es,σ1,σ2 [dT+1 − d1]

−4Tε− 2MEs,σ1,σ2

[ ∞∑
t=1

1{λt=λ1}

]
. (119)

Since dT+1 ≥ d1 for every T ∈ N, the term Es,σ1,σ2 [dT+1 − d1] is non-negative,
hence by removing it we decrease the right-hand side. Using Eqs. (117) and (115)
we then obtain

γT (s;σ1, σ2) ≥ vλ1(s)− 3ε− 4ε− 2M2

Tελ1
≥ v0(s)− 9ε,

provided T is larger than D(λ1)
ε and 2M2

ε2λ1
. Since σ2 is an arbitrary strategy of

Player 2, we thus proved that σ1 uniformly guarantees v0(s)− 9ε at the initial
state s, as desired.
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9.4 The Average Cost Optimality Equation

Theorem 9.13 asserts that the uniform value exists. It does not indicate how to
calculate the uniform value in specific games. In this section we will develop a
tool that will help us in calculating the uniform value, and is valid only when
the uniform value is the same in all states.

To state the next result, we define for every state s ∈ S and every function
w : S → R a strategic-form game Ĝs(w), which is similar to the game Gs,λ(w),

with weight 1 on both the stage payoff and the continuation payoff. Let Ĝs(w)
be the following two-player zero-sum strategic-form game:

� The set of players is I.

� The set of actions of player i is Ai(s), for each i ∈ I.

� The payoff function is

r(s, a1, a2) +
∑
s′∈S

q(s′ | s, a1, a2)w(s′), ∀(a1, a2) ∈ A1 ×A2.

The following result provides a way to calculate the uniform value in certain
two-player zero-sum stochastic games.

Theorem 9.26 (The Average Cost Optimality Equation) Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉
be a two-player zero-sum stochastic game. Assume that there exists a real num-
ber g and a function w : S → R such that

g + w(s) = val(Ĝs(w)), ∀s ∈ S. (120)

Then v0(s) = g for every state s ∈ S.

By Exercise 3.3 (Page 50), the value of a two-player zero-sum strategic-form
game is invariant under the addition of a constant. It follows that the set
of functions w that are part of a solution of Eq. (120) is invariant under the
addition of a constant: if (g, w) is a solution of Eq. (120), then for every real
number c the pair (g, w′) is a solution of Eq. (120), where w′ : S → R is defined
by w′(s) := w(s) + c, for each s ∈ S.

Example 9.27 Consider the two-player zero-sum stochastic game with two states
that is displayed in Figure 22.

B

T

L R

0(0,1)

2(0,1)

1(0,1)

0(1,0)

State s(0)

B

T

L R

0(0,1)

2(1,0)

3(1,0)

0(0,1)

State s(1)

Figure 22: The stochastic game in Example 9.27.
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We will calculate the value of the game using Theorem 9.26. Since we can
add a constant to w, we set w(s(1)) = 0. Denote A := w(s(0)). The games

Ĝs(0)(w) and Ĝs(1)(w) are depicted in Figure 23. By Theorem 9.26,

g +A = val(Ĝs(0)(f)), g = val(Ĝs(1)(w)). (121)

B

T

L R

0

2

1

A

The game Ĝs(0)(w)

B

T

L R

0

2 +A

3 +A

0

The game Ĝs(1)(w)

Figure 23: The games Gs(0)(w) and Gs(1)(w) in Example 9.27.

The values of the games Ĝs(0)(w) and Ĝs(1)(w) depend on A, and simple
calculations show that:

� If A ≥ 2, then val(Gs(0)(w)) = 2.

� If A ≤ 2, then val(Gs(0)(w)) = 2
3−A .

� If A ≥ −2 or A ≤ −3, then val(Gs(1)(w)) = (2+A)(3+A)
5+2A .

� If −3 ≤ A ≤ −2, then val(Gs(1)(w)) = 0.

To determine g we will solve Eq. (121) for each value of A, and we will see
that there is a unique A for which the system has a solution.

� If A ≥ 2, then (g,A) is a solution of the system

g +A = 2, g =
(2 +A)(3 +A)

5 + 2A
.

However, this system has no solution with A ≥ 2.

� If −2 ≤ A ≤ 2 or A ≤ −3, then (g,A) is a solution of the system

g +A =
2

3−A
, g =

(2 +A)(3 +A)

5 + 2A
,

which has three solutions:

A ≈ −2.5427, g = 2.9061,

A ≈ −0.40165, g = 0.9896,

A ≈ 2.6111, g = 2.5311.

among which only the second satisfies −2 ≤ A ≤ 2 or A ≤ −3.
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� If −2 ≤ A ≤ −3, then (g,A) is a solution of the system

g +A =
2

3−A
, g = 0,

which has no solution with −2 ≤ A ≤ −3.

It follows that the value of the game at both initial states is v0(s(0)) =
v0(s(1)) = g ≈ 0.9896. �

Proof of Theorem 9.26. By Eq. (120),

w(s) = −g + val(Ĝs(w)), ∀s ∈ S. (122)

Substituting this expression in itself, we see that for every initial state s1 ∈ S,

w(s1) = −g + val(Ĝs1(−g + val(Ĝs2(w)))),

where s2 is the state in the second stage. Using the fact that adding a constant
to all entries of the payoff matrix results in an increase of the value by the same
constant (Exercise 3.3 on Page 50), we deduce that

w(s1) = −2g + val(Ĝs1(val(Ĝs2(w)))). (123)

The term val(Ĝs1(val(Ĝs2(w)))) is the value of the two-stage stochastic game
that starts in state s1, where the continuation payoff after the end of the second
stage is w(s3), and the players are interested in the sum of payoffs (rather than
the average payoff). Further substitution of Eq. (122) in Eq. (123) yields

w(s1) = −3g + val(Ĝs1(val(Ĝs2(val(Ĝs3(w)))))).

Thus, w(s1) is also the value of the three-stage game that starts in state s1,
where the continuation payoff after the end of the third stage is w(s4). Addi-
tional iterations of this substitution yield for every T ∈ N,

w(s1) = −Tg + val(Ĝs1(val(Ĝs2(val(Ĝs2(. . . (val(ĜsT (w))))))))). (124)

The value of the T -stage game at the initial state s1 when the players are
interested in the sum of payoffs is TvT (s1). This value is also equal to

val(Ĝs1(val(Ĝs2(val(Ĝs2(. . . (val(ĜsT (0))))))))). (125)

Inductive use of Theorem 3.15 (Page 50) implies that∣∣val(Ĝs1(val(Ĝs2(val(Ĝs2(. . . (val(ĜsT (w)))))))))

− val(Ĝs1(val(Ĝs2(val(Ĝs2(. . . (val(ĜsT (0)))))))))
∣∣ ≤ ‖w‖∞. (126)
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We thus deduce that

‖w‖∞ ≥
∣∣val(Ĝs1(val(Ĝs2(val(Ĝs2(. . . (val(ĜsT (w)))))))))

val(Ĝs1(val(Ĝs2(val(Ĝs2(. . . (val(ĜsT (0)))))))))
∣∣

=
∣∣TvT (s1)− w(s1)− Tg

∣∣.
Dividing both sides of this equation by T , and letting T go to infinity, we obtain

v0(s1) = lim
T→∞

vT (s1) = g,

as claimed.

The following result has two consequences. First, it provides a condition
which ensures that a solution to Eq. (120) exists. Second, it provides an inter-
pretation to the function w in Eq. (120).

Theorem 9.28 Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-
sum stochastic game, let s ∈ S, and suppose that

lim
λ→0

|vλ(s)− vλ(s′)|
λ

<∞, ∀s′ ∈ S. (127)

Then the system of equations (120) has a solution (g, w) that satisfies

w(s)− w(s′) = lim
λ→0

vλ(s)− vλ(s′)

λ
.

We note that the condition in Theorem 9.26 implies that v0(s) = v0(s′) for
every state s′ ∈ S. Indeed, v0(s′) = limλ→0 vλ(s′) for every state s′ ∈ S and, by
Eq. (127),

|v0(s)− v0(s′)| = lim
λ→0
|vλ(s)− vλ(s′)|

= lim
λ→0

λ · |vλ(s)− vλ(s′)|
λ

= lim
λ→0

λ · lim
λ→0

|vλ(s)− vλ(s′)|
λ

= 0.

While under the conditions of Theorem 9.28, the uniform value at all states is the
same, the discounted value need not be the same. According to Theorem 9.28,
the quantity w(s) − w(s′) is equal to the limit of the difference between the
λ-discounted value at the initial states s and s′, divided by λ.

Proof of Theorem 9.28. Fix two distinct states s, s′ ∈ S. By Theo-
rem 5.10 (Page 67), for every discount factor λ ∈ (0, 1] we have

vλ(s) = val(Gs,λ(vλ)), (128)

140



where Gs,λ(vλ) is the two-player zero-sum game where the set of actions of each
player i is Ai(s) and the payoff function is

λr(s, a) + (1− λ)
∑
ŝ∈S

q(ŝ | s, a)vλ(ŝ), ∀a ∈ A1 ×A2.

Subtracting vλ(s′) from both sides of Eq. (128) we find that

vλ(s)− vλ(s′) = val(G′s)), (129)

where G′s is the two-player zero-sum game in which the set of actions of each
player i is Ai(s) and the payoff function is

λr(s, a)+
∑
ŝ∈S

q(ŝ | s, a)(vλ(ŝ)−vλ(s′))−λ
∑
ŝ∈S

q(ŝ | s, a)vλ(ŝ), ∀a ∈ A1(s)×A2(s).

Dividing both sides of Eq. (129) by λ we obtain that

vλ(s)− vλ(s′)

λ
= val(G′′s )), (130)

where G′′s is the two-player zero-sum game in which the set of actions of each
player i is Ai(s) and the payoff function is

r(s, a) +
∑
ŝ∈S

q(ŝ | s, a)
vλ(ŝ)− vλ(s′)

λ
−
∑
ŝ∈S

q(ŝ | s, a)vλ(ŝ), ∀a ∈ A1(s)×A2(s).

Set

w(ŝ) := lim
λ→0

vλ(ŝ)− vλ(s′)

λ
, ∀ŝ ∈ S,

which, by Eq. (127), is finite. Theorem 3.15 (Page 50) implies that the value
operator is continuous. Therefore, letting λ→ 0 in Eq. (130) we get

w(s) = val(G′′′s ), (131)

where G′′′s is the two-player zero-sum game in which the set of actions of each
player i is Ai(s) and the payoff function is

r(s, a) +
∑
ŝ∈S

q(ŝ | s, a)w(ŝ)−
∑
ŝ∈S

q(ŝ | s, a)v0(ŝ), ∀a ∈ A1(s)×A2(s). (132)

As mentioned above, Eq. (127) implies that v0(s) = v0(ŝ) for every two states
s, ŝ ∈ S, hence the payoff function of G′′′s is

r(s, a) +
∑
ŝ∈S

q(ŝ | s, a)w(ŝ)− v0(s), ∀a ∈ A1(s)×A2(s). (133)

Thus, the difference between the payoffs in Gs(w) and G′′′s is the constant v0(s).
Therefore,

w(s) = val(G′′′s ) = val(Gs(w))− v0(s),
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and the result follows.

The following result identifies one class of stochastic games where the con-
dition in Theorem 9.28 holds. For every state s ∈ S denote by

θs := min{t > 1: st = s}

the first stage after the initial stage in which the play visits the state s.

Theorem 9.29 Let Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-
sum stochastic game. Suppose that for every two distinct states s, s′ ∈ S there
is a strategy σ1 ∈ Σ1 and c > 0 such that for every strategy σ2 ∈ Σ2 we have

Es,σ1,σ2 [θs′ ] ≤ c. (134)

Then

lim
λ→0

vλ(s)− vλ(s′)

λ
≤ 2c‖r‖∞, ∀s, s′ ∈ S.

Theorem 9.29 states that if for every two distinct states s, s′, Player 1 can
ensure that the expected time to reach state s′ from state s is finite, then the
condition in Theorem 9.28 holds. Plainly, Theorem 9.29 holds when the roles of
the players are switched: Player 2 can ensure that the expected time to reach
state s′ from state s is finite.

Proof of Theorem 9.29. Fix two distinct states s, s′ ∈ S, let c > 0, and
let σ1 ∈ Σ1 be such that Eq. (134) holds for every strategy σ2 ∈ Σ2.

Let σ̂1 be the strategy of Player 1 that follows the strategy σ1 until stage
θs′ , and a λ-discounted optimal strategy afterwards. Let σ2 be a stationary
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λ-discounted optimal strategy of Player 2. Then we have

vλ(s) ≥ γλ(s; σ̂1, σ2) (135)

= Es,σ̂1,σ2

[
λ

∞∑
t=1

(1− λ)t−1r(st, at)

]

= Es,σ̂1,σ2

λ θs′−1∑
t=1

(1− λ)t−1r(st, at) + λ

∞∑
t=θs′

(1− λ)t−1r(st, at)


= Es,σ̂1,σ2

λ θs′−1∑
t=1

(1− λ)t−1r(st, at) + (1− λ)θs′ vλ(s′)

 , (136)

≥ −‖r‖∞ ·Es,σ̂1,σ2

λ θs′−1∑
t=1

(1− λ)t−1

+ vλ(s′)

−vλ(s′)Es,σ̂1,σ2

[
1− (1− λ)θs′

]
= −‖r‖∞ ·Es,σ̂1,σ2

[
1− (1− λ)θs′

]
+ vλ(s′)

−vλ(s′)Es,σ̂1,σ2

[
1− (1− λ)θs′

]
≥ vλ(s′)− 2‖r‖∞ ·Es,σ̂1,σ2

[
1− (1− λ)θs′

]
≥ vλ(s′)− 2‖r‖∞ ·Es,σ̂1,σ2 [λθs′ ] , (137)

where Eq. (135) holds because the strategy σ2 is λ-discounted optimal, Eq. (136)
holds because after stage θs′ both players follow λ-discounted optimal strategies,
hence the λ-discounted payoff from stage θs′ and on is vλ(s′), and Eq. (137) holds
because 1−λt ≤ (1−λ)t for every λ ∈ (0, 1] and every t ∈ N. We conclude that

vλ(s)− vλ(s′)

λ
≥ −2‖r‖∞ ·Es,σ̂1,σ2 [θs′ ] ≥ −2c‖r‖∞.

Switching the roles of s and s′ we obtain that

lim
λ→0

|vλ(s)− vλ(s′)|
λ

≤ 2c‖r‖∞,

and the result follows.

9.5 Extensive-Form Correlated Equilibrium

In this section we apply the technique developed in Section 9.3 to multiplayer
stochastic games, and we derive the existence of a version of uniform correlated
equilibrium.

We start by defining the concept of λ-discounted max-min value, encountered
in the setup of two-player zero-sum games in Exercise 5.14 (Page 74).
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Definition 9.30 Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game, let

i ∈ I, let s ∈ S, and let λ ∈ (0, 1]. The λ-discounted max-min value of player i
at the initial state s is

viλ(s) := sup
σi∈Σi

inf
σ−i∈Σ−i

γiλ(s;σi, σ−i). (138)

Let us show that the λ-discounted max-min value of player i is the λ-
discounted value in an auxiliary two-player zero-sum stochastic game Γ̂i =
〈{1, 2}, S, (Â1(s), Â2(s))i∈Is∈S , q, r

i〉, defined as follows:

� The set of players is {1, 2}.

� The set of states is S, the set of states in the original game Γ.

� The set of actions of Player 1 in state s is Â1(s) := Ai(s), for every s ∈ S.

� The set of actions of Player 2 in state s is Â2(s) :=
∏
j 6=iA

j(s), for every
s ∈ S.

� The payoff function is ri.

� The transition rule is the transition rule in the original game Γ.

This stochastic game captures the situation in which the goal of the players in
I \ {i} is to minimize player i’s payoff, and they can correlate their actions:
if, for example, I = {i1, i2, i3}, i = i1, Ai2(s) = {T,B} and Ai3(s) = {L,R},
then Player 1 in the game Γ̂i represents player i1 in Γ, Player 2 in Γ̂i represents
players i2 and i3 in Γ, and Â2(s) = {TL, TR,BL,BR}. In particular, at state

s of the game Γ̂i Player 2 can choose the mixed action [ 1
2 (TL), 1

2 (BR)], a choice
that is not available to players i2 and i3 in Γ.

The set Σ̂1 of strategies of Player 1 in Γ̂i is identical to Σ1, the set of
strategies of player i in Γ. A strategy of Player 2 in Γ̂i is a function σ̂2 that
assigns to every history ht = (s1, a1, . . . , st) ∈ H a probability distribution

σ̂2(ht) ∈ ∆(Â2(st)) = ∆
(∏

j 6=iA
i(st)

)
. We note that the set Σ̂2 of strategies

of Player 2 in Γ̂i is convex and its extreme points are the pure strategies of
Player 2 in Γ̂i. Moreover, a pure strategy of Player 2 in Γ̂i is a pure strategy
profile of the players in I \ {i} in Γ.

Let γ̂λ(s; σ̂1, σ̂2) denote the λ-discounted payoff under strategy profile (σ̂1, σ̂2)

at the initial state s in the game Γ̂i. Since Γ̂i is a two-player zero-sum stochastic
game, it admits a discounted value at each initial state s ∈ S, which is given by

v̂iλ(s) = max
σ̂1∈Σ̂1

min
σ̂2∈Σ̂2

γ̂λ(s; σ̂1, σ̂2) = min
σ̂2∈Σ̂2

max
σ̂1∈Σ̂1

γ̂λ(s; σ̂1, σ̂2). (139)

Since for every fixed strategy σ̂1 ∈ Σ1, state s ∈ S, and discounted factor λ ∈
(0, 1], the function σ̂2 7→ γ̂λ(s; σ̂1, σ̂2) is linear, and since the set Σ̂2 is compact
in the product topology, the minimum minσ̂2∈Σ̂2 γ̂λ(s; σ̂1, σ̂2) in Eq. (139) is
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attained at an extreme point of Σ̂2, namely, a pure strategy of Player 2 in Γ̂i.
As mentioned above, the set of pure strategies of Player 2 in Γ̂i is Σ−i, hence

v̂iλ(s) = max
σ̂1∈Σ̂1

min
σ̂2∈Σ̂2

γ̂λ(s; σ̂1, σ̂2) = max
σ1∈Σ1

min
σ2∈Σ2

γλ(s;σ1, σ2) = viλ(s).

We thus obtained an interpretation for the λ-discounted max-min value of
player i in the game Γ, as the value of an auxiliary two-player zero-sum game.

The function λ 7→ viλ(s) is semi-algebraic for every player i ∈ I and ev-
ery initial state s ∈ S (Exercise 9.9). By Corollary 6.10, the limit vi0(s) :=
limλ→0 v

i
λ(s) exists for every player i ∈ I and every initial state s ∈ S. By

Theorem 9.13, vi0(s) is the uniform value of the game Γ̂i at the initial state
s. Moreover, in this game Player 2 has a uniformly ε-optimal strategy. Such a
strategy is called a uniform ε-punishment strategy against player i. The quan-
tity vi0(s) is called the uniform max-min value of player i at the initial state s
in Γ.

Recall that on Page 108 we defined for every state s ∈ S, every discount
factor λ ∈ (0, 1], and every function w : S → R, an auxiliary strategic-form
game Gs,λ(w), namely, the game played at state s when the continuation payoff
is given by the function w. Here we will define an analogous game in which each
player has a different discount factor. Formally, for every vector ~λ = (λi)i∈I ∈
(0, 1]I , every state s ∈ S, and every vector w ∈ RS×I , the game Gs,~λ(w) is the

strategic-form game 〈I, (Ai(s))i∈I , (uis,~λ)i∈I〉, where the payoff function of each

player i is given by

ui
s,~λ

(a) := λiri(s, a) + (1− λi)
∑
s′∈S

q(s′ | s, a)wi(s′), ∀a ∈ A(s).

The max-min value of each player i ∈ I in the game Gs,~λ(w) depends only

on player i’s payoff function, hence it does not depend on (λj)j 6=i. As in Theo-
rem 5.10 (Page 67), the max-min value of player i in the auxiliary game Gs,~λ(v~λ)

is viλi(s), where v~λ(s) = (viλi(s))i∈I (Exercise 9.20). Denote the payoff in the
game Gs,~λ(v~λ) under the mixed action profile α by us,~λ(α).

For every state s ∈ S and every vector of discount factors ~λ ∈ (0, 1]I let
x~λ(s) be a stationary equilibrium in the game Gs,~λ(v~λ(s)). The equilibrium
payoff of each player i in a strategic-form game is always at least her min-max
value in the game (Exercise 3.5 on Page 51), which is at least her max-min value
in the game. Hence

viλi(s) ≤ u
i
s,~λ

(x~λ(s)) ≤ Ex~λ(s)

[
λiri(s, x~λ(s)) + (1− λi)

∑
s′∈S

q(s′ | s, x~λ(s))viλi(s
′)

]
.

We will now have each player individually apply the strategy from the proof
of Theorem 9.13. Fix ε > 0 sufficiently small. Let L ∈ N and C > 0 be such
that

dviλ(s)

dλ
<
C

L
λ−

L−1
L ,
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for every λ > 0 sufficiently small, every state s ∈ S, and every player i ∈ I‘′,
and define a function ψ : (0, 1]→ R by

ψ(λ) :=
C

L
λ−

L−1
L .

(Compare this definition with Eq. (104) on Page 129.)
Consider the following strategy σi∗ of player i, where λ1 is sufficiently small.

� Let ~λ1 ∈ (0, 1]I be the vector with all coordinates equal to λ1. Define for
every t ∈ N,

di1 := D(λ1),

dit+1 := max{D(λ1), dit + ri(st, a
1
t , a

2
t )− viλit(s

i
t+1) + 4ε},

λit+1 := D−1(dit+1),

where D : [0, λ0]→ R is the function defined in Eq. (105) (Page 130).

� In stage t play the mixed action xi~λt
(st), where ~λt = (λit)i∈I .

Let σ∗ = (σi∗)i∈I denote the strategy profile in which each player i plays the
strategy σi∗.

Fix for the moment a player i ∈ I and a state s ∈ S. By the proof in
Section 9.3, there is a T0 ∈ N such that

γiT (s;σ∗) ≥ vi0(s)− 9ε. (140)

for all T ≥ T0. For every two positive integers k < T and every history hk ∈ H
denote by

γik,T (s;σ∗ | hk) :=
1

T − k + 1
Es,σ∗

[
T∑
t=k

r(st, a
1
t , a

2
t ) | hk

]

the expected payoff of player i under the strategy profile σ∗ at the initial state
s between stages k and T , conditioned that the history up to stage k is hk.
If in Eq. (119) (Page 136) we sum up over t = k, k + 1, . . . , T (instead of t =
1, 2, . . . , T ) we deduce that for every sufficiently large T (in particular, T should

be larger than 6k‖r‖∞
ε , D(λ1)

ε , and 2(‖r‖∞)2

ε2λ1
),

γik,T (s;σ∗ | ht) =
1

T − k + 1
Es,σ∗

[
T∑
t=k

r(st, a
1
t , a

2
t ) | ht

]

≥ vi0(st)− 8ε− dk
T

(141)

≥ vi0(st)− 8ε− 6k‖r‖∞
T

≥ vi0(st)− 9ε.
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By Eq. (141) the expected average payoff of player i between stages k and T
is at least vi~λ1

(s)− 9ε, provided T is sufficiently large. Since in stage k − 1 the

strategy σ∗ plays an equilibrium in the auxiliary game Gs,~λk−1
(v~λk−1

), and since

|viλi(sk−1)− vi0(sk−1)| < ε, we have

γiT (s;σ∗ | hk−1) ≥ ui(s, x~λ1
(s))− 11ε.

for all sufficiently large T .
For each player i ∈ I, let σ−iε be a uniform ε-punishment strategy against

player i. In particular, for every strategy σi of player i and every sufficiently
large T ,

γiT (s;σi, σ−iε ) ≤ vi0(s) + ε. (142)

This strategy is a behavior strategy. By Kuhn’s Theorem, the strategy σ−iε is a
mixed strategy, that is, a probability distribution over pure strategy profiles of
players j with j ∈ I \ {i}.

Suppose we add to the model an impartial observer who observes the play
and can privately and securely send messages to each player. Suppose also that
the observer uses the following mechanism, which mimics the strategy profile σ.

� At the outset of the game, for each i ∈ I the observer chooses one pure
strategy profile σi,ε = (σji,ε)j 6=i according to the probability distribution

σ−iε , and sends to each player j her part in this pure strategy profile,
namely, σji,ε. The players will use this pure strategy if player i deviates.

� In stage 1, the observer chooses for each player i an action âi1 ∈ Ai(s1)
according to the probability distribution σi∗(s1), and informs each player
privately which action âi1 was selected for him.

� At each stage t > 1, the observer chooses for each player i an action
âit ∈ Ai(st) according to the probability distribution σi∗(ht), and informs
each player privately which action âit was selected for him, as well as all the
actions (âjt−1)j 6=i that she transmitted to the other players in the previous
stage.

Suppose that each player i ∈ I keeps a flag that indicates whether some
player is punished, and if so, who. The flag is initialized to ∅ – at the outset of
the game, no player is punished. Player i adopts the following 31 strategy τ i∗:

� In stage 1, player i follows the action âi1 recommended to her by the
observer.

� In stage t > 1, if the flag is ∅, player i compares the action ajt−1 each

player j 6= i played in stage t − 1 to the action âjt−1 that the observer
transmitted to player j at stage t − 1 (and which the observer sent to
player i in stage t). If ajt−1 = âjt−1 for every j 6= i, the value of the flag

31We denote a strategy of player i by τ i and not σi, because this is a strategy in an extended
game that includes the observer, and not in the original stochastic game.
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remains ∅. Otherwise, let j∗ be the minimal index such that aj∗t−1 6= âj∗t−1.
The flag is set to “Start punishing player j∗ in stage t”.

� In stage t, if the flag is ∅, player i plays the action âit transmitted to her
by the observer.

� Otherwise, from stage t and on, player i forgets past play and starts fol-
lowing the pure strategy σij∗,ε.

We argue that this construction is an ε-equilibrium in a suitable sense. If all
players follow the strategy profile τ = (τ i)i∈I , then with the help of the observer
the players implement the strategy profile σ∗, and by Eq. (140) we have

γiT (s; τ) ≥ vi0(s)− 11ε, ∀T ≥ T0. (143)

Suppose that player i deviates, and in stage t−1 after the history ht−1 she does
not follow the action chosen for her by the observer. Since at each stage the
observer reveals her recommendations in the previous stage, this deviation is
detected in stage t, and from then on player i is punished by the other players
at her uniform max-min value. Consequently, if we denote by σi the strategy
taken by the deviator, we deduce from Eq. (142) that

γit,t+T (s;σi, τ−i | ht) ≤ vi0(st) + ε, ∀T ≥ T0(ε). (144)

Equations (143) and (144) show that in the game with the observer, the strategy
profile τ satisfies the following property: for every ε > 0, every t ∈ N and every
history ht ∈ H of length t there is a T0 = T0(ε, t) such that for every player
i ∈ I, every strategy τ ′i in this game, and every initial state s ∈ S, we have

γiT (s; τ | ht) ≥ γiT (s; τ ′i, τ−i | ht)− 12ε, ∀T ≥ T0.

In this sense, the mechanism we provided together with the strategy τ is a
correlated equilibrium in the game Γ.

The fact that T0 depends on t means that the number of stages required to
effectively punish a deviator depends on the stage in which the deviation occurs.
By working harder, one can show that this bound can be made uniform in σi.
This is beyond the scope of this book, and the reader is referred to Solan and
Vieille (2002) for more details.

9.6 Comments and Extensions

The concept of uniform value was defined in Mertens and Neyman (1981). The
“Big Match” was introduced by Gillette (1957) and solved by Blackwell and Fer-
guson (1968). The proof that every two-player zero-sum stochastic game admits
a uniform value is due to Mertens and Neyman (1981), and the proof presented
here follows Sorin (2002), which is an adaptation of the proof of Mertens and
Neyman (1981). The application of the technique of Mertens and Neyman
(1981) to extensive-form correlated equilibrium in multiplayer stochastic games
is taken from Solan and Vieille (2002).
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An extensive literature is devoted to algorithms for calculating the uniform
value of two-player zero-sum stochastic games. Algorithms that calculate the
uniform value in certain classes of games were developed in, e.g., Condon (1992),
Zwick and Paterson (1996), Jurdziński, Paterson, and Zwick (2008) Andersson
and Miltersen (2009), Hansen, Ibsen-Jensen, and Miltersen (2011), and Etes-
sami, Wojtczak, and Yannakakis (2019). Using algorithms devised for the theory
of semi-algebraic sets, one can approximate the uniform value (see Chatterjee,
Majumdar, and Henzinger, 2008) and uniformly ε-optimal strategies (see Solan
and Vieille, 2010). The uniform value can be calculated efficiently for some
classes of stochastic games, see, e.g., Vrieze, Tijs, Raghavan, and Filar (1983),
Filar and Raghavan (1984), and Breton (1991) and the references therein. At-
tia and Oliu-Barton (2020) characterized the uniform value as a solution of a
certain equation. Using this characterization, Oliu-Barton (2020) provided an
algorithm to calculate the uniform value in complexity that is exponential in
the size of the sets of states and actions.

When the players adopt uniformly ε-optimal strategies, they guarantee that
the long-run average payoff is close to the value. This does not rule out the
possibility that the payoff fluctuates along the play: during some long blocks of
stages the payoff is high, in other long blocks of stages the payoff is low, and the
blocks are arranged in such a way that the average payoff is close to the value.
Oliu-Barton and Ziliotto (2020) proved that if both players adopt uniformly
optimal strategies, then for every fixed sufficiently large positive integer m, the
expected average payoff in stages n, n + 1, . . . , n + m − 1 is close to the value.
Thus, the short-run average payoff does not vary much along the play. This is
an extension of the analogous result for Markov decision problems, proven by
Sorin, Venel, and Vigeral (2010).

There are other concepts of value that were studied in the literature, see,
e.g., Maitra and Sudderth (1993, 1998, 2012). Two examples are the following:
the value at the initial state s, denoted v(s), is said to exists if

v(s) = sup
σ1∈Σ1

inf
σ2∈Σ2

lim sup
T→∞

Es,σ1,σ2

[
1

T

T∑
t=1

u(st, at)

]

= inf
σ2∈Σ2

sup
σ1∈Σ1

lim sup
T→∞

Es,σ1,σ2

[
1

T

T∑
t=1

u(st, at)

]
,

in one case, and

v(s) = sup
σ1∈Σ1

inf
σ2∈Σ2

Es,σ1,σ2

[
lim sup
T→∞

u(st, at)

]
= inf

σ2∈Σ2
sup
σ1∈Σ1

Es,σ1,σ2

[
lim sup
T→∞

u(st, at)

]
in the other.

According to its definition, a strategy is a mapping from past play to mixed
actions. Thus, the amount of information the player needs to store so she can
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follow a strategy is not bounded. One strand of literature studies players who
have bounded memory. In Exercise 9.5 we explore this issue in the context of
the “Big Match”. Additional results regarding the “Big Match” can be found in
Fortnow and Kimmel (1998). Uniformly ε-optimal strategies that have one bit
of memory and in addition have access to a clock that counts the stage number
were studied by Hansen, Ibsen-Jensen, and Neyman (2020a, 2020b).

We assumed that players observe the past states that the play visited and
the past actions that the other player took. In a more general model, the
players do not observe this history. Rather, at every stage, each player observes
a random signal, whose distribution depends on the current state and on the
actions chosen by the players. This model is difficult to analyze because of
two reasons. First, since a player does not necessarily know the action of the
other player, she cannot use Bayes’ rule32 to update her belief about the state
of nature, as was done in the setup of Markov decision problems in Chapter 1.
Second, if the signals that the players observe are different, then each player
does not necessarily know the information that the other player receives. Special
classes of stochastic games with signals have been studied, and the convergence
of the discounted value and the existence of the uniform min-max value, the
uniform max-min value, or the limsup value, have been sometimes established,
see, e.g., Coulomb (2003), Rosenberg, Solan, and Vieille (2003, 2004, 2009),
Renault (2006, 2012), Hörner, Rosenberg, Solan, and Vieille (2010), Gensbittel
and Renault (2015), and Gimbert, Renault, Sorin, Venel, and Zielonka (2016).
Ziliotto (2016c) and Renault and Ziliotto (2020b) provided examples that show
that in general the discounted value need not converge as the discount factor
goes to 0. Rosenberg, Solan, and Vieille (2009) and Gimbert, Renault, Sorin,
Venel, and Zielonka (2016) provided examples where the limsup value need not
exist.

Exercise 9.7 is adapted from Kohlberg (1974). Exercise 9.19 is taken from
Maschler, Solan, and Zamir (2020) and is based on Liggett and Lippman (1969).
Exercise 9.18 is based on Thuijsman and Raghavan (1997). The property pre-
sented in Exercise 9.23 is due to Mertens and Neyman (1981), who define the
uniform value as satisfying it, in addition to the properties in Definition 9.9.

9.7 Exercises

Exercise 9.7 is used in the proof of Theorem 10.4.

1. For every λ ∈ (0, 1] denote by x1
λ the unique stationary λ-discounted

optimal strategy of Player 1 in the “Big Match”. Calculate C(λ, λ̂) :=

infx2∈X2 γλ̂(s(0), x1
λ, x

2). The quantity C(λ, λ̂) is the lowest payoff that

can be attained when the discount factor is λ̂, yet Player 1 mistakenly
thinks that the discount factor is λ.

32Thomas Bayes (1701 – Tunbridge Wells, England, April 7, 1761) was an English statisti-
cian, philosopher, and Presbyterian minister, who formulated a specific case of the theorem
that nowadays bears his name.
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2. Prove that Definitions 9.7 and 9.9 for the uniform value are equivalent.

3. Prove that if the uniform value at the initial state s exists, then it is equal
to limλ→0 vλ(s) and to limT→∞ vT (s).

4. Consider a stochastic game Γ = 〈S, I, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 and let let

Γ′ = 〈S, I, (Ai(s))i∈Is∈S , q, (r
′i)i∈I〉 be the stochastic game that differs from

Γ only in its payoff function, and let ε ≥ 0. Prove that if the strategy profile
σ∗ is a uniform ε-equilibrium in Γ, then σ∗ is a uniform (ε+ 2‖r− r′‖∞)-
equilibrium in Γ′.

5. Prove the following for the “Big Match” game.

(a) Player 1 has no deterministic strategy that uniformly guarantees
more than 0.

(b) Player 1 has no bounded-recall strategy33 that uniformly guarantees
more than 0.

6. Prove that in the “Big Match” Player 1 does not have a strategy that
guarantees 1

2 : for every strategy σ1 of Player 1 there exist T0 ∈ N and a
strategy σ2 of Player 2 such that

γT (σ1, σ2) <
1

2
, ∀T ≥ T0.

7. In this exercise we generalize the construction presented in Section 9.2
(Page 123) for a class of games that is more general than the “Big Match”
in three respects. First, Player 2 may have more than two actions, second,
there may be absorbing entries in the top row of the matrix, and third,
the probability of absorption in the various entries may be strictly less
than 1.

Since in two-player zero-sum absorbing games34 the play effectively termi-
nates once the play leaves the initial nonabsorbing state, it is convenient
to shorten the notation as follows:

� The sets of actions of the two players at the initial state are A1 and
A2.

� The payoff at the initial state when the players play the action profile
a ∈ A1 ×A2 is r(a).

� The probability of moving from the initial state to some absorbing
state when the players play the action profile a ∈ A1 ×A2 is p∗(a).

� The expected absorbing payoff if at the initial state the players play
the action profile a ∈ A1 ×A2 is r∗(a).

33For k ∈ N, a strategy is k-bounded recall if the mixed action that is played at stage t
depends only on the actions that were played in the past k stages and on the states that were
visited in those stages. A strategy is bounded recall if it is k-bounded recall for some k ∈ N.

34An absorbing game is a stochastic game with one nonabsorbing state, which is the initial
state, see Definition 4.6 (Page 55)
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Denote the probability of absorption under strategy profile x ∈ ∆(A1) ×
∆(A2) by

p∗(x) :=
∑
a∈A

(
2∏
i=1

xi(ai)

)
p∗(a),

and the expected absorbing payoff under strategy profile x ∈ ∆(A1) ×
∆(A2) by

r∗(x) :=

∑
a∈A

(∏2
i=1 x

i(ai)
)
p∗(a)r∗(a)

p∗(x)
,

which is defined whenever p∗(x) > 0. By convention, we set p∗(x)r∗(x) = 0
whenever p∗(x) = 0. We denote by t∗ the stage in which the play moves
to an absorbing state.

Consider an absorbing game where A1 = {T,B} and r∗(T, a
2) ≤ 0 when-

ever p∗(T, a
2) > 0. Suppose that ‖r∗‖∞ ≤ 1, and that there is a mixed

action x̂2 ∈ ∆(A2) that satisfies (a) p∗(T, x̂
2) = 0, (b) p∗(B, x̂

2) > 0, and
(c) r∗(B, x̂

2) = 0.

In this exercise we will prove that for every M ≥ 1 there is a strategy
σ1
M ∈ Σ1 that satisfies the following properties:

(a) For every strategy σ2 ∈ Σ2,

Eσ1,σ2

[
r2
∗(a

1
t∗ , a

2
t∗)1{t∗<∞}

]
≤ 2

M + 1
, (145)

that is, the expected unconditional absorbing payoff is at most 2
M+1

whatever Player 2 plays.

(b) If Player 2 plays the stationary strategy x̂2, the game is absorbed
with probability 1:

Pσ1,x̂2(t∗ <∞) = 1.

Define two sequences of random variables (Xt)t∈N and (kt)t∈N as follows:

k1 := 0,

kt :=

t−1∑
l=1

p∗(B, al)r
2
∗(B, al), ∀t ≥ 2,

Xt :=

{
0, if t∗ > t,
r2
∗(B, a

2
t∗), if t∗ ≤ t.

, ∀t ≥ 1.

For every M ≥ 1 define a strategy σ1
M ∈ Σ1 as follows:

� If M + 1 + kt ≥ 1, then at stage t play the action B with prob-
ability 1

(M+1+kt)2
(and play T with the complementary probability

1− 1
(M+1+kt)2

).
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� If M + 1 +kt < 1, then at stage T play the action B with probability
1.

Do the following.

(a) Let ~a2 = (a2
1, a

2
2, . . .) be a sequence of actions of Player 2. Show that

the play under the strategy pair (σ1
M ,~a

2) from stage 2 and on is sim-
ilar to the play under the strategy (σ1

M+p∗(B,a21)r2∗(B,a
2
1)
, (a2

2, a
2
3, · · · ))

from stage 1 and on.

(b) Prove that Eσ1
M ,~a

2 [Xt] ≤ 1 for every ~a2 ∈ (A2)∞, every M ≥ 1, and
every t ∈ N.

(c) Prove that for every~a2 ∈ (A2)∞, every M ≥ 1, and every t ∈ N we
have

Eσ1
M ,~a

2 [Xt] ≤ 2
M+1 .

(d) Deduce that Eq. (145) holds.

(e) Prove that for every M ≥ 1 we have Eσ1
M ,x

2
∗
(t∗ <∞) = 1.

(f) Prove that for every M ≥ 1,

Eσ1
M ,x

2
∗
[r2
∗(a

1
t∗ , a

2
t∗)1{t∗<∞}] = 0.

(g) Can you relate the strategies (σ1
M )M∈N to the strategies developed

in Section 9.2 (Page 123) for the “Big Match”?

8. What is the limit of the discounted values v0(s(0)) := limλ→0 vλ(s(0)) of
the following two-player zero-sum absorbing game?

B

T

L R

0
∗

1

2
∗

0

State s(0)

9. Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game. For every player

i ∈ I, every state s ∈ S, and every discount factor λ ∈ (0, 1] define:

viλ(s) := inf
σ−i∈Σ−i

sup
σi∈Σi

γiλ(s;σi, σ−i).

This quantity is called the λ-discounted min-max value of player i at the
initial state s. It represents the maximum amount that player i can defend
in the game. By Exercise 3.6 (Page 51), the λ-discounted min-max value
of player i at the initial state s may differ from the λ-discounted max-min
value of player i at the same initial state s.

(a) Prove that the function λ 7→ viλ(s) is semi-algebraic for every player
i ∈ I and every initial state s ∈ S.
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(b) Deduce that the limit vi0(s) := limλ→0 v
i
λ(s) exists.

(c) Prove that for every i ∈ I there exist a strategy profile σ−i ∈ Σ−i

and a λ0 > 0 such that

γiλ(s;σi, (σj)j 6=i) ≤ viλ(s) + ε, ∀λ ∈ (0, λ0), ∀σi, ∀s ∈ S.

10. Calculate the uniform value of the game that is displayed in Example 4.4
(see Page 53), and find stationary uniformly ε-optimal stationary strate-
gies of the two players.

11. Find a stationary uniformly ε-optimal strategy of Player 1 in the game in
Exercise 6.20 (Page 86).

12. Prove that the uniform value of the following game in both states is 1.

B

T

L C R

State s(0)

−1(0,1)

−1(1,0)

1
∗

0(0,1)

−1
∗

5
∗

B

T

L R

State s(1)

0(1,0)

1(0,1)

1
∗

1(1,0)

13. Find the uniform value of the following game with two nonabsorbing
states.

B

T

B

T

L R L R

State s(0) State s(1)

1
∗

0(0,1)

0
∗

1(0,1)

0
∗

1(1,0)

2
∗

0( 1
2 ,

1
2 )

14. A quitting game is an absorbing game Γ = 〈I, ({Ci, Qi})i∈I , p∗, (ri, ri∗)i∈I〉,
where each player has two actions, Ai = {Ci, Qi}, interpreted as a continue

action and a quit action, and the transition rule p∗ satisfies p∗(~C) = 0 and

p∗(a) = 1 for every action profile a ∈ A \ {~C}, where ~C = (Ci)i∈I .

Let Γ be a quitting game that satisfies the following property: the absorb-
ing payoff of a player depends only on her action and on the number of
players who quit; that is, there are two functions a, b : {0, 1, . . . , n} → R
such that ri∗(Q

J , CJ
c

) = a(|J |) if i 6∈ J and ri∗(Q
J , CJ

c

) = b(|J |) if i ∈ J .

Prove that there exists a pure stationary strategy profile that is uniformly
ε-optimal for every ε > 0.
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15. In this exercise we write down the strategy that is constructed in the proof
of Theorem 9.13 for a specific game. Consider the following two-player
zero-sum absorbing game.

B

T

L R

1
∗

0

0
∗

1
∗

State s(0)

(a) Calculate the discounted optimal strategies of both players.

(b) Write down the functions ψ and D.

(c) Write down the optimal strategy of Player 1 that is constructed in the
proof of Theorem 9.13, and explain why it is a stationary strategy.

(d) Explain why the optimal strategy of Player 2 that is constructed in
the proof of Theorem 9.13 is not stationary.

16. A two-player zero-sum stochastic game is recursive if the payoff in all
nonabsorbing states is 0. The game is positive if the payoff in all absorbing
states is positive.

(a) Prove that in positive recursive games, if the uniform value in all non-
absorbing states is positive, then Player 1 has a stationary uniformly
ε-optimal strategy for every ε > 0.

(b) Prove that even when the uniform value in some states is 0, Player 1
has a stationary uniformly ε-optimal strategy for every ε > 0.

Hint: For item (a), consider the strategy constructed in the proof of
Theorem 9.13. For item (b), consider an auxiliary game that is similar to
Γ, except that the nonabsorbing states in Γ whose uniform value is 0 are
turned into absorbing states with absorbing payoff 0.

17. The goal of this exercise is to imporve our understanding of the proof
of Theorem 9.13, and uses the notations presented in Section 9.3. Let
Γ = 〈{1, 2}, S, (A1(s), A2(s))s∈S , q, r〉 be a two-player zero-sum stochastic
game. Let σ = (σ1, σ2) be a strategy profile that satisfies the following
condition:

Es,σ

[
λtr(st, a

1
t , a

2
t ) + (1− λt)vλt(st+1) | Ht

]
= vλt(st), ∀t ∈ N, s ∈ S.

(a) Prove that Claim 9.20 holds with equality.

(b) Prove that C1
t ≤ λt(dt+1 − dt). (Compare this with Claim 9.21).

(c) Prove that C3
t ≥ λt(dt+1 − dt)− 6λtM · 1{λt+1=λ1} − 4ελt.
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(d) Prove that

Es,σ1,σ2

[
T∑
t=1

r(st, a
1
t , a

2
t )

]
≤ Es,σ1,σ2

[
T∑
t=1

vλt(st+1)

]

+ E[dT+1 − d1] + 4Tε+ 2ME

[ ∞∑
t=1

1{λt=λ1}

]
.

(Compare this equation with Eq. (119)).

(e) Explain why we cannot conclude that γT (s;σ) is close to v0(s) for
every T sufficiently large.

18. A stochastic games Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 has perfect informa-

tion if in all states the action set of all players but one contain one action;
that is, for every state s ∈ S there is a player i such that |Aj(s)| = 1 for
every j ∈ I \ {i}. In this exercise we prove that two-player nonzero-sum
stochastic games admit a uniform equilibrium payoff.

(a) Prove that in stochastic games with perfect information for each
player the uniform min-max value and the uniform max-min value
coincide at all initial states: we have

vi0(s) = vi0(s), ∀s ∈ S, ∀i ∈ I,

where the uniform max-min value is defined by

vi0(s) := lim
λ→0

viλ(s), ∀i ∈ I, ∀s ∈ S.

(b) Prove that for each player i ∈ I there is a pure stationary strategy
σi0 that guarantees vi(s)− ε, for every s ∈ S and every ε > 0.

(c) Prove that for each player i ∈ I there is a strategy σ̂−i[i] ∈ Σ−i that

ensures that player i’s payoff at every initial state s is at most vi(s)+ε:
for every ε > 0 there is T0 ∈ N such that

γiT (s;σi, σ−i) ≤ vi0(s) + ε, ∀s ∈ S,∀T ≥ T0.

(d) Denote by τ i the first stage in which player i deviates from σi0, let
τ := min{τ i, i ∈ I} be the first stage in which some player deviates
from σ0 := (σi0)i∈I , and let i∗ := min{i ∈ I : τ = τ i} be a player who
deviated first from σ0. Define the following strategy σi∗ ∈ Σi:

� Until stage τ follow the strategy σi0.

� At stage τ + 1 forget past play, and start following the strategy
σ̂−i0[i] .

Prove that the strategy profile σ∗ := (σi∗)i∈I is a uniform 2ε-equilibrium.
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19. In this exercise we prove the existence of a sequence (xt)
∞
t=1 of zeros and

ones satisfying

lim inf
T→∞

∑T
k=1 xk
T

< lim inf
λ→0

λ

∞∑
t=1

(1− λ)t−1xt. (146)

Let (qt)t∈N be a sequence of natural numbers. Define a sequence (pt)t∈N
as follows:

p1 := 0,

pt := q1 + q2 + · · ·+ qt−1.

Define a sequence (xt)t∈N as follows:

xt =

{
1, if there exists k such that 2pk < t ≤ 2pk + qk,

0, otherwise.

In words, in the sequence (xt)t∈N the first q1 elements equal 1, the next
q1 elements equal 0, the next q2 elements equal 1, the next q2 elements
equal 0, and so on.

(a) Prove that lim infT→∞
∑T
k=1 xk
T = 1

2 .

(b) Denote A(λ) = λ
∑∞
t=1(1− λ)t−1xt. Prove that

A(λ) =

∞∑
k=1

(1− λ)2pk(1− (1− λ)qk).

(c) Denote αk = (1− λ)pk − (1− λ)pk+1 for every k ∈ N. Using item (b)
above, prove that

A(λ) =
1

2

( ∞∑
k=1

(αk)2 + 1

)
.

(d) Let ε ∈ (0, 1
4 ), and denote c := ln(ε)

ln(1−
√
ε)

. Prove that c > 2.

(e) Suppose that the sequence (qt)t∈N satisfies qk >
2pk
c−2 for every k ∈ N.

Define

ak :=
| ln(1−

√
ε)|

qk
, bk :=

| ln(ε)|
2pk

. (147)

Prove that limk→∞ bk = 0, and that for every k ∈ N, (a) bk+1 < bk,
(b) cqk > 2pk + 2qk, and (c) ak < bk+1.

(f) Prove, with the aid of item (e) above, that
⋃
k∈N(ak, bk) = (0,∞).

Deduce that for every λ ∈ (0, 1] there exists a k(λ) ∈ N such that
ak(λ) ≤ | ln(1− λ)| < bk(λ).
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(g) Using Eq. (147), prove that ε < (1−λ)2pk(λ) , and 1−
√
ε ≥ (1−λ)qk(λ) .

Deduce that

(αk)2 = (1− λ)2pk(λ)(1− (1− λ)qk(λ))2 > ε2.

(h) Deduce, with the aid of item (c) above, that lim infλ→0A(λ) ≥ ε2+1
2 .

(i) Deduce that Eq. (146) holds for the sequence (xt)t∈N defined in item
(d) above.

(j) Construct a sequence (yt)
∞
t=1 of zeros and ones satisfying

lim sup
T→∞

∑T
t=1 yt
T

> lim sup
λ→0

λ

∞∑
t=1

(1− λ)t−1yt.

Such a sequence was used in Example 9.5.

20. Prove that the min-max value of player i in the strategic-form game
Gs,λ(vλ) is viλ(s).

21. Using the Average Cost Optimality Equation calculate the uniform value
at each state of the following two-player zero-sum stochastic game with
two non-absorbing states.

B

T

L R

0(0,1)

3(1,0)

2(1,0)

−1(0,1)

State s(0)

B

T

L R

0(0,1)

2(1,0)

3(1,0)

−1(0,1)

State s(1)

22. Consider the following two-player zero-sum stochastic game with two states.

B

T

L R

0(1,0)

−1(1,0)

−3(0,1)

0(1,0)

State s(0)

B

T

L R

0(0,1)

1(0,1)

3(1,0)

0(0,1)

State s(1)

Do the following.

(a) Prove that vλ(s(0)) = −vλ(s(1)) for every λ ∈ (0, 1].

(b) Prove that v0(s(0)) = v0(s(1)) = 0.

(c) For each λ ∈ (0, 1] calculate the λ-discounted value at each initial
state.

(d) Write down the Average Cost Optimality Equation for this game
and solve it. Verify that the result that you obtained agrees with
Eq. (127).
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(e) Explain which of the results proved in Section 9.4 applies for this
game.

23. Let Γ = 〈S, {1, 2}, A1, A2, q, r〉 be a two-player zero-sum stochastic game.
Prove that the 9ε-optimal strategy σ1 for Player I that we constructed
in the proof of Theorem 9.13 satisfies the following propery: for every
strategy σ2 ∈ Σ2,

Es,σ1,σ2

[
lim inf
N→∞

1

N

N∑
n=1

r(st, a
1
t , a

2
t )

]
≥ v(s)− 9ε.
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10 The Vanishing Discount Factor Approach and
Uniform Equilibrium in Absorbing Games

Abstract

In this chapter we present a technique to study uniform equilibria
in stochastic games, called the vanishing discount factor approach. This
approach was developed to prove the existence of a uniform ε-equilibrium
in two-player nonzero-sum absorbing games using a mapping λ 7→ xλ,
which assigns a stationary λ-discounted equilibrium xλ to every λ ∈ (0, 1],
and analyzing the asymptotic properties of this mapping as λ goes to 0.
We will use this approach to show that every absorbing game in which
the probability of absorption is positive whatever the players play has
a stationary uniform 0-equilibrium, and that every two-player absorbing
game has a uniform ε-equilibrium, which need not be stationary, for every
ε > 0. To prove the second result we will show how statistical tests are
used in the construction of uniform ε-equilibria.

10.1 Preliminaries

Recall that a state s ∈ S in a stochastic game is absorbing if q(s | s, a) = 1 for
every action profile a ∈ A(s): once the game reaches this state, it never leaves
it, whatever the players play. Recall also that an absorbing game is a stochastic
game with a single nonabsorbing state.

As mentioned on Page 55, to study the existence of a uniform equilibrium
payoff in absorbing games we can assume that the payoff in each absorbing
state is constant: once the game reaches an absorbing state, the players’ payoff
in every stage is independent of their actions. It is therefore convenient to
present an absorbing game as a vector Γ = 〈I, (Ai)i∈I , p∗, (ri, ri∗)i∈I〉, where

� I = {1, 2, . . . , n} is the set of players.

� Ai is the finite set of actions of player i in the nonabsorbing state, for
every i ∈ I. Denote by A =

∏
i∈I A

i the set of action profiles at the
nonabsorbing state.

� p∗ : A→ [0, 1] represents the transition rule: p∗(a) is the probability that
the game is absorbed when the players adopt the action profile a.

� r : A → Rn is the nonabsorbing payoff function: ri(a) is the payoff to
player i ∈ I in the nonabsorbing state when the players adopt the action
profile a.
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� r∗ : A → Rn is the absorbing payoff function: ri∗(a) is the payoff to
player i ∈ I in each future stage given that the game is absorbed when
the players adopt the action profile a.

Denote by M the maximal payoff (in absolute values) in the game:

M := max
i∈I

max{‖ri‖∞, ‖ri∗‖∞}.

For every mixed action profile x ∈
∏
i∈I ∆(Ai) define the following three

quantities: First,

r(x) :=
∑
a∈A

(∏
i∈I

xi(ai)

)
r(a);

this is the expected stage payoff to player i ∈ I when the players adopt the
mixed action profile x. Second,

p∗(x) :=
∑
a∈A

(∏
i∈I

xi(ai)

)
p∗(a);

this is the probability of absorption in a single stage when the players adopt
the mixed action profile x. A mixed action profile x ∈

∏
i∈I ∆(Ai) is called

absorbing if p∗(x) > 0. And third,

r∗(x) :=

∑
a∈A

(∏
i∈I

xi(ai)

)
p∗(a)r∗(a)

∑
a∈A

(∏
i∈I

xi(ai)

)
p∗(a)

=

∑
a∈A

(∏
i∈I

xi(ai)

)
p∗(a)r∗(a)

p∗(x)
;

this is the expected absorbing payoff when the players adopt the mixed action
profile x, conditional that absorption occurs. The quantity r∗(x) is defined only
for absorbing mixed action profiles x ∈

∏
i∈I ∆(Ai).

Note that the mapping r and the function p∗ are multilinear, and in particu-
lar continuous. and the mapping r∗ is continuous on the set {x ∈

∏
i∈I ∆(Ai) : p∗(x) >

0} of absorbing mixed action profiles. Note also that the function p∗ · r∗ is
multilinear whenever it is defined; that is, for every player i ∈ I, every two
mixed actions xi, x′i ∈ ∆(Ai), every β ∈ [0, 1], and every mixed action profile
x−i ∈

∏
j 6=i ∆(Aj) we have

βp∗(x
i, x−i)r∗(x

i, x−i) + (1− β)p∗(x
′i, x−i)r∗(x

′i, x−i)

= p∗(βx
i + (1− β)x′i, x−i)r∗(βx

i + (1− β)x′i, x−i),

whenever p∗(x
i, x−i) > 0 and p∗(x

′i, x−i) > 0.
We now express the discounted payoff under stationary strategy profiles

using these mappings. When the players use the stationary strategy profile x,
the λ-discounted payoff can be written as (see Theorem 5.2):

γλ(x) = λr(x) + (1− λ)
(
p∗(x)r∗(x) + (1− p∗(x))γλ(x)

)
.
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Therefore,

γλ(x) =
λr(x) + (1− λ)p∗(x)r∗(x)

λ+ (1− λ)p∗(x)
. (148)

Setting

αλ(x) :=
(1− λ)p∗(x)

λ+ (1− λ)p∗(x)
(149)

we obtain that

γλ(x) = (1− αλ(x))r(x) + αλ(x)r∗(x). (150)

That is, the λ-discounted payoff is a convex combination of the expected stage
payoff r(x) and the expected absorbing payoff r∗(x), with weights that depend
on the discount factor λ and the per-stage probability of absorption p∗(x).

Suppose now that we are given a semi-algebraic mapping λ 7→ xλ that
assigns a stationary strategy profile xλ ∈

∏
i∈I ∆(Ai) to every λ ∈ (0, 1]. Since

this mapping is semi-algebraic, the limit x0 := limλ→0 xλ exists. Thanks to the
continuity of r and p∗,

r(x0) = lim
λ→0

r(xλ),

p∗(x0) = lim
λ→0

p∗(xλ).

If p∗(x0) > 0, then r∗(x0) is well defined and

r∗(x0) = lim
λ→0

r∗(xλ).

The function (λ, x) 7→ αλ(x) is semi-algebraic, hence so is the function λ 7→
αλ(xλ) (Exercise 6.2 on Page 84). Set

α0 := lim
λ→0

αλ(xλ).

By Eq. (150),

lim
λ→0

γλ(xλ) = (1− α0)r(x0) + α0 lim
λ→0

r∗(xλ). (151)

Thus, the limit limλ→0 γλ(xλ) of the discounted payoff is equal to r(x0) if α0 = 0,
to the limit of the absorbing payoff limλ→0 r∗(xλ) if α0 = 1, and to a convex
combination of these two quantities if α0 ∈ (0, 1).

Since the function λ 7→ p∗(xλ)/λ is semi-algebraic, the limit limλ→0 p∗(xλ)/λ
exists (it may be ∞). The following result relates this limit to α0. Its proof
follows from the definition of αλ (Eq. (149)).

Theorem 10.1 Let Γ = 〈I, (Ai)i∈I , p∗, (ri, ri∗)i∈I〉 be an absorbing game and
let λ 7→ xλ be a semi-algebraic mapping that assigns a stationary strategy profile
to every λ ∈ (0, 1]. The following statements hold:
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1. α0 = 0 if and only if limλ→0
p∗(xλ)
λ = 0.

2. α0 = 1 if and only if limλ→0
p∗(xλ)
λ =∞.

3. α0 ∈ (0, 1) if and only if limλ→0
p∗(xλ)
λ ∈ (0,∞).

Example 10.2 Consider the “Big Match” game that is displayed in Figure 24.

B

T

L R

0
∗

1

1
∗

0

Figure 24: The “Big Match”.

Here we have

r(T, L) = r(B,R) = 1, r(T,R) = r(B,L) = 0,

p∗(T, L) = p∗(T,R) = 0, p∗(B,L) = p∗(B,R) = 1,

r∗(B,L) = 0, r∗(B,R) = 1.

Suppose that x1
λ = [ 2

2+λ (T ), λ
2+λ (B)] and x2

λ = [ 1
3 (L), 2

3 (R)]. Then

r(xλ) =
2

3(2 + λ)
+

2λ

3(2 + λ)
=

2(1 + λ)

3(2 + λ)
,

p∗(xλ) =
λ

2 + λ
,

r∗(xλ) =
2

3
.

αλ(xλ) =
(1− λ) λ

2+λ

λ+ (1− λ) λ
2+λ

=
1− λ

3
,

γλ(xλ) =
2 + λ

3
· 2(1 + λ)

3(2 + λ)
+

1− λ
3
· 2

3
=

4

9
.

Note that x1
0 = [1(T )] and x2

0 = [ 1
3 (L), 2

3 (R)], and therefore p∗(x0) = 0 and
r∗(x0) is not defined. Also, γλ(x0) = 1

3 for every λ ∈ (0, 1], and therefore
limλ→0 γλ(x0) 6= limλ→0 γλ(xλ). �

In the rest of the chapter we will use the following notation: t∗ is the stage
in which the play moves to an absorbing state.

10.2 Uniform Equilibrium in Absorbing Games with Pos-
itive Absorbing Probability

In this section we prove that in every absorbing game in which the probabil-
ity of absorption is positive regardless of what the players play, there exists a
stationary uniform 0-equilibrium,.
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Theorem 10.3 Let Γ = 〈I, (Ai)i∈I , p∗, (ri, ri∗)i∈I〉 be an absorbing game sat-
isfying p∗(a) > 0 for every action profile a ∈ A. Then the game admits a
stationary uniform ε-equilibrium, for every ε > 0.

Proof.
Step 1: Definition of a stationary strategy profile x0.

By Corollary 8.14 (Page 111) there is a semi-algebraic mapping λ 7→ xλ
that assigns a stationary λ-discounted equilibrium xλ to every discount factor
λ ∈ (0, 1]. This semi-algebraic mapping will remain fixed throughout the proof.
Set

x0 := lim
λ→0

xλ.

We will prove that x0 is a stationary uniform ε-equilibrium in Γ, for every ε > 0.

Step 2: Calculation of the payoff under x0.

Because the action sets are finite, there is a δ > 0 such that p∗(a) ≥ δ
for every action profile a ∈ A. This implies that p∗(x) ≥ δ for every mixed
action profile x ∈

∏
i∈I ∆(Ai). That is, the per-stage probability of absorption

is bounded from below. It follows that the game is absorbed at a geometric
rate:

Pσ(t∗ > T ) ≤ (1− δ)T−1, ∀T ∈ N,∀σ ∈
∏
i∈I

Σi. (152)

By Theorem 10.1 this implies that limλ→0 αλ(x′λ) = 1 for every semi-algebraic
function λ 7→ x′λ that assigns a stationary strategy profile to each discount fac-
tor. In other words, for every such semi-algebraic function,

lim
λ→0

γλ(x′λ) = r∗(x
′
0). (153)

Denote

w := lim
λ→0

γλ(xλ) ∈ RI .

By Eq. (153) applied to the semi-algebraic mapping λ 7→ xλ,

w = lim
λ→0

γλ(xλ) = r∗(x0).

Thus, when the players play the stationary strategy profile x0, the game is
absorbed at every stage with probability at least δ, and the expected absorbing
payoff is r∗(x0) = w. Fix ε > 0, and let Tε ∈ N be sufficiently large such that

(1− δ)Tε−1 ≤ ε.

Eq. (152) implies that∣∣γiT (x0)− wi
∣∣ ≤ 2Mε, ∀T ≥ Tε/ε,

see Exercise 3.
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Step 3: The stationary strategy profile x0 is a uniform ε-equilibrium for every
ε > 0.

We will show that no player can profit more than 4Mε in the T -stage game
by deviating from the stationary strategy profile x0, provided T ≥ Tε/ε.

By Eq. (153) and since xλ is a λ-discounted equilibrium, for every λ ∈ (0, 1]
and every mixed action profile x′i ∈ ∆(Ai) we have

ri∗(x
′i, x−i0 ) = lim

λ→0
γiλ(x′i, x−iλ )

≤ lim
λ→0

γiλ(xλ) (154)

= ri∗(x0) = wi.

Now fix ε > 0, a player i ∈ I, and a strategy σi ∈ Σi. For every history
ht ∈ H, under the mixed action profile (σi(ht), x

−i
0 ) absorption occurs with

probability at least δ, and by Eq. (154) the expected absorbing payoff is at
most wi. Eq. (152) implies that

γiT (σi, x−i0 ) ≤ wi + 2Mε, ∀T ≥ Tε/ε.

Therefore, x0 is a 4Mε-equilibrium in the T -stage game, for every T ≥ Tε/ε,
and the claim follows.

10.3 Uniform Equilibrium in Two-Player Absorbing Games

In this section we restrict attention to two-player absorbing games, and we prove
that such games have uniform ε-equilibrium for every ε > 0, which need not be
stationary. We note that to date it is not known whether every absorbing game
that involves at least four players admits a uniform ε-equilibrium, for every
ε > 0.

Theorem 10.4 Every two-player absorbing game admits a uniform ε-equilibrium,
for every ε > 0.

To prove the theorem, we will construct for every ε > 0 a uniform ε-
equilibrium that consists of three parts: an equilibrium play, statistical tests,
and punishment strategies. We now explain the role of each of these parts.

1. The equilibrium play is the main part of the uniform ε-equilibrium, and it
is used to generate high payoff to each player. It will usually consists of a
mixed action profile that the players adopt in every stage.

2. Players may be able to deviate from the equilibrium play and profit. To
dissuade them from doing so, each player will check that the other player
follows the equilibrium play. There will be two ways which players check
each other:

� If under the equilibrium play the game is supposed to be absorbed,
then there is a T∗ ∈ N such that, up to stage T∗, the game should be
absorbed with high probability. If the game is not absorbed by stage
T∗, then one may deduce that some player deviated.
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� To ensure that no player deviates from the stationary strategy she
should follow, each player will verify that the distribution of the re-
alized actions of the other player is close to the mixed action she
should play. By the strong law of large numbers, the difference be-
tween these two quantities is small with high probability. If it turns
out that at some stage the difference is high for one of the players,
the other player can conclude with high degree of confidence that the
player did deviate.

We will use two types of such statistical tests. In one, as described
above, each player compares the distribution of the realized actions
of the other player to the mixed action she should play. In the other,
the players compare the expected average payoff to the one induced
by the equilibrium play.

3. Once a deviation of a player is detected, the other player switches to a
punishment strategy, which lowers the payoff of the deviator to her uniform
min-max level.

If a player deviates by playing an action that leads to absorption, then
the game is absorbed and the other player cannot punish the deviator. To
ensure that the threat of punishment is effective, we will have to construct the
equilibrium play in such a way that any deviation to an action which leads to
absorption does not increase the payoff of the deviator relative to her payoff
along the equilibrium play.

We now turn to the formal proof of the theorem.

Proof of Theorem 10.4. Let λ 7→ xλ be a semi-algebraic mapping
that assigns a λ-discounted stationary equilibrium xλ to each discount factor
λ ∈ (0, 1]. Denote

x0 := lim
λ→0

xλ

and

w := lim
λ→0

γλ(xλ) ∈ R2.

As in the proof of Theorem 10.3, for every action a1 ∈ A1 such that p∗(a
1, x2

0) >
0 we have

u1
∗(a

1, x2
0) ≤ w1. (155)

Indeed, since for every λ ∈ (0, 1] the stationary strategy profile xλ is a λ-
discounted equilibrium, and since p∗(a

1, x2
0) > 0, we have

w1 = lim
λ→0

γ1
λ(xλ)

≥ lim
λ→0

γ1
λ(a1, x2

λ)

= r1
∗(a

1, x2
0),

where the last inequality follows from Eq. (151) and Theorem 10.1(2).
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The λ-discounted min-max values of the players are

v1
λ := inf

σ2∈Σ2
sup
σ1∈Σ1

γ1
λ(σ1, σ2),

v2
λ := inf

σ1∈Σ1
sup
σ2∈Σ2

γ2
λ(σ1, σ2).

The quantity v1
λ is the value of the two-player zero-sum absorbing game where

the goal of Player 2 is to minimize Player 1’s payoff. Similarly, the quantity
v2
λ is the value of the two-player zero-sum absorbing game where the goal of

Player 1 is to minimize Player 2’s payoff. It follows that for each i ∈ {1, 2} the
function λ 7→ viλ is semi-algebraic, and therefore the two limits

vi0 := lim
λ→0

viλ, i ∈ {1, 2},

exist. By Theorem 9.13 on Page 128, for every ε > 0, each player i ∈ {1, 2}
has a strategy that uniformly lowers player (3− i)’s payoff to v3−i

0 + ε. That is,
there exist a strategy σ̂iε ∈ Σi and a T0(ε) ∈ N such that

γ3−i
T (σ̂iε, σ

3−i) ≤ vi0 + ε, ∀σ3−i ∈ Σ3−i,∀T ≥ T0(ε). (156)

Every equilibrium payoff of a player is at least her min-max value (Exer-
cise 3.5 (Page 51). Consequently,

γiλ(xλ) ≥ viλ, i = 1, 2, ∀λ ∈ (0, 1].

Letting λ→ 0, we obtain

wi = lim
λ→0

γiλ(xλ) ≥ lim
λ→0

viλ = vi0.

Fix ε > 0. We will handle four cases separately, each with its own equilibrium
play and own statistical test.

� Case 1: p∗(x0) > 0. In this case under the equilibrium play the players
adopt at every stage the mixed action profile x0. Since p∗(x0) > 0, if no
player deviates the game will eventually be absorbed. We will show that
no player can profit by deviating in a way that leads to absorption, so the
only possible profitable deviations of a player may be adopting actions
that cause the play to never absorb. To deter such deviations, if the game
is not absorbed after some given large number of stages, each player starts
punishing the other player at the uniform min-max value.

� Case 2: p∗(x0) = 0 and ri(x0) ≥ wi for each i ∈ {1, 2}. In this case under
the equilibrium play the players adopt at every stage the mixed action
profile x0. As in Case 1, no player will be able to profit by deviating in a
way that leads the game to absorption. To deter deviations under which
the play never absorbs, each player will check whether the average payoff
of the other player does not exceed the amount she should get, which is
given by r(x0). If an increase in the average payoff of the other player is
detected, that player is punished at her min-max level.
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� Case 3: p∗(x0) = 0 and r2(x0) < w2. We will prove that there is a1 ∈ A1

such that (a) p∗(a
1, x2

0) > 0, (b) r1
∗(a

1, x2
0) = w1, and (c) r2

∗(a
1, x2

0) = w2.
That is, an action that yields high absorbing payoff to both players when
adopted together with x2

0.

In this case, there is a uniform 4Mε-equilibrium where at every stage
Player 2 selects the mixed action x2

0, Player 1 selects the mixed action
(1 − ε)x1

0 + ε1a1 , and the players utilize statistical tests to ensure that
noine of them deviates. We will construct another uniform (2 + 4M)ε-
equilibrium, in which the equilibrium play is not stationary, but rather
uses the strategy we developed for the “Big Match”, and was presented in
Exercise 9.7 (Page 151). With this strategy profile, the test for detecting
deviations will involve only deviations that lead the game to never absorb:
if the play is not absorbed after a predetermined number of stages, both
players will switch to a punishment strategy, each one against the other
player.

� Case 4: p∗(x0) = 0 and r1(x0) < w1. This case is analogous to Case 3.

We turn to the formal proof, which will present in details the construction
of the equilibrium play and the statistical tests.
Case 1: p∗(x0) > 0.

Step 1: Choosing constants.

Let T∗ ∈ N be sufficiently large so that (1 − p∗(x0))T∗ ≤ ε. That is, when
the players play the mixed action profile x0, the game is absorbed before stage
T∗ with probability at least 1− ε.

Step 2: Defining a strategy profile σ∗.

Let σ1
∗ be the following strategy of Player 1:

a1) Play the mixed action x1
0 in the first T∗ stages.

a2) At stage T∗ forget past play and start following the strategy σ̂1
ε ; that is,

if the game is not absorbed by stage T∗, punish Player 2.

Let σ2
∗ be the analogous strategy of Player 2:

b1) Play the mixed action x2
0 in the first T∗ stages.

b2) At stage T∗ forget past play and start following the strategy σ̂2
ε .

Points (a1) and (b1) describe the equilibrium play. The tests for detecting
deviation (which here are not statistical) are described in points (a2) and (b2),
and they call for punishment if the game is not absorbed by stage T∗.

Step 3: The payoff under σ∗.
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If the players follow the strategy pair σ∗ := (σ1
∗, σ

2
∗), then absorption occurs

until stage T∗ with probability at least 1−ε, in which case the expected absorbing
payoff is r∗(x0). Consequently, for every T ≥ T∗/ε we have

γiT (σ∗) ≥ (1− ε)T∗ · (−M) + (T − T∗)ri∗(x0)

T
−Mε (157)

≥ ri∗(x0)− 2Mε,

where the term −Mε bounds the contribution to the expected payoff of the

event that the game is not absorbed by stage T∗, the term (1 − ε)T∗·(−M)
T

bounds the contribution to the expected payoff in the first T∗ stages of the

event that the game is absorbed by stage T∗, and the term (1− ε) (T−T∗)ri∗(x0)
T is

the contribution to the expected payoff from stage T∗ and on of the event that
the game is absorbed by stage T∗.

Step 4: σ∗ is a 5Mε-equilibrium in the T -stage game.

We now argue that no player i ∈ {1, 2} can profit more than 5Mε in the
T -stage game by deviating, provided T is sufficiently large. We prove this claim
for Player 1. The proof for Player 2 is analogous. Let then σ1 be any strategy
of Player 1.

If at some stage until stage T∗ Player 1 plays an action a1 such that p∗(a
1, x2

0)
> 0, then, by Eq. (155), r1

∗(a
1, x2

0) ≤ w1 = r1
∗(x0). It follows that if the game is

absorbed by stage T∗, then the expected absorbing payoff is at most r1
∗(x0) = w1.

If the game is not absorbed by stage T∗, then, since at stage T∗ Player 2 starts
following a punishment strategy against Player 1, for every T ′ ≥ T0(ε) (see
Eq. (156)), the expected payoff of Player 1 between stages T∗ + 1 and T∗ + T ′

is at most v1
0 + ε ≤ w1 + ε. Thus, for every T ≥ T1 := max

{
T∗
ε , T∗ + T0(ε)

}
we

have

γ1
T (σ1, σ2

∗) ≤ T∗ · (−M)

T

+
T − T∗
T

(
Pσ1,σ2

∗
(t∗ ≤ T∗) · r1

∗(x0) + Pσ1,σ2
∗
(t∗ > T∗) · (v1

0 + ε)
)

≤ r1
∗(x0) + 3Mε. (158)

Together with Eq. (157), Eq. (158) implies that σ∗ is indeed a T -stage 5Mε-
equilibrium, for every T ≥ T1, as desired.

Case 2: p∗(x0) = 0 and ri(x0) ≥ wi for each i ∈ {1, 2}.

Step 1: Choosing constants.

For t ∈ N, let rt be the average payoff until stage t:

rt :=
1

T

T∑
t=1

r(a1
t , a

2
t ) ∈ R2.
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By the strong law of large numbers, if the players play the stationary strategy
pair x0, then for t sufficiently large rt is close to r(x0); that is, there exists a
T∗ ∈ N such that

Px0

(
‖rt − r(x0)‖∞ ≤ ε, ∀t ≥ T∗

)
≥ 1− ε

for all t ≥ T∗. Let τ be the first stage after stage T∗ in which the average payoff
is far from r(x0), that is,

τ := min{t ≥ T∗ : ‖rt − r(x0)‖∞ > ε}.

Then
Px0

(τ =∞) ≥ 1− ε.
Step 2: Defining a strategy profile σ∗.

Let σ1
∗ be the following strategy of Player 1:

a1) Play the mixed action x1
0 until stage τ .

a2) At stage τ + 1 forget past play and start following the strategy σ̂1
ε .

Let σ2
∗ be the analogous strategy of Player 2:

b1) Play the mixed action x2
0 until stage τ .

b2) At stage τ + 1 forget past play and start following the strategy σ̂2
ε .

Step 3: The payoff under σ∗.

Since Px0
(τ <∞) < ε,

‖γT (σ1
∗, σ

2
∗)− r(x0)‖∞ ≤ (1 + 2M)ε.

for all T ∈ N. Here, in the right-hand side, one ε originates from the fact that
the average payoff of each player i is allowed to be higher than ri(x0) by at most
ε, and the term 2Mε arises because the probability of the event that some player
fails the statistical test is at most 2ε, and on this event the payoff is bounded
by M .

Step 4: σ∗ is a (1 + 4M)-equilibrium in the T -stage game.

We will now show that Player 1 cannot profit more than 2Mε by deviating.
The proof that Player 2 cannot profit more than 2Mε by deviating is analogous.

Fix then a strategy σ1 of Player 1 and T ≥ T0(ε)
ε + T∗. To calculate γ1

T (σ1, σ2
∗),

we define several disjoint events, and calculate the expected payoff in the first
T stages separately in each event.

1. Consider first the event E1 := {t∗ ≤ T∗}; that is, the play is absorbed
before stage T∗. By Eq. (155) we have r1

∗(a
1, x2

0) ≤ w1 ≤ r1(x0): the
expected payoff after stage t∗ is at most w1. Since T ≥ T∗/ε, it follows
that

Es,σ1,σ2
∗

[
1

T

T∑
t=1

r1(st, at) | E1

]
≤ w1 + ε. (159)
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2. Consider next the event E2 := {T∗ < t∗ ≤ τ}; that is, the play is absorbed
after stage T∗ and before stage τ . Since τ ≥ t∗ > T∗, the average payoff
up to stage min{t∗, τ − 1} is at most r1(x0) + ε, and if t∗ = τ , then by
Eq. (155) the payoff in stage t∗ is at most w1. Therefore,

Es,σ1,σ2
∗

[
1

T

T∑
t=1

r1(st, at) | E2

]
≤ r1(x0) + ε+

w1

T
. (160)

3. Consider now the event E3 := {τ + T0(ε) ≤ T, τ < t∗}; that is, one of
the players fails the statistical test, and there is enough time to punish
her. The average payoff up to time τ − 1 is at most r1(x0) + ε, the payoff
in stage τ is bounded by M , and since T − τ ≥ T0(ε), by Eq. (156) the
expected average payoff from stage τ + 1 to stage T is at most v1

0 + ε ≤
w1 + ε = r1(x0) + ε. Consequently,

Es,σ1,σ2
∗

[
1

T

T∑
t=1

r1(st, at) | E3

]
≤ r1(x0) + ε+

M

T
. (161)

4. Consider now the event E4 := {τ ≤ T < τ + T0(ε), τ < t∗}; that is, one
of the players fails the statistical test, and there is not enough time to
punish her. The average payoff up to time τ − 1 is at most r1(x0) + ε,
and the payoff between stages τ and T is bounded by T−τ+1

T ·M . Since
T0(ε)
ε ≤ T < τ + T0(ε), it follows that T−τ+1

T ≥ ε+ 1
T , and therefore

Es,σ1,σ2
∗

[
1

T

T∑
t=1

r1(st, at) | E3

]
≤ r1(x0) +

(
ε+

1

T

)
M. (162)

5. Finally, consider the event E5 := {T < τ, t∗}. By the definition of τ ,

Es,σ1,σ2
∗

[
1

T

T∑
t=1

r1(st, at) | E3

]
≤ r1(x0) + ε. (163)

Since the events E1, E2, E3, E4, and E5 are disjoint and their union is
H∞, the set of all plays, it follows from Eqs. (159)–(163) that γ1

T (σ1, σ2
∗) ≤

r1(x0) + 2Mε, as claimed.

Case 3: p∗(x0) = 0 and r2(x0) < w2.

Step 1: There is an action a1
∗ ∈ A1 such that p∗(a

1
∗, x

2
0) > 0, r2

∗(a
1
∗, x

2
0) ≥

w2 and r1
∗(a

1
∗, x

2
0) = w1.

For each i = 1, 2 the mapping λ 7→ xiλ is semi-algebraic. Exercise 6.10
(Page 85) implies that for every λ > 0 sufficiently small the support of xiλ is
independent of λ: there is a sufficiently small λ0 > 0 such that supp(xiλ) =
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supp(xiλ′) for every λ, λ′ ∈ (0, λ0). Since x2
0 = limλ→0 x

2
λ, we have supp(x2

0) ⊆
supp(x2

λ) for every λ ∈ (0, λ0). By Theorem 5.5 (Page 61), the stationary
strategy x2

0 is a best response against x1
λ in the λ-discounted game, for every

λ ∈ (0, λ0), that is,

γ2
λ(x1

λ, x
2
0) = γ2

λ(xλ), ∀λ ∈ (0, λ0).

It follows that

w2 = lim
λ→0

γ2
λ(xλ)

= lim
λ→0

γ2
λ(x1

λ, x
2
0)

=

(
1− lim

λ→0
αλ(x1

λ, x
2
0)

)
lim
λ→0

r2(x1
λ, x

2
0) + lim

λ→0
αλ(x1

λ, x
2
0) · lim

λ→0
r2
∗(x

1
λ, x

2
0)

=

(
1− lim

λ→0
αλ(x1

λ, x
2
0)

)
r2(x1

0, x
2
0) + lim

λ→0
αλ(x1

λ, x
2
0) · lim

λ→0
r2
∗(x

1
λ, x

2
0).

Since r2(x0) < w2, this sequence of equations implies that

lim
λ→0

αλ(x1
λ, x

2
0) > 0 and lim

λ→0
r2
∗(x

1
λ, x

2
0) ≥ w2. (164)

By Theorem 10.1, the former condition implies in particular that p∗(x
1
λ, x

2
0) > 0

for every λ sufficiently small. Since p∗(x0) = 0, the condition p∗(x
1
λ, x

2
0) > 0

implies that there are actions a1 ∈ supp(x1
λ)\supp(x1

0) such that p∗(a
1, x2

0) > 0.

Recall that supp(x1
λ) is independent of λ, provided λ ∈ (0, λ0). Let Â1 be

the set of all actions in this support that are absorbing when played against x2
0:

Â1 :=
{
a1 ∈ A1 : p∗(a

1, x2
0) > 0, a1 ∈ supp(x1

λ) ∀λ ∈ (0, λ0)
}
.

Since p∗(x
1
0, x

2
0) = 0, it follows that Â1 ⊆ supp(x1

λ) \ supp(x1
0), for every λ ∈

(0, λ0). By Theorem 5.5 (Page 61), for every a1 ∈ Â1 we have

r1
∗(a

1, x2
0) = lim

λ→0
γ1
λ(a1, x2

λ)

= lim
λ→0

γ1
λ(a1, x2

λ) = w1.

Since the function x 7→ p∗(x)r2
∗(x) is multilinear,

p∗(x
1
λ, x

2
0) · r2

∗(x
1
λ, x

2
0) =

∑
a1∈Â1

x1
λ(a1) · p∗(a1, x2

0) · r2
∗(a

1, x2
0),

and therefore

r2
∗(x

1
λ, x

2
0) =

∑
a1∈Â1

x1
λ(a1) · p∗(a1, x2

0)

p∗(x1
λ, x

2
0)

· r2
∗(a

1, x2
0).
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Taking the limit as λ goes to 0 we obtain, by Eq. (164), that

w2 ≤ lim
λ→0

r2
∗(x

1
λ, x

2
0) =

∑
a1∈Â1

lim
λ→0

(
x1
λ(a1) · p∗(a1, x2

0)

p∗(x1
λ, x

2
0)

)
r2
∗(a

1, x2
0).

Note that
∑
a1∈Â1

x1
λ(a1)·p∗(a1,x2

0)

p∗(x1
λ,x

2
0)

= 1. Therefore, w2 is smaller than or equal

to a weighted average of (r2
∗(a

1, x2
0))a1∈Â1 . It follows that there is an action

a1
∗ ∈ Â1 such that r2

∗(a
1
∗, x

2
0) ≥ w2.

Step 2: Choosing constants.

Fix ε > 0. Exercise 9.7 (Page 151) implies35 that there is a strategy σ̃1 ∈ Σ1

that plays only actions in supp(x1
0)∪{a1

∗} and satisfies the following properties:

1. For every strategy σ2 ∈ Σ2,

Eσ̃1,σ2

[
r2
∗(a

1
0, a

2
t∗)1{t∗<∞}

]
≤ w2 + ε, (165)

2. If Player 2 plays the stationary strategy x2
0, the game is absorbed with

probability 1:
Pσ̃1,x2

0
(t∗ <∞) = 1. (166)

By Eq. (166), there exists T1 ∈ N sufficiently large such that

Pσ̃1,x2
0
(t∗ < T1) ≥ 1− ε. (167)

Step 3: Defining a strategy profile σ∗.

Let σ1
∗ be the following strategy of Player 1:

a1) Play the strategy σ̃1 until stage T1.

a2) In stage T1+1 forget past play and start following the punishment strategy
σ̂1
ε .

Let σ2
∗ be the following strategy of Player 2:

b1) Play the mixed action x2
0 until stage T1.

b2) In stage T1+1 forget past play and start following the punishment strategy
σ̂2
ε .

35To apply Exercise 9.7, consider an auxiliary game in which Player 1 has two actions, T
and B; the action B corresponds to the action a1∗ in the original game, and the action T
corresponds to the mixed action x10 in the original game; that is, whenever Player 1 plays the
action T in the auxiliary game, it is as if she plays the mixed action x10 in the original game.
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Step 4: The payoff under σ∗.

We argue that for every T ≥ T1/ε, the expected payoff in the T -stage game
under σ∗ is close to r∗(a

1
∗, x

2
0):

‖γT (σ∗)− r∗(a1
∗, x

2
0)‖∞ ≤ 3Mε, ∀T ≥ T1/ε. (168)

Indeed, since σ2
∗ plays the mixed action x2

0 in every stage until stage T1, if the
play is absorbed at stage t, then the expected absorbing payoff at that stage is∑

a2∈A2

x2
0(a2)p∗(a

2)r∗(a
2)

x2
0(a2)p∗(a2)

= r∗(x
2
0).

Eq. (168) follows now from Eq. (167).

Step 5: Player 1 cannot profit more than (2 + 4M)ε by deviating from
σ1
∗.

If the play is not absorbed by stage T1, Player 1 is punished at her uniform
min-max level. Since Player 1 is the one who leads the game to absorption (by
playing the action a1

∗), the only way in which Player 1 can possibly profit by
deviating is by leading the game to absorption by some other action. In view
of Eq. (154), such a deviation is not profitable.

We now formalize these ideas. Set T∗ := T1+T0(ε)
ε , and let σ1 ∈ Σ1 be any

strategy of Player 1. We claim that γ1
T (σ1, σ2

∗) ≤ r1
∗(a

1
∗, x

2
0)+2Mε for all T ≥ T∗.

Define the following events:

� E1 := {t∗ ≤ T1, a
1
t∗ = a1

∗}: the game is absorbed up to stage t∗ when
Player 1 played a1

∗.

� E2 := {t∗ ≤ T1, a
1
t∗ 6= a1

∗}: the game is absorbed up to stage t∗ when
Player 1 played an action different than a1

∗.

� E3 := {t∗ > T1}: the game is not absorbed by stage t∗.

We note that Pσ1,σ2
∗
(E1 ∪ E2 ∪ E3) = 1. By the definition of σ2

∗, on the event
E1 the expected absorbing payoff is r∗(a

1
∗, x

2
0), hence

γT (σ1, σ2
∗ | E1) ≤ r1

∗(a
1
∗, x

2
0) +Mε, ∀T ≥ T∗.

As in Eq. (154), on the event E2 the expected absorbing payoff is bounded from
above by r1

∗(x0), hence

γT (σ1, σ2
∗ | E2) ≤ r1

∗(a
1
∗, x

2
0) +Mε, ∀T ≥ T∗.

On the event E3 Player 1 is punished, hence

γT (σ1, σ2
∗ | E3) ≤ v1

0 + 2ε ≤ r1
∗(a

1
∗, x

2
0) + 2ε, ∀T ≥ T∗.

It follows that
γ1
T (σ1, σ2

∗) ≤ r1
∗(a

1
∗, x

2
0) + (2 +M)ε,
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as claimed.

Step 6: Player 2 cannot profit more than (1 + 4M)ε by deviating from
σ2
∗.

The analysis for Player 2 is similar to the one for Player 1.
Define the following events:

� E1 := {t∗ ≤ T1, a
1
t∗ ∈ supp, a2

t∗}: the game is absorbed up to stage t∗
when Player 1 played a1

∗.

� E2 := {t∗ ≤ T1, a
1
t∗ 6= a1

∗}: the game is absorbed up to stage t∗ when
Player 1 played an action different than a1

∗.

� E3 := {t∗ > T1}: the game is not absorbed by stage t∗.

As in Step 5, for every T ≥ T∗ := T1+T0(ε)
ε we have

γ2
T (σ1
∗, σ

2 | E1) ≤ r2
∗(x0) +Mε,

γ2
T (σ1
∗, σ

2 | E2) ≤ r2
∗(x0) + 2Mε,

Pσ1
∗,σ

2(E3) ≤ ε.

It follows that for every T ≥ T∗ we have

γ2
T (σ1
∗, σ

2) ≤ r2
∗(x0) + (1 + 2M)ε,

and the claim follows.

10.4 Comments and Extensions

The vanishing discount factor approach was introduced by Vrieze and Thuijs-
man (1989) in their study of two-player non-zero-sum absorbing games (where
they proved Theorem 10.4), and was then used to study various questions, such
as the existence of initial states at which a uniform equilibrium payoff exists
(Vieille, 2000d; see also Thuijsman and Vrieze, 1991) the existence of uniform
equilibrium payoff in three-player absorbing games (Solan, 1999), and the ex-
istence of normal-form correlated equilibrium in multiplayer absorbing games
(Solan and Vohra, 2002).

Whether every stochastic game admits a uniform equilibrium payoff is still
an open problem. In Chapters 11, 12, and 13 we will see three techniques that
were used to prove the existence of a uniform equilibrium payoff in classes of
stochastic games. There are many results on this problem that we will not
cover, e.g., Vieille (2000a, 2000b), Altman, Avrachenkov, Bonneau, Debbah,
El-Azouzi, and Sadoc Menasche (2008), and Flesch, Schoenmakers, and Vrieze
(2008, 2009). Results concerning the existence of equilibrium payoffs under the
limsup evaluation can be found in, e.g., Nowak (2003b) and Jaśkiewicz and
Nowak (2005, 2006). Simon (2016) discusses the main challenges on the way to
solve this problem.
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Algorithms that calculate uniform equilibrium payoffs have been devised
for some classes of stochastic games, see, e.g., Raghavan and Syed (2002) and
Bourque and Raghavan (2014).

The uniform value is the limit of the discounted value as the discount fac-
tor goes to 0. As we noted in Exercise 8.9 (Page 114), the set of stationary
discounted equilibria converges to a limit set as the discount factor goes to 0.
A natural question is whether this limit set coincides with the set of uniform
equilibrium payoffs. Sorin (1986) provided an example of a two-player non-zero-
sum absorbing game where the set of stationary discounted equilibrium payoff
contains a single point for every discount factor, yet this point is not a uniform
equilibrium payoff (see the game in Exercise 8.4).

The model we are studying is played in discrete time. To capture situations
in which the actual time that elapses between two consecutive stages is small,
one can study stochastic games in continuous time, in which time is not indexed
by the set of positive integers N but by the set of non-negative real numbers R+.
While the existence of a uniform equilibrium payoff in stochastic games in dis-
crete time is open, the existence of a uniform equilibrium in stochastic games in
continuous time was established by Neyman (2017), by adapting the extensive-
form correlated equilibrium that was constructed in Section 9.5 (Page 143) to
the continuous-time framework. Levy (2013b) studied continuous-time stochas-
tic games when players are restricted to Markovian strategies.

10.5 Exercises

Exercise 10.9 is used in the solution of Exercise 11.9.

1. In strategic-form games, the payoff function, which is defined on the
set

∏
i∈I ∆(Ai), is multilinear. In this exercise we will see that this

is not the case in absorbing games. Write down the payoff function
γ :
∏
i∈I ∆(Ai)→ R of the following two-player zero-sum absorbing game.

Is this function multilinear?

B

T

L R

1
∗

0

0
∗

1
∗

2. In this exercise we present the discounted payoff γiλ(x) in an absorbing
game as a convex combination of player i’s discounted payoffs for the
various actions, (γiλ(ai, x−i))ai∈supp(xi). Let x be a stationary strategy
profile in a multiplayer absorbing game and let i ∈ I be a player. Prove
that

γiλ(x) =
∑
ai∈Ai

xi(ai)
λ+ (1− λ)p∗(a

i, x−i)

λ+ (1− λ)p∗(x)
γiλ(ai, x−i).
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3. Complete the proof of Theorem 10.3 (Page 164): for every ε > 0 there is
Tε ∈ N such that ∣∣γiT (x0)− wi

∣∣ ≤ 2Mε, ∀T ≥ Tε/ε,

4. Consider the following two-player absorbing game where the probability
of absorption in all entries is positive: the probability of absorption in
the entries (T, L), (T,R), and (B,L) is 1, the probability of absorption
in the entry (B,R) is 1

2 , and both absorbing and nonabsorbing payoff in
this entry is (2, 0). Find a stationary strategy profile that is a uniform
ε-equilibrium for every ε > 0.

B

T

L R

0, 1 ∗
2, 0 ∗

2, 0 ( 1
2
)∗

0, 1 ∗

5. (a) For every ρ ∈ [ 1
3 ,

1
2 ] and every ε > 0 describe a uniform ε-equilibrium

σ in the game in Exercise 8.4 (Page 113) such that ‖γT (σ) − (1 −
ρ, 2ρ)‖∞ ≤ ε for all sufficiently large T .

(b) Prove that in this game the set of uniform equilibrium payoffs is
{(1− ρ, 2ρ) ∈ R2 : ρ ∈ [ 1

3 ,
1
2 ]}.

6. Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a stochastic game that satisfies

the following property: For every two states s, s′ ∈ S and every strategy
profile σ ∈ Σ,

Ps,σ(st = s′ for some t ∈ N) = 1.

Prove that the game admits a uniform ε-equilibrium for every ε > 0.

7. Let Γ = 〈I, (Ai)i∈I , p∗, (ri, ri∗)i∈I〉 be a multiplayer absorbing game that
satisfies the following properties: (a) ri(a) = 0 and ri∗(a) ≥ 0 for every

a ∈ A, and (b) there are an i ∈ I and a nonempty set of actions Âi ⊆ Ai

such that
p∗(a

i, a−i) > 0 ⇐⇒ ai ∈ Âi.

Prove that the game Γ admits a uniform equilibrium payoff.

8. In this exercise we will provide another way to implement Case 3 in the
proof of Theorem 10.4 (Page 165). Suppose that the assumption of Case 3
in the proof of Theorem 10.4 holds. Prove that for every ε > 0 there exists
a uniform ε-equilibrium in which along the equilibrium path, at every stage
Player 1 plays the mixed action x1

0 and Player 2 plays the mixed action
(1− δ)x0 + δa2

∗.

Hint: Use Exercise 2.5 (Page 45).
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9. In this exercise we prove that every multiplayer positive recursive quitting
game admits a normal-form correlated uniform equilibrium payoff.

A quitting game is an absorbing game Γ = 〈I, ({Ci, Qi})i∈I , p∗, (ri, ri∗)i∈I〉
where each player has two actions, Ai = {Ci, Qi}, interpreted as a continue

action and a quit action, and the transition rule p∗ satisfies p∗(~C) = 0 and

p∗(a) = 1 for every action profile a ∈ A \ {~C}, where ~C = (Ci)i∈I .

Let Γ be a positive recursive quitting game. Player i is called punishable if
there exists j 6= i such that ri∗(Q

j , C−j) ≤ ri∗(Qi, C−i), that is, the payoff
to player i when player j quits alone is not higher than player i’s payoff if
she, player i, quits alone. Such a player j is called a punisher of player i.
If player i is punishable, choose one of the punishers of player i and denote
her by ji.

Let z ∈ RI be the vector that is defined as follows:

zi :=

{
ri∗(Q

i, C−i)− 1, if i is a punishable player,

ri∗(Q
i, C−i) + 1, if i is not a punishable player.

Consider the quitting game Γ′ that is similar to Γ, except that the non-
absorbing payoff is z. Let λ 7→ xλ ∈ [0, 1]I be a semi-algebraic mapping
that assigns to every λ ∈ (0, 1] a λ-discounted stationary equilibrium in
the game Γ′, and set x0 := limλ→0 xλ. Do the following.

(a) Prove that if there is no punishable player in Γ, then for every ε >
0 sufficiently small and every i ∈ I the stationary strategy profile
([(1− ε)(Ci), ε(Qi)], C−i) is a stationary uniform 0-equilibrium in Γ.

(b) Prove that if there is i ∈ I such that rj∗(Q
i, C−i) ≥ rj∗(Q

j , C−j), for
every j ∈ I, then for every ε > 0 the stationary strategy profile ([(1−
ε)(Ci), ε(Qi)], C−i) is a stationary uniform (2‖r∗‖∞ · ε)-equilibrium
in Γ.

We will assume from now on that the conditions of the first two parts do
not hold.

(c) Prove that if x0 6= ~C, then x0 is a stationary uniform 0-equilibrium
in Γ.

(d) Prove that for every λ > 0 sufficiently small we have xλ 6= ~C.

We will assume from now on that x0 6= ~C. Define

µi := lim
λ→0

xiλ∑
j∈I x

j
λ

. (169)

(e) Prove the following claims:

� µi is well defined for every i ∈ I.

�

∑
i∈I µ

i = 1.
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� µi = 0 for every nonpunishable player i ∈ I.

(f) Consider a variation Γobs of the original quitting game Γ that in-
cludes an impartial mediator, who can privately send to each player
a message, which is a natural number, at the outset of the game.
Each player can base her choice of action on the natural number she
received from the mediator. Write down the space of strategies of
each player i ∈ I in the game Γobs.

(g) Fix m ∈ N, and suppose that the mediator acts according to the
following mechanism Mec(m):

� She chooses a player î ∈ I according to the probability dis-
tribution µ := (µi)i∈I defined in Eq. (169), and two numbers

t̂ ∈ {1, 2, . . . ,m2} and d̂ ∈ {1, 2, . . . ,m} according to the uni-
form distribution.

� She sends the number t̂ to player î, the number t̂ + d̂ to the
punisher ĵi of player î, and the number t̂ + d̂ + 1 to all other

players i 6= î, ĵi.

Let σi be the strategy profile of player i in the game Γobs in which
she quits in the stage which is equal to the signal that she received,
and denote σ := (σi)i∈I . Prove that for every ε > 0 there is T0 ∈ N
such that for every T ≥ T0,∥∥∥∥∥γT (Mec(m), σ)−

∑
i∈I

µi · r∗(Qi, C−i)

∥∥∥∥∥
∞

≤ ε,

where γT (Mec(m), σ) is the T -stage payoff in the game Γobs when
the mediator uses the mechanism Mec(m) and the players adopt the
strategy profile σ.

(h) Suppose that player i received the signal ti. Let ρ := PMec(m)(̂i = j |
ti) be the probability that player i assigns to the event that player j
is the player who is supposed to quit first, given the information that
she, player i, has after she got the signal from the mediator. Prove
that PMec(m)(ρ = µj) ≥ 1− 2

m .

(i) Prove that for every ε > 0 there is an m ∈ N sufficiently large such
that the strategy profile σ is a uniform ε-equilibrium in the game Γ′′

that includes a mediator who follows the mechanism Mec(m).

(j) Where in the proof did we use the assumption that the game is
recursive and positive?
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re-sale or use in derivative works. @ Eilon Solan [2020]

11 Ramsey’s Theorem and Two-Player Deter-
ministic Stopping Games

Abstract

In this chapter we prove Ramsey’s Theorem, which states that for
every coloring of the complete infinite graph by finitely many colors there
is an infinite complete monochromatic subgraph. We then define the
notion of undiscounted ε-equilibrium, relate it to uniform ε-equilibrium,
and show that every two-player deterministic stopping game admits an
undiscounted ε-equilibrium.

11.1 Ramsey’s Theorem

Ramsey’s Theorem36 states that for every coloring of the complete infinite graph
by finitely many colors there exists a monochromatic infinite complete subgraph.
We now formally state this result and prove it.

Definition 11.1 Let C be a finite set and let G = (V,E) be a graph. A C-
coloring of G = (V,E) is a mapping c : E → C that assigns an element in C to
every edge in G.

Ramsey (1930) proved the following result.

Theorem 11.2 Let G = (V,E) be the complete infinite graph: the set of ver-
tices is the set of natural numbers, V = N, and the set of edges is E = {(i, j) ∈
N × N : i < j}. Let C be a finite set. For every C-coloring of G there exist an
infinite subset A ⊆ N and c∗ ∈ C such that c(i, j) = c∗ for every i, j ∈ A with
i < j.

Proof. Set i1 := 1 and N1 := {1, 2, 3, . . .}. For every color c′ ∈ C denote

B(i1, c
′) := {j ∈ N1 : j > i1, c(i1, j) = c′}.

These are all integers j in N1 such that the color of the edge (i1, j) is c′. Note
that

⋃
c′∈C B(i1, c

′) = N1, and, because the set C is finite, at least one of the
sets (B(i1, c

′))c′∈C is infinite. Let c1 be a color such that B(i1, c1) is infinite,
and set N2 := B(i1, c1).

36Frank Plumpton Ramsey (Cambridge, United Kingdom, February 22, 1903 – London,
United Kingdom, January 19, 1930) was a British philosopher, mathematician, and economist.
Some of his significant contributions were subjective probabilities, utilities, decidability in
mathematical logic, a mathematical theory of saving, and Ramsey’s Theorem in graph theory.
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In Figure 25, the vertices are the positive integers, and we drew solid arcs
between i1 = 1 and all the integers in B(1, c1).

1 2 3 4 5 6 7 8 9
Figure 25: The construction in the proof of Theorem 11.2.

Let i2 be the minimal element in N2. In Figure 25, i2 = 2. For every color
c ∈ C denote

B(i2, c
′) := {j ∈ N2 : j > i2, c(ı2, j) = c′}.

These are all integers j in N2 such that the color of the edge (i2, j) is c′. Note
that

⋃
c′∈C B(i2, c

′) = N2. Since the set N2 is infinite and the set C is finite,
at least one of the sets (B(i2, c

′))c′∈C is infinite. Let c2 be a color such that
B(i2, c2) is infinite, and set N3 := B(i2, c2). In Figure 25 we drew dotted arcs
between i2 = 2 and all the integers in B(2, c2).

Continue inductively to generate an increasing sequence (in)n∈N of natural
numbers, a sequence (cn)n∈N of colors, and a decreasing sequence (Nn)n∈N of
infinite subsets of N, such that the following properties hold, where B(in, c

′) :=
{j ∈ Nn : j > in, c(in, j) = c′}:

� in is the first element in Nn.

� Nn+1 := B(in, cn) is infinite.

The construction ensures that for every n and every j ∈ Nn+1 one has c(in, j) =
cn.

Since the set C is finite, there is a c∗ ∈ C that appears infinitely often in
the sequence (cn)n∈N, that is, there is a sequence (nk)k∈N such that cnk = c∗

for every k ∈ N. Since the sequence of sets (Nn)n∈N is nonincreasing, we have
inl ∈ Nnk+1 for every l > k, and therefore c(ink , inl) = c∗ for every l > k. In
particular, the infinite set A := {ink , k ∈ N} and c∗ satisfy the conclusion of the
theorem.

11.2 Undiscounted Equilibrium

In Sections 9 and 10 we considered the concept of uniform ε-equilibrium. In
this and in the following sections it will be more convenient to study another
equilibrium concept, called undiscounted ε-equilibrium, which applies to recur-
sive games. As we will see below, the two concepts are equivalent in the class
of games that we will study.

Definition 11.3 A recursive game is a stochastic game Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉

where the payoff in all nonabsorbing states is 0; that is, ri(s, a) = 0 for every
nonabsorbing state s ∈ S and every action profile a ∈ A(s).
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When Γ is a recursive absorbing game, the payoff of all players in the nonab-
sorbing state is 0, and if we study existence of ε-equilibrium, we can assume that
the payoff in the absorbing states is independent of the actions of the players,
see Page 55. We can therefore denote the payoff at each state s ∈ S by r(s).

Denote by t∗ the first stage in which the play reaches an absorbing state.
Then t∗ is a random variable whose distribution depends on the players’ strate-
gies. If t∗ <∞, then st∗ is the absorbing state that the play reaches, and r(st∗)
is the absorbing payoff.

Definition 11.4 Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a recursive game and

let s ∈ S. The undiscounted payoff of a strategy profile σ ∈ Σ at the initial
state s is

γ∞(s;σ) := Es,σ

[
1{t∗<∞}r(st∗)

]
.

Unlike the T -stage payoff, the undiscounted payoff takes into account ab-
sorption that occurs throughout the game, and not only in the first T stages.
Unlike the λ-discounted payoff, the undiscounted payoff treats absorption in all
stages equally, and does not discount payoffs in far away stages.

As the following theorem states, the undiscounted payoff is an approximation
of the T -stage payoff for large T and of the λ-discounted payoff for small λ. The
proof of the theorem is left to the reader as an exercise (Exercise 11.2).

Theorem 11.5 Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be a recursive game, let

s ∈ S be a state, and let σ ∈ Σ be a strategy profile. Then

γ∞(s;σ) = lim
T→∞

γT (s;σ) = lim
λ→0

γλ(s;σ).

We next define an equilibrium notion that is based in the undiscounted
payoff.

Definition 11.6 Let ε > 0. A strategy profile σ∗ is an undiscounted ε-equilibrium
if for every state s ∈ S, every player i ∈ I, and every strategy σi ∈ Σi of player i,
we have

γi∞(s;σi, σ−i∗ ) ≤ γi∞(s;σ∗) + ε.

In the next section we will study one family of recursive games in which the
two concepts of undiscounted ε-equilibrium and uniform ε-equilibrium agree.

11.3 Two-Player Recursive Absorbing Games with a Sin-
gle Nonabsorbing Entry

In this section we will be interested in a restricted family of recursive games,
namely, recursive absorbing games in which all action profiles except one lead
the play to absorption. Since in recursive absorbing games the stage payoff
functions (ri)i∈I are identically zero, there is no need to mention them, hence
we denote a recursive absorbing game by Γ = 〈I, (Ai)i∈I , p∗, (ri∗)i∈I〉.
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Definition 11.7 A recursive absorbing game Γ = 〈I, (Ai)i∈I , p∗, (ri∗)i∈I〉 has a
single nonabsorbing entry if it satisfies the following property: there is an action
profile ã ∈ A such that p∗(ã) = 0 and p∗(a) = 1 for every a 6= ã.

As the following theorem states, the concepts of uniform ε-equilibrium and
undiscounted ε-equilibrium agree for absorbing games with a single nonabsorb-
ing entry. The proof of the theorem is left to the reader as an exercise (Exer-
cise 11.3).

Theorem 11.8 Let Γ = 〈I, (Ai)i∈I , p∗, (ri∗)i∈I〉 be a recursive absorbing game
with a single nonabsorbing entry, and let ε > 0. If a strategy profile σ∗ ∈ Σ is
an undiscounted ε-equilibrium, then it is a uniform 2ε-equilibrium. Conversely,
if a strategy profile σ∗ ∈ Σ is a uniform ε-equilibrium, then it is an undiscounted
2ε-equilibrium.

Every action ai 6= ãi is an absorbing action of player i, because it leads the
game to a sure absorption. We will call the action ãi the nonabsorbing action
of player i, and note that the game is not absorbed in a given stage if and only
if all players play their nonabsorbing actions in that stage.

A recursive game is positive if ri∗(a) > 0 for every a ∈ A such that p∗(a) > 0.
When the game is recursive and positive, M := ‖r∗‖∞ = maxi∈I maxa∈Ai r

i
∗(a)

is the maximal payoff.

Theorem 11.9 Let Γ be a two-player recursive absorbing game that has a single
nonabsorbing entry and positive absorbing payoffs. Then for every ε ∈ (0, 1

2M )
the game admits a stationary undiscounted ε-equilibrium x such that p∗(x) ≥ ε2.

By Theorem 11.8, the stationary undiscounted ε-equilibrium that exists by
Theorem 11.9 is a uniform 2ε-equilibrium.

Proof of Theorem 11.9. Since the game is recursive, ri(x) = 0 for every
i ∈ I and every x ∈

∏
i∈I ∆(Ai). In the proof of Theorem 10.4 (Page 165) we

considered a semi-algebraic function λ 7→ xλ of stationary λ-discounted equilib-
ria that converges to a limit x0 = limλ→0 xλ, denoted by w := limλ→0 γλ(xλ)
the limit of the λ-discounted equilibrium payoffs, and distinguished the following
four cases:

(VT.1) p∗(x0) > 0 (and then r∗(x0) = w).

(VT.2) p∗(x0) = 0 and wi ≤ ri(x0) = 0 for every player i = {1, 2}.
(VT.3) p∗(x0) = 0 and w2 > r2(x0) = 0.

(VT.4) p∗(x0) = 0 and w1 > r1(x0) = 0.

Note that for every ai 6= ãi,

wi = lim
λ→0

γiλ(xλ) ≥ lim
λ→0

γiλ(ai, x−iλ ) = ri∗(a
i, ã3−i) > 0. (170)

In particular, xλ 6= ã for every λ > 0 sufficiently small. Eq. (170) also implies
that Case (VT.2) cannot happen, and if one of Cases (VT.3) or (VT.4) holds,
then the other holds as well.
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If Case (VT.1) holds, then the proof of Theorem 10.4 implies that the mixed
action profile x0 is in fact an undiscounted 0-equilibrium (Exercise 11.5). If
p∗(x0) ≥ ε2, then the theorem holds. We now handle the remaining cases.

If Case (VT.1) holds, then xi0(ãi) ≥ 1 − ε2 for each i = 1, 2, while if one
of the Cases (VT.3) or (VT.4) holds, then x0 = ã. For each i ∈ {1, 2} the
mapping λ 7→ xiλ is semi-algebraic, hence the set supp(xiλ) is independent of λ,

provided λ > 0 is sufficiently small. Denote by Âi this common set of actions.
If Cases (VT.1), (VT.3), or (VT.4) hold, then at least one of the sets Â1 and Â2

contains an element in addition to ã1 or ã2, respectively. Assume w.l.o.g. that
|Â1| ≥ 2.

As we have seen in Eq. (154) (Page 165),

w1 = lim
λ→0

γ1
λ(x1

λ, x
2
λ) ≥ lim

λ→0
γ1
λ(a1, x2

λ) ≥ r1
∗(a

1, ã2)−Mε2, ∀a1 ∈ A1 \ {ã1},
(171)

where the second inequality holds since x2
0(ã2) ≥ 1− ε2. Similarly r2

∗(ã
1, a2) ≤

w2 +Mε2 for every a2 ∈ A2 \ {ã2}. Moreover, for every a1 ∈ Â1 \ {ã1} we have

w1 = lim
λ→0

γ1
λ(x1

λ, x
2
λ) = lim

λ→0
γ1
λ(a1, x2

λ) ≤ r1
∗(a

1, ã2) +Mε2, ∀a1 ∈ A1, (172)

see Figure 26, where we provide the bounds on ri∗(a) given by Eqs. (171)
and (172), and a question mark indicates that there are no contraints on the
corresponding payoff.

Â1 = supp(x1
λ)

?

6 ã1

ã2

≤ w1 +Mε, ?
∗

[w1 −Mε2, w1 +Mε2], ?
∗

[w1 −Mε2, w1 +Mε2], ?
∗

∗

∗

∗
?,≤ w2 +Mε2

∗

∗

∗

∗
?,≤ w2 +Mε2

∗

Figure 26: The situation in the proof of Theorem 11.9.

We will define a mixed action x1 for Player 1 that is derived from x1
0 by

increasing the probability assigned to each action a1 6= ã1, and prove that the
pair (x1, ã2) is an undiscounted ε-equilibrium. Define a mixed action x1 ∈ ∆(A1)
as follows:

x1(a1) :=

ε
2 · x0(a1)∑

a1 6=ã1 x0(a1)
, if a1 6= ã1,

1− ε2, if a1 = ã1.

Note that
p∗(x

1, ã2) = ε2.
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Moreover, γ1
∞(x1, ã2) is a convex combination of r1

∗(a
1, ã2) for a1 ∈ Â1 \ {ã1},

hence as shown by Figure 26,

γ1
∞(x1, ã2) =

∑
a1∈Â1\{ã1}

x1(a1)

x1(Â1 \ {ã1})
r1
∗(a

1, ã2) ∈
[
w1 −Mε2, w1 +Mε2

]
.

(173)
Since payoffs are positive

γ2
∞(x1, ã2) = r2

∗(x
1, ã2)

= r2
∗(x

1
0, ã

2) (174)

=

(
1− lim

λ→0
αλ(x1

λ, ã
2)

)
· 0 +

(
lim
λ→0

αλ(x1
λ, ã

2)

)
·
(

lim
λ→0

r2
∗(x

1
λ, ã

2)

)
≤ lim

λ→0
r2
∗(x

1
λ, ã

2) ≤ w2 +Mε2,

By Eqs. (171) and (173), Player 1 cannot gain more than 2Mε2 ≤ ε by
deviating. By the analogue of Eq. (171) for Player 2 and Eq. (174), Player 2
cannot profit more than 2Mε2 ≤ ε by deviating. We conclude that the stationary
strategy profile (x1, ã2) is an undiscounted ε-equilibrium.

11.4 Two-Player Deterministic Stopping Games

In this section we define a new family of games, called deterministic stopping
games. A deterministic stopping game is a sequential game in which each player
has two actions, Continue and Quit. As long as both players choose Continue,
they get no payoff and the play goes on. Once at least one player chooses Quit,
the game terminates, and the terminal payoff depends on the stage in which
the game is absorbed and on which players choose Quit at that stage. Thus, a
deterministic stopping game is a two-player recursive game with countably many
states. This is the only chapter in this book where we will consider stochastic
games with an infinite set of states.

Definition 11.10 A two-player deterministic stopping game ΓDSG is a stochas-
tic game in which

� The set of players is I = {1, 2}.

� The set of states S is the union of a set of nonabsorbing states S1 := N
and a set of absorbing states S2 := N×

{
{1}, {2}, {1, 2}

}
.

� In each state in S1 each player i ∈ I has two actions: Ai(t) = {Ci, Qi},
where Ci stands for Continue and Qi stands for Quit.

� The payoffs in states t ∈ S1 are zero: ri(t, a) = 0 for every t ∈ S1 and
every a ∈ A(t) := A1(t)×A2(t).
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� Transitions in states t ∈ S1 are as follows:

q(t+ 1 | t, C1, C2) = 1,

q((t+ 1, {1}) | t, Q1, C2) = 1,

q((t+ 1, {2}) | t, C1, Q2) = 1,

q((t+ 1, {1, 2}) | t, Q1, Q2) = 1.

We denote by r(t, J) the payoff in the absorbing state (t, J), for every (t, J) ∈
N×

{
{1}, {2}, {1, 2}

}
. This is the payoff if in the first t− 1 stages both players

continue, and in stage t the player(s) in J quit while the player not in J (if there
is such a player) continue.

We will study the game when the initial state is t = 1. Hence, as long as the
both players continue, the state st in stage t is t. Accordingly, we denote states
in S1 by the letter t and not by the letter s.

A pure strategy of a player is a mapping from histories to available actions.
Since in deterministic stopping games the game is absorbed once some player
quits, for the purpose of studying undiscounted ε-equilibria we can assume that
a pure strategy is an element in N∪{∞}: the element∞ represents the strategy
that always continues, and the element t ∈ N represents the strategy that quits
at stage t.

Similarly, we can represent a behavior strategy for player i by a function
xi : N → [0, 1] with the interpretation that xi(t) is the probability by which
player i chooses Qi at stage t if the game was not absorbed before that stage.

Thus, an alternative definition of a two-player deterministic stopping game
is as a game in strategic form where both players’ action sets are N ∪ {∞}.

Definition 11.11 A two-player deterministic stopping game is a strategic-form
game that is given by six sequences of real numbers (ri(t, S))i=1,2;S={1},{2},{1,2},t∈N.

� The set of players is I = {1, 2}.

� The set of strategies of each player is N ∪ {∞}.

� The payoff function is

ui(t1, t2) := 1{t1<t2}r
i(t1, {1})+1{t1>t2}r

i(t2, {2})+1{t1=t2<∞}r
i(t1, {1, 2}).

The main result of this chapter is the following.

Theorem 11.12 In every two-player deterministic stopping game in which pay-
offs are bounded and positive there exists an undiscounted ε-equilibrium, for ev-
ery ε > 0.

The rest of the chapter is devoted to the proof of Theorem 11.12. We will
first handle the case of periodic games, to which the next section is devoted.
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11.5 Periodic Deterministic Stopping Games

Definition 11.13 Let k ∈ N. A two-player deterministic stopping game is
periodic with period k if the sequence (ri(t, J))t∈N has period k for each i ∈ {1, 2}
and each subset of players J ∈

{
{1}, {2}, {1, 2}

}
. That is,

ri(t+ k, J) = ri(t, J), ∀i ∈ {1, 2}, ∀J ∈
{
{1}, {2}, {1, 2}

}
, ∀ t ∈ N.

A two-player periodic deterministic stopping game is equivalent to an ab-
sorbing game that has one nonabsorbing entry in which each player has k + 1
actions. Indeed, consider a two-player periodic deterministic stopping game
ΓDSG with period k. A pure strategy of a player is a number in N ∪ {∞}:
the stage in which the player quits. Instead of deciding at the outset of the
game when to quit, the player could decide, at the beginning of every period,
whether or not to quit in that period, and if she decides to quit, in which stage
of the period to quit. This provides a representation of the game as a recursive
absorbing game ΓAB as follows (see Figure 27):

� The set of actions of each player is {0, 1, 2, . . . , k}. Action ` ∈ {1, 2, . . . , k}
corresponds to quitting in the `’th stage of the coming period; action 0
corresponds to continuing throughout the coming period.

� The action pair (0, 0) is nonabsorbing (and the stage payoff is (0, 0)).

� All other action pairs lead to absorption with probability 1. The absorbing
payoff is as follows:

ri∗(`, `) = ri(`, {1, 2}), ∀` ∈ {1, 2, . . . , k},
ri∗(`1, `2) = ri(`1, {1}), ∀`1, `2 ∈ {1, 2, . . . , k}, `1 < `2,

ri∗(`1, `2) = ri(`2, {2}), ∀`1, `2 ∈ {1, 2, . . . , k}, `1 > `2.

k

...

2

1

0

0 1 2 · · · k

r(k, {1}) ∗

...

r(2, {1}) ∗
r(1, {1}) ∗

0, 0

r(1, {2}) ∗

...

r(1, {2}) ∗
r(1, {1, 2})∗
r(1, {2}) ∗

r(2, {2}) ∗

...

r(2, {1, 2})∗
r(1, {1}) ∗
r(2, {2}) ∗

r(k, {1, 2})∗

...

r(2, {1}) ∗
r(1, {1}) ∗
r(k, {2}) ∗

Figure 27: The game ΓAB

A stationary strategy of player i in the auxiliary game ΓAB is described by
a vector xi = (xi(`))k`=1, where for every ` ∈ {1, 2, . . . , k} the quantity xi(`) is
the probability that player i quits in stages ` mod k of the game ΓDSG. The
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stationary strategy profile (x1, x2) is absorbing if and only if
∑k
`=1(x1(`) +

x2(`)) > 0.
By Theorem 11.9, the game ΓAB has a stationary undiscounted ε-equilibrium

which is absorbing with probability at least ε2.

11.6 Proof of Theorem 11.12

Fix ε > 0, and denote M := ‖r‖∞. Let Z be an ε-dense set in the rectangle[
−M,M

]2
, that is, a finite set with the property that for every z′ ∈

[
−M,M

]2
there is a z ∈ Z such that ‖z − z′‖∞ ≤ ε.

For every two integers k < l define a periodic deterministic stopping game
Γk,l with period l− k as follows: the payoff at stage t, denoted rk,l(t, ·) is given
by

rk,l(t, J) := r(k + t mod l − k, J), ∀J ∈
{
{1}, {2}, {1, 2}

}
, ∀ t ∈ N.

In words, in the auxiliary game Γk,l the players repeat the portion of the game
ΓDSG between stages k and l − 1. Denote by γk,l,∞(σ) ∈ R2 the undiscounted
payoff in the recursive absorbing game Γk,l under the strategy profile σ.

Let xk,l be a stationary undiscounted ε-equilibrium in the game Γk,l. Denote
the expected payoff under xk,l by

gk,l := γk,l,∞(xk,l).

Let zk,l ∈ Z be an element that is ε-close to gk,l:

‖gk,l − zk,l‖∞ ≤ ε.

Let C = Z × {{1}, {2}, {1, 2}}, and recall that E = {(i, j) ∈ N × N : i < j}
is the set of edges in the complete infinite graph G. We are going to define a
C-coloring of G, that is, a mapping c : E → C. The coloring c is defined as
follows: for every (k, l) ∈ E, ck,l = {zk,l} × Ik,l, where Ik,l is the set of players
i ∈ {1, 2} who quit with positive probability under xk,l.

By Theorem 11.2 there are a c∗ ∈ C and an infinite sequence of positive
integers k1 < k2 < · · · such that ckn,kn+1 = c∗ for every n ∈ N.

Case 1: k1 = 1.

Denote c∗ = (I∗, z∗). We will construct an undiscounted 3ε-equilibrium
whose payoff is close to c∗. Define strategies σ1

∗ and σ2
∗ for the two players in Γ

as follows

σ1
∗(kn + t− 1) = x1

kn,kn+1
(t), ∀n ∈ N,∀t ∈ {1, . . . , kn+1 − kn},

σ2
∗(kn + t− 1) = x2

kn,kn+1
(t), ∀n ∈ N,∀t ∈ {1, . . . , kn+1 − kn}.

In words, between the stages kn and kn+1 − 1 the players follow the station-
ary undiscounted ε-equilibrium in the periodic deterministic stopping game
Γkn,kn+1

, which corresponds to these stages.
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We will prove that σ∗ = (σ1
∗, σ

2
∗) is an undiscounted 3ε-equilibrium. We first

calculate γ∞(σ∗). Denote by t∗ the stopping time that indicates the first stage
in which some players quit (and the game effectively terminates), and by I∗ the
set of players who quit at stage t∗. Since for every n ∈ N the strategy profile
xkn,kn+1

satisfies Theorem 11.9,

� Under the strategy profile xkn,kn+1
, the probability of absorption between

the stages kn and kn+1 − 1 is at least ε2:

Pxkn,kn+1
(t∗ < kn+1 | t∗ ≥ kn) ≥ ε2. (175)

� The expected absorbing payoff if absorption occurs between the stages kn
and kn+1 − 1 is close to z∗:∥∥∥Exkn,kn+1

[1{t∗<kn+1}r(t∗, I∗) | t∗ ≥ kn]− z∗
∥∥∥
∞
< ε. (176)

Since for each i = 1, 2 the strategy σi∗ is the concatenation of the strategies
(xkn,kn+1)n∈N, we deduce from Eq. (175) that

Pσ∗(t∗ <∞) = 1.

Indeed,

Pσ∗(t∗ =∞) = lim
N→∞

Pσ∗(t∗ ≥ kN )

=

N−1∏
n=1

Pσ∗(t∗ ≥ kn+1 | t∗ ≥ kn)

≤ lim
N→∞

(1− ε2)N = 0.

Moreover, the expected absorbing payoff is close to z∗:

‖Eσ∗ [r(t∗, I∗)]− z∗‖∞ < ε. (177)

Indeed,

Eσ∗ [r(t∗, I∗)] =

∞∑
n=1

Pσ∗(kn ≤ t∗ < kn+1) ·Eσ∗ [r(t∗, I∗) | kn ≤ t∗ < kn+1].

(178)
Eq. (177) follows from Eqs. (176) and (178), since

∑∞
n=1 Pσ∗(kn ≤ t∗ < kn+1) =

1.
We now prove that Player 1 cannot gain much by deviating. For Player 2 the

proof is analogous. By Kuhn’s Theorem, it is sufficient to show that Player 1
cannot gain much by deviating to a pure strategy. There are two possible pure
deviations for Player 1:

� She can deviate by never quitting.
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� She can deviate by quitting at stage t with probability 1.

The first deviation is available to Player 1 in each of the auxiliary games
Γkn,kn+1

. Denote by ∅1 the strategy of Player 1 in which she always contin-
ues. Since xkn,kn+1

is an undiscounted ε-equilibrium in Γkn,kn+1
, we deduce

that by deviating from x1
kn,kn+1

to ∅1 Player 1 cannot gain more than ε:

� If P∅1,x2
kn,kn+1

(t∗ <∞) = 0, then 0 = γ1
kn,kn+1

(∅1, x2
kn,kn+1

) ≤ z1
∗ + ε.

� If P∅1,x2
kn,kn+1

(t∗ <∞) > 0, then

E∅1,x2
kn,kn+1

[r1(t∗, I∗)] = γ1
kn,kn+1

(∅1, x2
kn,kn+1

) ≤ z1
∗ + ε.

Consequently,

γ1
∞(∅1, σ2

∗) = E∅1,σ2
∗
[r1(t∗, I∗)]

=

∞∑
n=1

Pσ∗(kn ≤ t∗ < kn+1) ·Eσ∗ [r
1(t∗, I∗) | kn ≤ t∗ < kn+1]

≤ z1
∗ + ε

≤ γ1
∞(σ∗) + 2ε.

We next show that Player 1 cannot gain by the second type of deviation,
that is, by quitting in stage t. Let n be the unique integer such that kn ≤
t < kn+1; that is, stage t is in the n’th block. The argument is analogous
to the previous one. Denote by x̂1 the strategy of Player 1 in the auxiliary
game Γkn,kn+1

in which she quits with probability 1 in stage t − kn + 1. The
deviation to x̂1 is available to Player 1 in the auxiliary game Γkn,kn+1

, and, since
the strategy xkn,kn+1 is an undiscounted ε-equilibrium, this deviation does not
improve Player 1’s payoff by more than ε in Γkn,kn+1 . That is,

Ex̂1,x2
kn,kn+1

[r1(t∗, I∗)] ≤ g1
kn,kn+1

+ ε ≤ z1
∗ + 2ε.

The argument now proceeds as above.

Case 2: k1 > 1.

By the first two cases, when the initial state is k1 both players have an
undiscounted 3ε-equilibrium. Denote the corresponding payoff by g. States
{1, 2, . . . , k1 − 1} form a finite stage game, which terminates at stage k1 with
payoff g. This game has an equilibrium when the initial state is 1, which can
be found by backward induction. The strategy pair that is constructed by the
backward induction process is an undiscounted 3ε-equilibrium.
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11.7 Comments and Extensions

Ramsey’s Theorem was proven by Ramsey (1930), and initiated what is now
called Ramsey Theory, which studies the occurrence of simple substructures in
complex structures.

Theorem 11.12 (Page 186) was proven by Shmaya, Solan, and Vieille (2004).
There are several extensions of the theorem that come to mind:

1. Extension to games where the payoff function is not necessarily positive.

2. Extension to games with more than two players.

3. Extension to games in which the transition is not deterministic; that is,
if both players continue, the play moves to another state that is drawn
randomly according to some transition probability.

4. Extension to games in which there is more than one nonabsorbing entry
in each state.

To see which extension is covered by our technique of proof, we look closely
at how we argued for Theorem 11.12. The proof is divided into three parts.
First we defined for every periodic game a color, by approximating an equi-
librium payoff in the periodic game. Second, we applied Ramsey’s Theorem
to the complete infinite graph, which produced a sequence of periodic games.
Third, we concatenated stationary ε-equilibria in these periodic games to form
an undiscounted 3ε-equilibrium in the original infinite game.

The assumption that the payoffs are positive was used in the following ar-
gument. Suppose that P∅1,σ2

∗
(t∗ <∞) < 1, where ∅1 is the strategy of Player 1

in which she always continues. When the payoffs are positive, such a devia-
tion lowers the payoff of Player 1. When the payoffs are negative and, say,
γ1
∞(∅1, σ2

∗) < 0, such a deviation may be profitable. To overcome this difficulty,
one can strengthen Theorem 11.9 (Page 183), to show that in two-player recur-
sive absorbing games that have a single nonabsorbing entry, the game admits a
stationary undiscounted ε-equilibrium x such that p∗(x) ≥ ε2, and if ri(x) < 0,
then the per-stage probability that the other player plays a quitting action is at
least ε2. This additional property ensures that if γ1

∞(∅1, σ2
∗) < 0 then necessarily

P∅1,σ2
∗
(t∗ <∞) = 1, hence the above issue does not arise.

The fact that there are two players was used to ensure that the periodic
game has a stationary undiscounted ε-equilibrium, for every ε > 0. When there
are more than two players, a stationary undiscounted ε-equilibrium need not
exist. Nevertheless, by Solan (1999), three-player absorbing games with a single
nonabsorbing entry admit a periodic ε-equilibrium for every ε > 0. Even though
these undiscounted ε-equilibria are not necessarily stationary, one can properly
concatenate them to construct an undiscounted ε-equilibrium in the three-player
stopping game.

When there are more than three players, we do not know whether the pe-
riodic game admits an undiscounted ε-equilibrium for every ε > 0, hence in
particular we do not know whether stopping games that involve more than
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three players admit an undiscounted ε-equilibrium for every ε > 0. Neverthe-
less, Theorem 11.12 serves as a reduction: if every I-player absorbing game
with a single nonabsorbing entry has an undiscounted ε-equilibrium, for every
ε > 0, then every I-player deterministic stopping game has an undiscounted
ε-equilibrium, for every ε > 0.

When the transition rule is not deterministic, the periodic game is defined
by its starting point, and by a stopping time that indicates when it restarts.
Theorem 10.4 (Page 165) can be applied to show that every such game admits
an undiscounted ε-equilibrium, for every ε > 0. Moreover, one can generalize
Ramsey’s Theorem to this more general setup. This extension was solved in
Shmaya and Solan (2004).

When there is more than one nonabsorbing entry in each state, the technique
used to prove Theorem 11.12 fails. Why is that? In deterministic stopping
games, the state of the game in stage t is independent of the players’ behavior.
If there is more than one nonabsorbing entry in each state, this is no longer the
case, as the evolution of the state variable depends on the players’ actions. The
extension of Ramsey’s Theorem to this setup fails.

In Exercise 10.9 (Page 178) we proved that every quitting game admits a
normal-form correlated uniform ε-equilibrium, for every ε > 0. The approach
that we developed in this section allows us to extend this result to every de-
terministic multiplayer stopping game, see Exercise 11.9 below. This result
was further extended to every multiplayer stopping game (not necessarily de-
terministic) by Heller (2012). In a similar fashion, this approach was used by
Mashiah-Yaakovi (2014) to prove the existence of a subgame-perfect uniform
ε-equilibrium in stopping games with perfect information.

11.8 Exercises

1. In this exercise we prove a finite version of Ramsey’s Theorem (Theo-
rem 11.2 on Page 180). Prove that for every two positive integers k and
l there is a positive integer R(k, l) such that for every n ≥ R(k, l) and
every coloring of the complete graph with n vertices by two colors, Yellow
and Green, either there is a complete subgraph with k vertices such that
all the edges between these k vertices are colored Yellow, or there is a
complete subgraph with l vertices such that all the edges between these l
vertices colored Green.

2. Prove Theorem 11.5 on Page 182: Let Γ = 〈I, S, (Ai(s))i∈Is∈S , q, (r
i)i∈I〉 be

a recursive game, let s ∈ S by a state, and let σ ∈ Σ be a strategy profile.
Then

γ∞(s;σ) = lim
T→∞

γT (s;σ) = lim
λ→0

γλ(s;σ).

3. In this exercise we extend Theorem 11.8 on Page 183. Consider a recursive
absorbing game with a single nonabsorbing entry, and let ε > 0. Prove
that if a strategy profile σ∗ ∈ Σ is an undiscounted ε-equilibrium, then it
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is a uniform 2ε-equilibrium, and if a strategy profile σ∗ ∈ Σ is a uniform
ε-equilibrium, then it is an undiscounted 2ε-equilibrium.

4. In this exercise we extend Theorem 11.8 on Page 183 to multiplayer de-
terministic stopping game. Consider a multiplayer deterministic stopping
game with uniformly bounded and positive payoffs, and let ε > 0. Prove
that if the strategy profile σ is an undiscounted ε-equilibrium, then it
is a uniform 2ε-equilibrium, and if the strategy profile σ is a uniform
ε-equilibrium, then it is an undiscounted 2ε-equilibrium.

5. Show that in Case (VT.1) in the proof of Theorem 11.9 (Page 183), the
stationary strategy profile x0 is an undiscounted 0-equilibrium.

6. Consider the two-player deterministic stopping game Γ that is displayed
below, where the payoff function at each stage t depends on whether t
is odd or even. Prove that for every ε > 0, (5, 6) is an undiscounted ε-
equilibrium payoff when the initial stage is 1, and (8, 3) is an undiscounted
ε-equilibrium payoff when the initial stage is 2.

Q1

C1

C2 Q2

2, 9 8, 2

2, 10

Odd Stages

Q1

C1

C2 Q2

9, 2 7, 11
3

11, 1

Even Stages

7. In the following two-player recursive absorbing game, find four stationary
undiscounted 0-equilibria that yield different payoffs.

B

T

L R

1, 2 ∗ 3, 3 ∗
2, 1 ∗

8. Prove that the following two-player recursive absorbing game admits a
stationary undiscounted 0-equilibrium, in which Player 1 plays the action
T with probability smaller than 1, and Player 2 plays the action L with
probability smaller than 1. There is no need to calculate this equilibrium.

B

M

T

L C R

0, 1 ∗
1, 0 ∗

3, 0 ∗
0, 2 ∗
2, 1 ∗

−1, 2 ∗
0, 1 ∗

1,−1 ∗
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9. Let Γ be a multiplayer positive deterministic stopping game with uniformly
bounded payoffs. Prove that Γ admits a normal-form correlated uniform
ε-equilibrium, for every ε > 0.

Hint: Use Exercise 10.9 on Page 178.

10. In Theorem 11.9 (Page 183) we proved that every two-player positive re-
cursive absorbing game with a single nonabsorbing entry has a stationary
undiscounted ε-equilibrium, for every ε > 0. Prove the same result for
two-player absorbing games with a single nonabsorbing entry, when the
probability of absorption is not necessarily 1; that is, when p∗(a) is re-
quired to be positive for every a 6= (ã1, ã2) (and not necessarily 1).
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12 Infinite Orbits and Quitting Games

Abstract

In this chapter we define infinite orbits and show how to approximate
such orbits. We prove that for every mapping that has no fixed point there
is an approximate infinite orbit with unbounded variation, and we use this
result to show that a certain class of quitting games admits undiscounted
ε-equilibria.

A quitting game is a deterministic stopping game in which the payoffs are
independent of the stage of the game. Alternatively, this is an absorbing game in
which each player has two actions, Continue and Quit ; if all players continue,
the game continues to the next stage; otherwise the game is absorbed with
probability 1. We now define these games formally.

Definition 12.1 A quitting game is an absorbing game with a single non-
absorbing entry Γ = 〈I, (Ai)i∈I , p∗, (ri∗)i∈I〉, where Ai = {Ci, Qi} for each

player i ∈ I, p∗(~C) = 0, where ~C = (Ci)i∈I , and p∗(a) = 1 for every action

profile a 6= ~C.

Quitting games constitute a simple family of stochastic games, yet even for
this family, the existence of an undiscounted ε-equilibrium is not known when
|I| ≥ 4. In this chapter and in Chapter 13 we will prove that for every ε > 0 an
undiscounted ε-equilibrium exists in certain families of quitting games.

12.1 Approximating Infinite Orbits

Let (X, d) be a metric space: X is a set and d : X ×X → R is a metric on X.
Readers who are not familiar with metric spaces should think of the Euclidean
space, that is, X = Rn and d is some metric on X, which can be the Euclidean
metric d2(x, y) :=

√∑n
i=1(xi − yi)2, the L1-metric d1(x, y) :=

∑n
i=1 |xi − yi|,

or the maximum metric d∞(x, y) := max1≤i≤n |xi − yi|.

Definition 12.2 Let X be a set and let f : X → X. An infinite orbit of f is a
sequence (xk)∞k=0 such that xk+1 = f(xk) for every k ≥ 0.

Every point x ∈ X defines an infinite orbit (xk)∞k=1 that starts at x by

x1 = x, xk+1 = f(xk), ∀k ≥ 1.
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Definition 12.3 Let (X, d) be a metric space and let (xk)∞k=1 be a sequence of
points in X. The variation of (xk)∞k=1 is

var
(
(xk)∞k=1

)
:=

∞∑
k=1

d(xk, xk+1).

The variation of a sequence is non-negative, and it may be bounded (that is,
var
(
(xk)∞k=1

)
< ∞) or unbounded (that is, var

(
(xk)∞k=1

)
= ∞). The variation

is 0 if and only if x1 is a fixed point of f , that is, f(x1) = x1. Even if the
infinite orbit (xk)∞k=1 is such that the limit limk→∞ xk exists, the variation of
the infinite orbit may be unbounded (see Example 12.5 below).

The following example shows that sometimes all infinite orbits have bounded
variation, even if f has no fixed points.

Example 12.4 Let X = [0, 1] and let d be the Euclidean distance. Let f : X →
X be the following function (see Figure 28):

f(x) :=

{
1, if x = 0,
x/2, if x 6= 0.

If x > 0, then the orbit that starts at x is x, x2 ,
x
4 ,

x
8 , . . ., and its variation is

equal to x. If x = 0, then the orbit that starts at x is 0, 1, 1
2 ,

1
4 ,

1
8 , . . ., and its

variation is equal to 2.

10

1

x

f(x)

Figure 28: The function f in Example 12.4.
�

In the following example, all orbits converge and have unbounded variation.

Example 12.5 Let X = [−1, 1] and let d be the Euclidean distance. Let f :
X → X be the following function:

f(1) = − 1
2 , f(− 1

2 ) = 1
3 , f( 1

3 ) = − 1
4 , f(− 1

4 ) = 1
5 , . . . ,

f
(
(−1)m+1 1

m

)
= (−1)m 1

m+1 , . . . ,
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and f(x) = 1 for every x 6∈ Ω :=
{

1,− 1
2 ,

1
3 ,−

1
4 , . . . , (−1)m+1 1

m , . . .
}

. For every
x 6∈ Ω the infinite orbit that starts at x is

x, 1,− 1
2 ,

1
3 ,−

1
4 , . . . ,

which converges to 0 and has unbounded variation. For every x ∈ Ω, the infinite
orbit that starts at x is a suffix of the infinite orbit above; hence, it converges to
0 and has unbounded variation as well. �

In this section we are interested in infinite orbits with unbounded variation.
Example 12.4 shows that even when f is not the identity function, all orbits
may have bounded variation. As the following result shows, when f has no fixed
points, there always exist finite sequences that (a) have high variation and (b)
are approximate orbits.

Theorem 12.6 Let (X, d) be a complete metric space, let f : X → X be a
mapping with no fixed points, and let x∗ ∈ X. For every c, C > 0 there exist a
K ∈ N and a sequence (xk)Kk=1 of points in X such that the following properties
hold:

(A.0) x1 = x∗: the sequence starts at x∗.

(A.1)
∑K
k=1 d(xk, f(xk)) > C.

(A.2)
∑K−1
k=1 d(xk+1, f(xk)) < c.

Figure 29 provides a graphical depiction of Theorem 12.6; the solid lines
represent the distance between xk and f(xk), and the dashed lines represent the
distance between f(xk) and xk+1. The theorem asserts that the total length
of the solid lines is larger than C, while the total length of the dashed lines is
smaller than c.

x1 x2 x3 xK−1 xK

f(x1) f(x2) f(xK−1) f(xK)

Figure 29: A graphical depiction of Theorem 12.6.

Example 12.7 (Example 12.4: continued.) In this example all orbits have
bounded variation. We now construct for every c, C > 0 a sequence (xk)Kk=1 that
has properties (A.1) and (A.2). Without loss of generality we can assume that
C is an integer. Consider the following finite sequence ~x[l] = (xk)l+1

k=1 of l + 1
numbers:

1,
1

2
,

1

4
, . . . ,

1

2l
, 0.

We have

l∑
k=1

d(xk, f(xk)) = 1− 1

2l
and

l∑
k=1

d(f(xk), xk+1) =
1

2l
.
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Now let l be sufficiently large so that 2
l−1 < c, and consider the finite sequence

(xk)Kk=1 that is constructed by concatenating the C blocks (~x[l], ~x[l+1], · · · , ~x[l+C]),

whose length is K = Cl + C(C+1)
2 . Along this sequence

K∑
k=1

d(xk, f(xk)) =

C∑
l=1

(
1− 1

2l
+ 1

)
> 2C − c,

where the additional term 1 is due to the distance from the last element in the
block x[l], which is 0, to its image under f . Moreover,

K−1∑
k=1

d(f(xk), xk+1) =

C∑
l=1

1

2l
<

2

l − 1
< c.

�

Proof of Theorem 12.6. Assume without loss of generality that c ≤ C.
Denote by X ′ the closed ball centered at x∗ with radius C+2c . For each x ∈ X ′,
let D(x) be the open ball centered at x with radius min

{
c
2 ,

c
2C d(x, f(x))

}
. Since

c ≤ C, f(x) is not in D(x), for every x ∈ X ′.
The set X ′ is compact and the sets (D(x))x∈X′ form an open cover of X ′.

Therefore, there are points x1, x2, . . . , xL such that
⋃L
l=1D(xl) = X. Assume

w.l.o.g. that x∗ is one of these points. Denote the minimum of the radii of the
balls D(x1), D(x2), . . . , D(xL) by ρ:

ρ := min
{ c

2
,
c

2C
d(x1, f(x1)), . . . ,

c

2C
d(xL, f(xL))

}
∈
(

0,
c

2

]
.

For each y ∈ X, let l(y) ∈ {1, 2, . . . , L} denote an index such that y ∈
D(xl(y)). Define a sequence (xk)k as follows:

x1 := x∗,

xk+1 := xl(f(xk)), provided f(xk) ∈ X ′.

In words, xk+1 is the center of one of the balls that contains f(xk) (see Fig-
ure 30). The sequence (xk)k is infinite if it remains in X ′, and it is finite if
f(xk) 6∈ X ′ for some k.

f(xk−1)

xk = xl

f(xl)

xk+1 = xl′
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Figure 30: Construction of the sequence (xk)∞k=1.

Since f(x) 6∈ D(x) for every x ∈ X ′,

d(xk, f(xk)) ≥ ρ, ∀k ≥ 1. (179)

Further, since xk+1 ∈ D(f(xk)) for every k ∈ {1, . . . ,K∗ − 1},

d(f(xk), xk+1) < c
2C d(xk+1, f(xk+1)). (180)

If the sequence (xk)k is infinite, then by Eq. (179) there is K ∈ N such that

K∑
k=1

d(xk, f(xk)) > C. (181)

We argue that if the sequence (xk)k is finite, say, if f(xK) 6∈ X ′, then Eq. (181)
holds as well. Indeed, in that case,

C + 2c ≤ d(x1, f(xK)) (182)

≤
K∑
k=1

d(xk, f(xk)) +

K−1∑
k=1

d(f(xk), xk+1) (183)

<

K∑
k=1

d(xk, f(xk)) +
c

2C

K−1∑
k=1

d(f(xk+1), xk+1) (184)

<
(

1 +
c

2C

) K∑
k=1

d(xk, f(xk)), (185)

where Eq. (182) holds since x1 is the center of X ′ and f(xK) 6∈ X ′, Eq. (183)
holds by the triangle inequality, and Eq. (184) holds by Eq. (180). This implies
that

K∑
k=1

d(xk, f(xk)) >
C + 2c(
1 + c

2C

) = 2C · C + 2c

2C + c
> C,

as claimed.
Let K∗ be the smallest natural number such that Eq. (181) holds. We will

show that the sequence (xk)K∗k=1 enjoys properties (A.0), (A.1), and (A.2). By
Definition (A.0) holds. By the choice of K∗, (A.1) also holds. Finally, by
Eq. (180),

K∗−1∑
k=1

d(f(xk), xk+1) =

K∗−2∑
k=1

d(f(xk), xk+1) + d(f(xK∗−1, xK∗)

<
c

2C

K∗−1∑
k=2

d(xk, f(xk)) +
c

2

<
c

2C

K∗−1∑
k=1

d(xk, f(xk)) +
c

2

≤ c

2C
· C +

c

2
= c,

199



where the last inequality follows from the minimality of K∗. Consequently, the
sequence (xk)K∗k=1 has property (A.2).

12.2 An Example of a Three-Player Quitting Game

In this section we present and analyze a specific three-player positive recursive
quitting game that was studied in Flesch, Thuijsman, and Vrieze (1997). As we
will see, the game admits no undiscounted ε-equilibrium in stationary strategies,
yet it does admit an undiscounted 0-equilibrium in nonstationary strategies.
Thus the game exhibits the fundamental difference between two-player positive
recursive absorbing games and positive recursive absorbing games with more
than two players.

Consider the three-player quitting game that is displayed in Figure 30, where
Player 1 chooses a row, Player 2 chooses a column, and Player 3 chooses a
matrix. This game is symmetric, in the sense that the payoff if Player 1 quits
alone, (1, 3, 0), is the cyclic shift of the payoff if Player 2 quits alone, which is
(0, 1, 3), and of the payoff if Player 3 quits alone, which is (3, 0, 1). Similarly, the
payoff if Players 1 and 2 quit together, (1, 0, 1), is the cyclic shift of the payoff
if Players 2 and 3 quit together, which is (1, 1, 0), and of the payoff if Players 3
and 1 quit together, which is (0, 1, 1).

Q1

C1

Q1

C1

C2 Q2 C2 Q2

C3 Q3

1, 3, 0 ∗
0, 0, 0

1, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1, 0 ∗

Figure 30: A three-player quitting game.

First we will prove that this game has neither a stationary undiscounted
0-equilibrium, nor a stationary undiscounted ε-equilibrium.

Theorem 12.8 The three-player quitting game in Figure 30 has no stationary
undiscounted 0-equilibrium.

Proof. A stationary strategy can be represented by a single number, the
probability to quit in each stage. We identify a stationary strategy xi of player i
with the per-stage probability with which player i chooses the action Qi. Thus,
in this chapter, a stationary strategy is identified with a real number in [0, 1].

Suppose to the contrary that a stationary equilibrium x = (x1, x2, x3) ex-
ists. We first claim that x1 ∈ (0, 1). Indeed, if x1 = 0 (Player 1 always con-
tinues), then Player 2’s best response is x2 = 1 (Player 2 always quits), and
then Player 3’s best response is x3 = 0 (Player 3 always continues); but then
Player 1’s best response is x1 = 1 (Player 1 always quits), a contradiction. If
x1 = 1 (Player 1 always quits), then Player 2’s best response is x2 = 0 (Player 2
always continues), and then Player 3’s best response is x3 = 1 (Player 3 always
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quits); but then Player 1’s best response is x1 = 0 (Player 1 always continues),
a contradiction. The symmetry of the game implies that x2, x3 ∈ (0, 1) as well.

Since x1 ∈ (0, 1), Player 1 is indifferent between continuing and quitting:

3(1− x2)x3 + x2x3

1− (1− x2)(1− x3)
= γ1
∞(C1, x2, x3) = γ1

∞(Q1, x2, x3) = 1− x3.

This equation solves to

x2 =
(x3)2 + 2x3

(x3)2 + 1
.

Since x3 ∈ (0, 1), we see that (x3)2 + 2x3 > (x3)3 + x3. Therefore,

x2 =
(x3)2 + 2x3

(x3)2 + 1
>

(x3)3 + x3

(x3)2 + 1
= x3.

Thus, x2 > x3, and by symmetry we deduce that x3 > x1 and x1 > x2, a
contradiction.

Theorem 12.9 The three-player quitting game in Figure 30 has no stationary
undiscounted ε-equilibrium, for every ε > 0 sufficiently small.

Proof. Assume to the contrary that there is a sequence (εn)n∈N that con-
verges to 0 such that for every n ∈ N, the game has a stationary undiscounted
εn-equilibrium. The set of vectors (ε, x1

ε , x
2
ε , x

3
ε) ∈ [0, 1]4, where (x1

ε , x
2
ε , x

3
ε) is

a stationary undiscounted ε-equilibrium, is semi-algebraic (see Exercise 12.3),
hence if the contrapositive assumption holds, then there is an interval (0, ε0) such
that a stationary undiscounted ε-equilibrium exists for every ε ∈ (0, ε0). By The-
orem 6.11 (Page 80) there is a mapping ε 7→ (x1

ε , x
2
ε , x

3
ε) such that (x1

ε , x
2
ε , x

3
ε)

is a stationary ε-equilibrium for every ε ∈ (0, ε0). In particular, the following
three limits exist:37

x1
0 := lim

ε→0
x1
ε ,

x2
0 := lim

ε→0
x2
ε ,

x3
0 := lim

ε→0
x3
ε .

We distinguish three cases, and derive a contradiction in each case.

Case 1: Under (x1
0, x

2
0, x

3
0) at least two players quit with positive probability.

Assume without loss of generality that x1
0, x

2
0 > 0. Then, in particular,

limε→0 x
2
ε > 0. Since x2

0 > 0, we have p∗(x
1, x2

0, x
3
0) > 0 for every mixed action

x1 of Player 1. This implies that

lim
ε→0

r∗(x
1, x2

ε , x
3
ε) = r∗(x

1, x2
0, x

3
0), ∀x1 ∈ [0, 1]. (186)

37An alternative argument that does not use the theory of semi-algebraic sets is that since
the set of stationary strategies is compact, we can let (x10, x

2
0, x

3
0) be an accumulation point

of the sequence (x1ε , x
2
ε , x

3
ε ) as ε goes to 0.
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Since (x1
ε , x

2
ε , x

3
ε) is a stationary undiscounted ε-equilibrium,

r1
∗(x

1, x2
ε , x

3
ε) = γ1

∞(x1, x2
ε , x

3
ε)

≤ γ1
∞(x1

ε , x
2
ε , x

3
ε) + ε

= r1
∗(x

1
ε , x

2
ε , x

3
ε) + ε, ∀x1 ∈ [0, 1].

Letting ε→ 0 and using Eq. (186), we deduce that for every x1 ∈ [0, 1],

γ1
∞(x1, x2

0, x
3
0) = r∗(x

1, x2
0, x

3
0)

= lim
ε→0

r∗(x
1, x2

ε , x
3
ε)

≤ lim
ε→0

(
r1
∗(x

1, x2
ε , x

3
ε) + ε

)
= r1

∗(x
1
0, x

2
0, x

3
0)).

Since this inequality holds for every x1 ∈ [0, 1], Player 1 cannot profit by deviat-
ing from the stationary strategy profile (x1

0, x
2
0, x

3
0). Analogous arguments show

that Players 2 and 3 cannot profit by deviating from the stationary strategy pro-
file (x1

0, x
2
0, x

3
0) either, hence the strategy profile (x1

0, x
2
0, x

3
0) is an undiscounted

0-equilibrium. This contradicts Theorem 12.8.

Case 2: Under (x1
0, x

2
0, x

3
0) exactly one player, say Player 1, quits with positive

probability.

Since x1
0 > 0, while x2

0 = x3
0 = 0, we have limε→0 x

1
ε > 0, while limε→0 x

2
ε =

limε→0 x
3
ε = 0. This implies that

lim
ε→0

r∗(x
1
ε , x

2
ε , x

3
ε) = (1, 3, 0)

and
lim
ε→0

r∗(x
1
ε , x

2
ε , Q

3) = x0(1, 0, 1) + (1− x0)(3, 0, 1).

Therefore, for ε sufficiently small,

γ3
∞(x1

ε , x
2
ε , x

3
ε) = r3

∗(x
1
ε , x

2
ε , x

3
ε) <

1

2
< 1 = r3

∗(x
1
ε , x

2
ε , Q

3) = γ3
∞(x1

ε , x
2
ε , Q

3),

which contradicts the assumption that (x1
ε , x

2
ε , x

3
ε) is an ε-equilibrium.

Case 3: Under (x1
0, x

2
0, x

3
0) no player quits: (x1

0, x
2
0, x

3
0) = (0, 0, 0).

The per-stage probability of absorption of the mixed action profile (x1, x2, x3)
is

p(x1, x2, x3) = 1− (1− x1)(1− x2)(1− x3).

For each action profile a 6= (C1, C2, C3) denote by p(a | x1, x2, x3) the condi-
tional probability that the play is absorbed by the action profile a under the
strategy profile (x1, x2, x3). The table in Figure 31 provides the formula of

p(a | x1, x2, x3) for each action profile a ∈ A \ ~C.
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a p(a | x1, x2, x3) r∗(a)

(Q1, C2, C3) x1(1−x2)(1−x3)
1−(1−x1)(1−x2)(1−x3) (1, 3, 0)

(C1, Q2, C3) (1−x1)x2(1−x3)
1−(1−x1)(1−x2)(1−x3) (0, 1, 3)

(C1, C2, Q3) (1−x1)(1−x2)x3

1−(1−x1)(1−x2)(1−x3) (3, 0, 1)

(Q1, Q2, C3) x1x2(1−x3)
1−(1−x1)(1−x2)(1−x3) (1, 0, 1)

(Q1, C2, Q3) x1(1−x2)x3

1−(1−x1)(1−x2)(1−x3) (0, 1, 1)

(C1, Q2, Q3) (1−x1)x2x3

1−(1−x1)(1−x2)(1−x3) (1, 1, 0)

(Q1, Q2, Q3) x1x2x3

1−(1−x1)(1−x2)(1−x3) (0, 0, 0).

Figure 31: Absorption probability for each action profile under (x, y, z).

Since (x1
0, x

2
0, x

3
0) = (0, 0, 0), we have

lim
ε→0

x1
ε = lim

ε→0
x2
ε = lim

ε→0
x3
ε = 0. (187)

Since (C1, C2, C3) is not an undiscounted ε-equilibrium for ε ∈ (0, ε0), we must
have x1

ε +x2
ε +x3

ε > 0 for every ε > 0 sufficiently small, so that p(x1
ε , x

2
ε , x

3
ε) > 0

for every ε > 0 sufficiently small.
For every a ∈ A \ {~C} the function ε 7→ p(a | x1

ε , x
2
ε , x

3
ε) is semi-algebraic,

hence the limit limε→0 p(a | x1
ε , x

2
ε , x

3
ε) exists. Moreover,

∑
a∈A\{~C} limε→0 p(a |

x1
ε , x

2
ε , x

3
ε) = 1. From the table in Figure 31 and Eq. (187) we deduce that

lim
ε→0

p(C1, Q2, Q3 | x1
ε , x

2
ε , x

3
ε) = 0,

lim
ε→0

p(Q1, C2, Q3 | x1
ε , x

2
ε , x

3
ε) = 0,

lim
ε→0

p(Q1, Q2, C3 | x1
ε , x

2
ε , x

3
ε) = 0,

lim
ε→0

p(Q1, Q2, Q3 | x1
ε , x

2
ε , x

3
ε) = 0.

It follows that

lim
ε→0

γ∞(x1
ε , x

2
ε , x

3
ε) = lim

ε→0
r∗(x

1
ε , x

2
ε , x

3
ε)

=
(

lim
ε→0

px1
ε ,x

2
ε ,x

3
ε
(Q1, C2, C3)

)
· (1, 3, 0) (188)

+
(

lim
ε→0

px1
ε ,x

2
ε ,x

3
ε
(C1, Q2, C3)

)
· (0, 1, 3)

+
(

lim
ε→0

px1
ε ,x

2
ε ,x

3
ε
(C1, C2, Q3)

)
· (3, 0, 1).

Exercise 6.10 (Page 85) implies that in a neighborhood of 0, each of the three
functions ε 7→ px1

ε ,x
2
ε ,x

3
ε
(C1, C2, Q3), ε 7→ px1

ε ,x
2
ε ,x

3
ε
(C1, Q2, C3), and ε 7→ px1

ε ,x
2
ε ,x

3
ε
(Q1, C2, C3)

is either the constant 0 or positive.

203



Since (x1
ε , x

2
ε , x

3
ε) is an undiscounted ε-equilibrium, we deduce that

lim
ε→0

γ1(x1
ε , x

2
ε , x

3
ε) ≥ lim

ε→0

(
γi(Q1, x2

ε , x
3
ε)− ε

)
= 1.

Moreover, if x1
ε > 0 for every ε > 0 sufficiently small, then

lim
ε→0

γ1(x1
ε , x

2
ε , x

3
ε) ≤ lim

ε→0

(
γi(Q1, x2

ε , x
3
ε) + ε

)
= 1.

Since the condition limε→0 px1
ε ,x

2
ε ,x

3
ε
(Q1, C2, C3) > 0 implies that x1

ε > 0 for
every ε > 0 sufficiently small, we deduce that limε→0 γ

1(x1
ε , x

2
ε , x

3
ε) ≥ 1, with

equality if limε→0 px1
ε ,x

2
ε ,x

3
ε
(Q1, C2, C3) > 0. Analogous conclusions hold for

Players 2 and 3.
We claim that there is no convex combination

u = α1 · (1, 3, 0) + α2 · (0, 1, 3) + α3 · (3, 0, 1)

such that

� ui ≥ 1 for every i = 1, 2, 3.

� If αi > 0 then ui = 1.

In view of Eq. (188) and the previous paragraph, this constitutes a contradiction.
Why can’t such a convex combination exist? It cannot be that αi > 0 for a
single player i ∈ {1, 2, 3}, because then ui+2 = 0 < 1. It cannot be that αi > 0
for two players in {1, 2, 3}, say, Players 1 and 2, because then u1 < 1. And it
cannot be that αi > 0 for all players i ∈ {1, 2, 3}, because then we must have
u = (1, 1, 1); but the sum of coordinates of each of the vectors (1, 3, 0), (0, 1, 3),
and (3, 0, 1) is 4.

We will prove that the game has a periodic undiscounted 0-equilibrium with
period 3. In this equilibrium,

� in stages 1, 4, 7, . . . Player 1 quits with probability 1
2 while Players 2 and 3

continue;

� in stages 2, 5, 8, . . . Player 2 quits with probability 1
2 while Players 1 and 3

continue;

� and in stages 3, 6, 9, . . . Player 3 quits with probability 1
2 while Players 1

and 2 continue.

For i ∈ {1, 2, 3}, we will denote a strategy of player i by xi = (xi(t))t∈N, where
xi(t) is the probability with which player i quits at stage t, provided no player
quit before stage t.
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Theorem 12.10 The following strategy profile x∗ = (xi∗)
3
i=1 is an equilibrium

in the three-player quitting game in Figure 30:

x1
∗(1) =

1

2
, x1
∗(2) = 0, x1

∗(3) = 0, x1
∗(4) =

1

2
, x1
∗(5) = 0, x1

∗(6) = 0, . . . ,

x2
∗(1) = 0, x2

∗(2) =
1

2
, x2
∗(3) = 0, x2

∗(4) = 0, x2
∗(5) =

1

2
, x2
∗(6) = 0, . . . ,

x3
∗(1) = 0, x3

∗(2) = 0, x3
∗(3) =

1

2
, x3
∗(4) = 0, x3

∗(5) = 0, x3
∗(6) =

1

2
, . . . .

Proof.
Step 1: γ∞(x∗) = (1, 2, 1).

Under the strategy profile x∗, with probability 1
2 Player 1 quits in the first

stage, with probability 1
4 Player 2 quits in the second stage, with probability 1

8
Player 3 quits in the third stage, and with probability 1

8 the game continues to
stage 4. Since the strategy profile x∗ is periodic with period 3, we have

γ∞(x∗) =
1

2
(1, 3, 0) +

1

4
(0, 1, 3) +

1

8
(3, 0, 1) +

1

8
γ∞(x∗).

The solution of this equation is

γ∞(x∗) = (1, 2, 1).

Step 2: No player can profit by deviating from x∗.

By Kuhn’s Theorem, it is sufficient to prove that no player can profit by
deviating to a pure strategy. By the symmetry of the game and of the strategies
x∗ it is sufficient to show that the following deviations are not profitable:

� No player can profit by quitting in the first stage.

� Player 1 cannot profit by never quitting.

Player 1 receives 1 whether or not she quits in the first stage, hence she cannot
profit by quitting in the first stage. If Player 2 deviates and quits in the first
stage, her payoff is 1

2 , and therefore this deviation decreases her payoff. If
Player 3 deviates and quits in the first stage, her payoff is 1, and therefore again
such a deviation is not profitable.

It remains to show that Player 1 cannot profit by always continuing. Let
then ~C1 be the strategy of Player 1 in which she always continues. Recall that
t∗ is the stage in which absorption occurs, and denote by γ∞(~C1, x2

∗, x
3
∗ | t∗ ≤ t)

the undiscounted payoff conditional on the event that the game is absorbed
before or at stage t:

γ∞(~C1, x2
∗, x

3
∗ | t∗ ≤ t) = E~C1,x2

∗,x
3
∗
[r(at∗) | t∗ ≤ t].

Under the strategy profile (~C1, x2
∗, x

3
∗), at the second stage the game is absorbed

by Player 2 with probability 1
2 , and at the third stage the game is absorbed by

Player 3 with probability 1
4 . Consequently,

γ1
∞(~C1, x2

∗, x
3
∗) = 1

2 · 0 + 1
4 · 3 +

1

4
· γ1
∞(~C1, x2

∗, x
3
∗),
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which solves to γ1
∞(~C1, x2

∗, x
3
∗) = 1, and therefore this deviation is not profitable

to Player 1.

12.3 Multiplayer Quitting Games in which Players Do
Not Want Others to Join Them in Quitting

The three-player quitting game that we studied in Section 12.2 enjoys the fol-
lowing properties:

� It is recursive: the payoff if no player ever quits is 0.

� The payoff of a player who quits alone is 1.

� The payoff of a player who quits with others is at most 1.

In this section we will prove that every multiplayer quitting game with these
four properties admits an undiscounted ε-equilibrium, for every ε > 0. We
will thus study the class of recursive quitting games that satisfy the following
condition (P).

(P) For every player i ∈ I and every subset of players J ⊆ I we have

ri∗(Q
i, C−i) = 1 ≥ ri∗

(
QJ∪{i}, CI\(J∪{i})

)
.

An implication of Property (P) is that if some player quits, her payoff is at
most 1:

ri∗(Q
i, x−i) ≤ 1 = ri∗(Q

i, C−i), ∀i ∈ I, ∀x−i ∈ [0, 1]|I|−1. (189)

Theorem 12.11 Every multiplayer recursive quitting game that satisfies Con-
dition (P) has an undiscounted ε-equilibrium, for every ε > 0.

From Theorem 11.8 (Page 183) we deduce that every multiplayer recursive
quitting game that satisfies Condition (P) has a uniform ε-equilibrium, for every
ε > 0.

Comment 12.12 The assumptions that the game is recursive and ri∗(Q
i, C−i) =

1 for all players i ∈ I are normalization assumptions. Theorem 12.11 and its
proof are valid whenever ri∗(Q

i, C−i) is at least player i’s payoff when the play
never absorbs, for every i ∈ I.

Proof. Fix a recursive quitting game Γ = 〈I, (Ai)i∈I , p∗, (ri∗)i∈I〉 that sat-
isfies Property (P) and an ε > 0. Denote M := ‖r∞‖∞.

Step 1: Definition of a family of auxiliary strategic-form games.

For each w ∈
[
−M,M

]|I|
define a strategic-form game Ĝ(w) = 〈I, (Ai)i∈I , (ûiw)i∈I〉

as follows.

� The set of players is I, the set of players in Γ.
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� The set of actions of each player i ∈ I is Ai = {Qi, Ci}, her set of actions
in Γ.

� The payoff function of each player i ∈ I, denoted ûiw, is given by

ûiw(a) :=

{
wi, if a = ~C,

ri∗(a), if a 6= ~C.

In words, the auxiliary game Ĝ(w) captures one stage of the quitting game Γ,
where, if the quitting game is not absorbed, the continuation payoff is w.

A mixed action profile in Ĝ(w) is a vector x ∈ [0, 1]I , with the interpretation
that xi is the probability that player i chooses the action Qi. The probability
of absorption under the mixed action profile x is

p∗(x) := 1−
∏
i∈I

(1− xi).

The expected payoff in the auxiliary game Ĝ(w) under the mixed action profile
x is

ûw(x) =

(∏
i∈I

(1− xi)

)
w +

∑
∅⊂J⊆I

(∏
i∈J

xi

)∏
i6∈J

(1− xi)

 r∗(Q
J , CI\J)

= (1− p∗(x))w + p∗(x)r∗(x). (190)

Step 2: Equilibria of the auxiliary game Ĝ(w).

Recall that for every ε > 0, a mixed action profile x = (xi)i∈I is an ε-

equilibrium in the auxiliary game Ĝ(w) if

ûiw(x) ≥ max
x′i∈∆(Ai)

ûiw(x′i, x−i)− ε.

Since the auxiliary game Ĝ(w) is a strategic-form game with finitely many play-
ers and actions, it has a 0-equilibrium.

We here make the following observations.

Claim 12.13 1. If ~C is an equilibrium of Ĝ(w), then wi ≥ 1 for every i ∈ I.

2. Let i0 ∈ I and let w ∈
[
−M,M

]|I|
satisfy wi0 = 1 and wi ≥ 1 for every

i ∈ I. Then the strategy profile x∗ := ([(1 − ε)(Ci0), ε(Qi0)], C−i0) is a

2Mε-equilibrium of Ĝ(w). Moreover, player i0 cannot profit by deviating

from x∗ in the auxiliary game Ĝ(w).

3. Let x be a stationary strategy that satisfies (a) p∗(x) > 0, and (b) ûw(x) =
w. Then r∗(x) = w.
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Proof. To see that item 1 of the claim holds, note that, by the definition of
ûw, by Property (P), and since ~C is an equilibrium of Ĝ(w),

wi = ûiw(~C) ≥ ûiw(Qi, C−i) = 1, ∀i ∈ I.

Let us prove item 2 of the claim. Since wi0 = 1, ri0∗ (Qi0 , C−i0) = 1, and
x−i0∗ = C−i0 ,

ûi0w (Ci0 , x−i0∗ ) = wi0 = 1,

and
ûi0w (Qi0 , x−i0∗ ) = 1.

Thus, player i0 cannot profit by deviating from [(1 − ε)(Ci0), ε(Qi0)] in the

game Ĝ(w). We now argue that no other player i 6= i0 can profit more than

2Mε by deviating from x∗ in the game Ĝ(w). This follows from the following
inequalities:

ûiw(x∗) = (1− ε)wi + εri∗(Q
i0 , C−i0) ≥ 1− 2Mε,

ûiw(Qi, x−i∗ ) = ri∗(Q
i, [(1− ε)(Qi0), ε(Ci0)], C−i,i0) ≤ 1,

where the last inequality holds by Eq. (189).
We finally prove item 3 of the claim. By condition (b) and (190),

w = ûw(x) = (1− p∗(x)w + p∗(x)r∗(x).

By condition (a), we have p∗(x) > 0, hence r∗(x) = w, as claimed. N

Step 3: Definition of a set W and mappings x : W → R|I| and f : W →W .

Define the set W by 38

W :=
{
w ∈

[
−M,M

]|I|
: ∃i ∈ I with wi ≤ 1

}
.

We turn to define the mapping x : W → [0, 1]I .

(R1) If ~C is an equilibrium of the auxiliary game Ĝ(w), then wi ≥ ri∗(Qi, C−i)
for every i ∈ I. By the definition of the set W , there exists a player i0 ∈ I
such that wi0 = ri0∗ (Qi0 , C−i0). Set

x(w) :=
([

(1− ε)(Ci0), ε(Qi0)
]
, C−i0

)
.

By Claim 12.13(2), in this case x(w) is a 2Mε-equilibrium of the auxiliary

game Ĝ(w).

38The threshold of 1 in the definition of W arises because of the assumption that
ri∗(Q

i, C−i) = 1 for every player i. If we had dropped this condition we would have de-
fined

W :=
{
w ∈

[
−M,M

]|I|
: ∃i ∈ I with wi ≤ ri∗(Qi, C−i)

}
.
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(R2) Otherwise, all equilibria x of the game Ĝ(w) are absorbing; that is, they

satisfy p∗(x) > 0. Set x(w) to be one of the equilibria of Ĝ(w).

Define a mapping f : W → RI by

f(w) := ûw(x(w)). (191)

Thus, x(w) is an absorbing equilibrium of the auxiliary game Ĝ(w) or an ab-
sorbing 2Mε-equilibrium of this game in which a single player quits with pos-
itive probability, and f(w) is the corresponding equilibrium payoff or 2Mε-
equilibrium payoff.

Step 4: For every w ∈W we have f(w) ∈W .

Fix w ∈ W . Suppose first that x(w) = ~C, and let i0 be the player from the
definition of f(w) in this case. Then

f i0(w) = ûi0w (x(w))

= (1− ε)ûi0w (~C) + εûi0w (Qi0 , C−i0)

= (1− ε)wi0 + εri0∗ (Qi0 , C−i0) = 1,

where the last equality holds by the definition of i0. We conclude that in this
case f(w) ∈W .

Suppose now that x(w) 6= ~C, so in particular p∗(x(w)) > 0. Hence, there is
a player i0 such that xi0w > 0. and therefore under x(w) player i0 is indifferent
between Qi and Ci (if xi0w ∈ (0, 1)) or weakly prefers Qi to Ci (if xi0w = 1). In
both case,

f i0(w) = ûi0w (x(w)) ≤ ûi0w (Qi0 , x−i0w ) = ri0∗ (Qi0 , x−i0(w)) ≤ 1,

where the first inequality holds because player i0 weakly prefers Qi to Ci, and
the last inequality holds by Eq. (189). Once again f(w) ∈W .

Step 5: If w = f(w) and x(w) is defined by (R1), then x(w) is a stationary
undiscounted 0-equilibrium.

Since x(w) is defined by (R1), ~C is an equilibrium of Ĝ(w), hence by
Claim 12.13(1),

wi ≥ 1, ∀i ∈ I. (192)

Moreover, by (R1) there is i0 ∈ I such that

x(w) =
([

(1− ε)(Ci0), ε(Qi0)
]
, C−i0

)
.

Then
f(w) = (1− ε)w + εr∗(Q

i0 , C−i0),

and since f(w) = w, we deduce that

w = r∗(Q
i0 , C−i0). (193)
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It follows that ri∗(Q
i0 , C−i0) ≥ 1 for every i ∈ I.

Under the stationary strategy profile x(w) the game is bound to be absorbed,
and the undiscounted payoff is

γ∞(x(w)) = r∗(Q
i0 , C−i0) = w. (194)

To prove that x(w) is a stationary undiscounted 0-equilibrium we need to
show that no player can profit in Γ by deviating from x(w). We start with
player i0, and suppose that the other players adopt the stationary strategy
x−i0(w) = C−i0 . If player i0 ever quits, her payoff is 1, while since the game is
recursive, if she continues forever her payoff is 0. Since γi0∞(x(w)) = wi0 = 1, it
follows that player i0 cannot profit by deviating from x(w).

Fix now i 6= i0. By Eqs. (189), (192), and (194),

ri∗(Q
i, x−i(w)) ≤ 1 ≤ wi = γi∞(x(w)). (195)

A deviation of player i must involve quitting at some stage, which, by Eq. (195),
leads to a payoff at most wi. This implies that player i cannot profit by deviating
from x(w).

Step 6: If w = f(w) and x(w) is defined by (R2), then x(w) is a stationary
undiscounted 0-equilibrium.

If there is a single player i ∈ I such that xi(w) > 0, then the argument
is similar to that in Step 5. We therefore assume that there are at least two
players i ∈ I with xi(w) > 0.

Since w = f(w) = ûw(x(w)), and since p∗(x(w)) > 0, Claim 12.13(3) implies
that

γ∞(x(w)) = r∗(x(w)) = w. (196)

We now argue that no player can profit by deviating from the stationary strategy
profile x(w) in the game Γ. Fix then a player i ∈ I. Since w is a fixed point of

f , and since x(w) is an equilibrium of Ĝ(w),

wi = f i(w) = ûiw(x(w)) ≥ max{ûiw(Qi, x−i(w)), ûiw(Ci, x−i(w))}.

Since at least two players quit with positive probability under x(w), p∗(C
i, x−i(w)) >

0, and since

wi ≥ uiw(Ci, x−i(w)) = (1− p∗(Ci, x−i(w))) ·wi + p∗(C
i, x−i(w))r∗i (Ci, x−i(w))

it follows that
r∗i (Ci, x−i(w)) ≤ wi.

Moreover,
r∗i (Qi, x−i(w)) = ûiw(Qi, x−i(w)) ≤ wi.

Thus, whatever player i plays, the game is bounded to be absorbed, and the
expected absorbing payoff of player i at stage t∗ is at most wi, whether she plays
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Qi or Ci at that stage. This implies that player i cannot profit by deviating
from the stationary strategy profile x(w) in Γ.

By Steps 5 and 6, if the mapping f has a fixed point, then the quitting game
Γ admits a stationary undiscounted 0-equilibrium. We therefore assume from
now on that f has no fixed points.

Step 7: p∗(x(w)) ≥ 1
2M ‖w − ûw(x(w))‖1.

We now relate the probability of absorption under x(w) to the difference
between the continuation payoff w and the equilibrium payoff ûw(x(w)).

By Eq. (190),

ûw(x(w)) = (1− p∗(x(w))) · w + p∗(x(w)) · r∗(x(w)),

and therefore
‖ûw(x(w))− w‖∞ ≤ 2Mp∗(x(w)).

The result follows.

Step 8: Definition of a strategy profile σ∗.

The mapping f is defined on the metric space (W,d∞(·, ·)), where d∞(·, ·) is
the maximum distance. Since f has no fixed points, we can apply Theorem 12.6
with C = 2M

ε , c = ε
M , and (1, 1, . . . , 1) ∈W as the initial point of the sequence,

and conclude that there are K ∈ N and a sequence (wk)Kk=1 of points in W such
that the following properties hold:

(A.0) w1 = (1, 1, . . . , 1).

(A.1)
∑K
k=1 d∞(wk, f(wk)) > 2M/ε.

(A.2)
∑K−1
k=1 d∞(wk+1, f(wk)) < ε/M .

Recall that f(wk) is a 2Mε-equilibrium payoff in the auxiliary game Ĝ(wk)
with payoff wk+1. Denote by xk the equilibrium strategy profile by which f(wk)
is defined, so that f(wk) = ûwk(xk).

Define the following strategy profile σ∗ (see Figure 32): For t ∈ {1, 2, . . . ,K},
at stage t each player i plays the mixed action xiK−t+1. From stage K + 1 and
on, all players continue.

211



Stage Mixed action
profile

1 xK
2 xK−1

3 xK−2

...
...

t xK−t+1

t+ 1 xK−t
...

...
K x1

K + 1 ~C

K + 2 ~C
...

...

Figure 32: The strategy profile σ∗.

Step 9: Under σ∗, the game Γ is absorbed with high probability until stage K,
that is, Pσ∗(t∗ ≤ K) ≥ 1− ε.

Under σ∗ the probability of absorption at stage t, given that the game was
not absorbed before stage t, is p∗(xK−t+1). By Step 7, this probability is at
least 1

2M d∞(wK−t+1, f(wK−t+1)). It follows that the probability that the game

is not absorbed in the first K stages is at most
∏K
k=1

(
1− 1

2M d∞(wk, f(wk))
)
.

Since ln(1− z) ≤ −z for every z ∈ (0, 1), we have

ln

(
K∏
k=1

(
1− 1

M d∞(wk, f(wk))
))

=

K∑
k=1

ln
(
1− 1

M d∞(wk, f(wk))
)

≤ − 1
2M

K∑
k=1

d∞(wk, f(wk)) < − 1
ε .

Consequently,

Pσ∗(t∗ > K) =

K∏
k=1

(
1− 1

2M d∞(wk, f(wk))
)
< exp(−1/ε) < ε.

Step 10: γi∞(σ∗) ≥ f i(wK)− 2Mε, for every i ∈ I.

We next prove that the expected payoff under σ∗ us high. To this end, define
a stochastic process (ηt)

K−1
t=0 as follows. For each t = 0, 1, . . . ,K− 1,

� If the game was not absorbed up to stage t, set

ηt := f i(wK−t) +

t−1∑
j=0

|wiK−j − f i(wK−j−1)|.
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� If the absorption stage t∗ satisfies t∗ ≤ t, set

ηt := ri∗(Q
I∗ , CI\I∗) +

t∗−1∑
j=0

|wiK−j − f i(wK−j−1)|,

where I∗ is the set of players who quit at stage t∗.

Denote by Ht the sigma-algebra on the set H∞ of plays that is spanned by the
cylinder sets that are defined by histories of length t, see Page 132. We claim
that the process (ηt)

K−1
t=0 is a submartingale under the strategy profile σ∗, that

is,
ηt ≤ Eσ∗ [ηt+1 | Ht]. (197)

Indeed, on the event {t∗ ≤ t} we have ηt+1 = ηt, and on the event {t∗ > t} we
have

Eσ∗ [ηt+1 | Ht]

= Eσ∗

[
1{t∗=t+1}r

i
∗(Q

I∗ , CI\I∗) + 1{t∗>t+1}f
i(wK−t−1) | Ht

]
(198)

+

t∑
j=0

|wiK−j − f i(wK−j−1)|

= Eσ∗

[
1{t∗=t+1}r

i
∗(Q

I∗ , CI\I∗) + 1{t∗>t+1}w
i
K−t−1 | Ht

]
(199)

+

t∑
j=0

|wiK−j − f i(wK−j−1)|

+Pσ∗(t∗ > t+ 1 | Ht) ·
(
f i(wK−t−1)− wiK−t−1

)
≥ Eσ∗

[
1{t∗=t+1}r

i
∗(Q

I∗ , CI\I∗) + 1{t∗>t+1}w
i
K−t−1 | Ht

]
(200)

+

t−1∑
j=0

|wiK−j − f i(wK−j−1)|

= f i(wK−t) +

t−1∑
j=0

|wiK−j − f i(wK−j−1)| (201)

= ηt, (202)

where Eq. (198) holds by the definition of ηt+1, to derive Eq. (199) we added and
subtracted the quantity Eσ∗ [1{t∗>t}w

i
K−t−1], Eq. (200) holds since |z|+ λz ≥ 0

for every z ∈ R (applied to z = f i(wK−t−1)− wiK−t−1), Eq. (201) holds by the
definition of f (Eq. (191) on Page 209), and Eq. (202) holds by the definition
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of ηt and since t∗ > t. Therefore, as we claimed,

f i(wK) = η0

≤ Eσ∗ [ηK−1] (203)

≤ Pσ∗(t∗ ≤ K) ·Eσ∗ [r
i
∗(Q

I∗ , CI\I∗) | t∗ ≤ K] +M ·Pσ∗(t∗ > K)

+

K−1∑
j=0

|wiK−j − f i(wK−j−1)| (204)

≤ γi∞(σ∗) + (M + 2)ε, (205)

where Eq. (203) follows since the process (ηt)
K−1
t=0 is a submartingale under the

strategy profile σ∗, Eq. (204) holds by the definition of ηK−1, and Eq. (205)
holds by Step 9 and Condition (A.2).

Comment 12.14 The inequality η0 ≤ Eσ∗ [ηK−1] holds because the sequence
(ηt)

K−1
t=0 is a submartingale. A reader who is not familiar with martingale theory

will note that this inequality holds by summing Eq. (197) over t = 0, 1, . . . ,K−2,
taking the expectation, and deleting common terms on both sides.

Step 11: The strategy profile σ∗ is an undiscounted 2(M + 2)ε-equilibrium.

In view of Step 10 we need to show that, for every player i ∈ I and every
strategy σi ∈ Σi in Γ,

γi∞(σi, σ−i∗ ) ≤ f i(wK) + (M + 2)ε.

The proof is analogous to the proof of Step 10. Define a stochastic process
(ηt)

K−1
t=0 as follows. For every t = 0, 1, . . . ,K − 1,

� If the game was not absorbed before stage t, set

ηt := f i(wK−t)−
t−1∑
j=0

|wiK−j − f i(wK−j−1)|.

� If the game was absorbed before stage t, say, at stage t∗ < t, set

ηt := ri∗(Q
I∗ , CI\I∗)−

t∗−1∑
j=0

|wiK−j − f i(wK−j−1)|.

Now fix a strategy σi of player i. We claim that the process (ηt)
K
t=1 is a super-

martingale under the strategy profile (σi, σ−i∗ ), that is,

ηt ≥ Eσi,σ−i∗
[ηt+1 | Ht]. (206)
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Indeed, if the game was absorbed up to stage t, then ηt+1 = ηt and Eq. (206)
holds. On the event {t∗ > t},

Eσ∗ [ηt+1 | Ht]

= Eσ∗

[
1{t∗=t+1}r

i
∗(Q

I∗ , CI\I∗) + 1{t∗>t+1}f
i(wK−t−1) | Ht

]
−

t∑
j=0

|wiK−j − f i(wK−j−1)|

= Eσ∗

[
1{t∗=t+1}r

i
∗(Q

I∗ , CI\I∗) + 1{t∗>t+1}w
i
K−t−1 | Ht

]
−

t∑
j=0

|wiK−j − f i(wK−j−1)|

+Pσ∗(t∗ > t+ 1 | Ht) ·
(
f i(wK−t−1)− wiK−t−1

)
≤ Eσ∗

[
1{t∗=t+1}r

i
∗(Q

I∗ , CI\I∗) + 1{t∗>t+1}w
i
K−t−1 | Ht

]
−
t−1∑
j=0

|wiK−j − f i(wK−j−1)|

= f i(wK−t)−
t−1∑
j=0

|wiK−j − f i(wK−j−1)|

= ηt,

and Eq. (206) holds as well. Since w1 = (1, 1, . . . , 1), ~C is an equilibrium of

Ĝ(w1), hence x1 is defined by (R1). Consequently,

f i(w1) ≥ 1−Mε. (207)

We therefore have, as we claimed,

f i(wK) = η0 (208)

≥ Eσi,σ−i∗
[ηK−1] (209)

≥ P(t∗ ≤ K) · Eσi,σ−i∗
[
ri∗(Q

I∗ , CI\I∗) | t∗ ≤ K
]

+P(t∗ > K) · f i(w1)−
K−1∑
j=0

|wiK−j − f i(wK−j−1)| (210)

≥ P(t∗ ≤ K) · γi∞(σi, σ−i∗ | t∗ ≤ K) (211)

+P(t∗ > K) · (1 +Mε)− ε. (212)

where Eq. (209) holds since the sequence (ηt)
K
t=1 is a supermartingale under

(σi, σ−i∗ ), Eq. (210) holds by the definition of ηK−1, and Eq. (211) holds by
Eq. (207) and Condition (A.2).

After stage K, under σ∗ all player continue, which, by Property (P), implies

215



that γi∞(σi, σ−i∗ | t∗ > K) ≤ 1. Therefore,

f i(wK) ≥ P(t∗ ≤ K) · γi∞(σi, σ−i∗ | t∗ ≤ K)−P(t∗ > K) · (1 +Mε)− ε
≥ γi∞(σi, σ−i∗ )− (M + 2)ε.

The claim follows.

12.4 Comments and Extensions

Every stochastic game admits a stationary λ-discounted equilibrium xλ. Given
such an equilibrium, the expected payoff to the players from state t and on
depends on the current state st and not on the stage t, and it is given by
γλ(s;xλ). Theorem 10.4 asserts a similar phenomenon w.r.t. uniform equilibria
in two-player absorbing games: there is a vector w ∈ RI , and for every ε > 0
there is a uniform ε-equilibrium σε, such that as long as the game is not ab-
sorbed and punishment was not triggered, and conditional on the event that
punishment will not be triggered in the future, the expected payoff from stage t
and on is close to w, irrespective of the current stage. The three-player example
presented in Section 12.2 shows that this property does not hold for undis-
counted ε-equilibrium in three-player quitting games: given an undiscounted
ε-equilibrium, one cannot find a payoff vector w ∈ RI , such that, as long as the
game is not absorbed and punishment was not triggered, and conditional on
the event that punishment will not be triggered in the future, the undiscounted
payoff from stage t and on is close to w. It turns out that there are two-player
nonzero-sum stochastic game where this property does not hold as well, see
Simon (2006).

Theorem 12.11 was proven by Solan and Vieille (2001), who introduced in-
finite orbits to the study of quitting games. To prove this theorem, Solan and
Vieille (2001) used sophisticated probabilistic estimates for the probability of ab-
sorption under the strategy profile σ∗, rather than Theorem 12.6. Theorem 12.6
was proved by Solan and Solan (2020), and the proof of Theorem 12.11 that
we provided here follows ideas in this paper. Infinite orbits were extended and
used for studying equilibria in stochastic games by Simon (2007, 2012).

12.5 Exercises

1. Provide an example of a complete metric space (X, d) and a mapping
f : X → X with a unique fixed point such that all infinite orbits of f have
bounded variation.

2. In this exercise we prove a stronger version of Theorem 12.6. Let (X, d)
be a complete metric space and let f : X → X be a mapping with no fixed
points. Prove that for every c > 0 and every x∗ ∈ X there is a sequence
(xk)∞k=1 of points in X such that

(A.0) x1 = x∗.

(A.1)
∑∞
k=1 d(xk, f(xk)) =∞.
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(A.2)
∑∞
k=1 d(xk+1, f(xk)) < c.

3. Prove that the correspondence that assigns to each ε > 0 the set of all
stationary undiscounted ε-equilibria in a multiplayer quitting game is semi-
algebraic.

4. Where in the proof of Theorem 12.11 did we use the assumption that
ri∗(Q

i, C−i) = 1 for each i ∈ I? How would you prove the result in the
absence of this assumption?

5. Consider the following four-player quitting game, where Player 1 chooses
a row, Player 2 chooses a column, Player 3 chooses either the top two
matrices or the bottom two matrices, and Player 4 chooses either the two
left matrices or the two right matrices.

Q1

C1

Q1

C1

Q1

C1

Q1

C1

C2 Q2 C2 Q2

C2 Q2 C2 Q2

Q3

C3

Q3

C3

C4 Q4

C4 Q4

1, 4, 0, 0 ∗ 1, 1, 1, 1 ∗
4, 1, 0, 0 ∗

1, 0, 1, 1 ∗
0, 0, 4, 1 ∗

0, 1, 0, 1 ∗
1, 1, 0, 1 ∗

1, 1, 1, 0 ∗
0, 0, 1, 4 ∗

1, 0, 1, 0 ∗
0, 1, 1, 1 ∗

0, 1, 0, 1 ∗
1, 1, 1, 1 ∗

0, 0, 0, 0 ∗
1, 0, 1, 0 ∗

(a) Determine whether the game satisfies Property (P) or not.

(b) Prove that there is no pure stationary undiscounted 0-equilibrium.

(c) Prove that there is no periodic undiscounted 0-equilibrium of period
4, in which in each stage only one player quits with positive proba-
bility.

(d) Find a periodic undiscounted 0-equilibrium of period 2, in which in
odd stages Player 1 quits with probability x ∈ (0, 1), Player 3 quits
with positive probability z ∈ (0, 1), and Players 2 and 4 continue
with probability 1, and in even stages Player 2 quits with probability
x, Player 4 quits with probability z, and Players 1 and 3 continue
with probability 1. To find the equilibrium, you may use a freeware
that solves system of polynomial equalities, like wolfram alpha.
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13 Linear Complementarity Problems and Quit-
ting Games

Abstract

In this chapter we present linear complementarity problems, and use
them to provide sufficient conditions that guarantee the existence of an
undiscounted ε-equilibrium in quitting games.

13.1 Linear Complementarity Problems

In this section we present linear complementarity problems. When using matrix
notations, all vectors will be column vectors. We will denote by ~0 = (0, 0, . . . , 0)
the vector all of whose coordinates are 0. When x = (xi)ni=1 and y = (yi)ni=1

are vectors in Rn, we will write x ≥ y if xi ≥ yi for every i ∈ {1, 2, . . . , n}.
When R is an n × n matrix, we denote its columns by R[1], R[2], . . . , R[n], and
its (i, j)-entry by Ri[j].

Definition 13.1 Let R be an n × n matrix and let q ∈ Rn. The linear com-
plementarity problem LCP(R, q) is the following problem that consists of linear
equalities and inequalities:

Find w ∈ Rn and z = (z0, z1, . . . , zn) ∈ ∆({0, 1, . . . , n}),

such that w = z0q +

n∑
i=1

ziR[i], (213)

wi ≥ Ri[i], ∀i = 1, 2, . . . , n,

zi = 0 or wi = Ri[i], ∀i = 1, 2, . . . , n.

The last condition in Problem (213) is the complementarity condition.

We note that if q ∈ Rn satisfies qi ≥ Ri[i] for every i = 1, 2, . . . n, then

problem (213) admits at least one solution, namely, z = (1, 0, . . . , 0) and w = q.
This solution is called the trivial solution.

Example 13.2 Let R =

(
0 1
1 0

)
. For q = (1,−1), the linear complementarity

problem LCP(R, q) has two solutions:

� w = (0, 1) and z = (0, 1, 0).

� w = (1, 0) and z = (0, 0, 1).
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For q′ = (1, 1), in addition to the above two solutions, the problem LCP(R, q′)
has the trivial solution:

� w = (1, 1) and z = (1, 0, 0).

For q′′ = (−1,−2), in addition to the two solutions of LCP(R, q), the problem
LCP(R, q′′) has a third solution:

� w = (0, 0) and z = ( 1
4 ,

1
2 ,

1
4 ).

Example 13.3 Let R =

(
0 −1
−1 0

)
. For q = (−1,−1), the linear complemen-

tarity problem LCP(R, q) has no solution. In fact, the problem LCP(R, q) has a
solution if and only if q lies in the non-negative orthant. If both coordinates of
q are positive, then there are two solutions: the trivial solution and the solution

w = (0, 0) and z =
(

1
1+q1+q2 ,

q2

1+q1+q2 ,
q1

1+q1+q2

)
. If one of the coordinates of

q is equal to 0, say, q1 = 0 and q2 > 0, then the problem LCP(R, q) has a
continuum of solutions:

� z = (z0, 1− z0, 0), w = (0, z0(1 + q2)− 1), for every z0 ∈ [ 1
1+q2 , 1].

Definition 13.4 An n × n matrix R is called a Q-matrix if for every q ∈ Rn
the linear complementarity problem LCP(R, q) has at least one solution.

Example 13.5 The matrix R =

 0 −1 −1
1 0 1
−1 0 0

 is not a Q-matrix, because

for q =

−1
−1
−1

 the linear complementarity problem LCP(R, q) has no solution.

Indeed, suppose (w, z) is a solution of LCP(R, q). Then

z0q + z1R[1] + z2R[2] + z3R[3] = w ≥ ~0.

Since q1 < 0, R1
[2] < 0, R1

[3] < 0, and w1 ≥ 0, we must have z1 = 1, but then

z0q + z1R[1] + z2R[2] + z3R[3] = R[1] =

 0
1
−1

 ,

which is not a non-negative vector. �

The matrices that appear in Figure 33 below are Q-matrices. The matrices
that appear in Figure 34 are not Q-matrices. We are not aware of a charac-
terization of Q-matrices that allows one to identify when a given matrix is a
Q-matrix, and verifying, e.g., that the middle matrix in Figure 33 is a Q-matrix
requires a non-negligible amount of calculations.
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1 0 0
3 1 0
2 0 1

 1 0 3
3 1 0
0 3 1




1 4 0 0
0 1 4 0
0 0 1 4
4 0 0 1


Figure 33: Three Q-matrices.

 0 2 −3
−3 0 1
5 −3 0




1 4 0 0
4 1 0 0
0 0 1 4
0 0 0 1


Figure 34: Two matrices that are not Q-matrices.

The following result provides a simple way to generate new Q-matrices from
known Q-matrices.

Theorem 13.6 Let R be an n × n matrix, let c ∈ R, and let R′ be the matrix
that is obtained from R by adding c to all elements in the first row. Then R is
a Q-matrix if and only if R′ is a Q-matrix.

Proof. Let ~c = (c, 0, 0, . . . , 0) ∈ Rn be the vector whose first coordinate is
c and all the remaining coordinates are 0. To prove the lemma we will show
that (w, z) is a solution of the linear complementarity problem LCP(R, q) if and
only if (w′, z) is a solution of the linear complementarity problem LCP(R′, q′),
where w′ = w + ~c and q′ = q + ~c. Indeed, (w, z) is a solution of the problem
LCP(R, q) if and only if

w = z0q +

n∑
i=1

ziRr[i],

wi ≥ Ri[i], ∀i = 1, 2, . . . , n, (214)

zi = 0 or wi = Ri[i], ∀i = 1, 2, . . . , n.

These equalities and inequalities hold if and only if

w′ = z0(q + ~c) +

n∑
i=1

zi(R[i] + ~c),

w′i ≥ Ri[i] + ~c i, ∀i = 1, 2, . . . , n, (215)

zi = 0 or w′i = Ri[i] + ~c i, ∀i = 1, 2, . . . , n.

Indeed, to obtain the system (215) we added c to the first coordinate in all
equalities and inequalities in (214). It remains to note that the system (215) is
equivalent to the property that (w′, z) is a solution of LCP(R′, q′).
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13.2 Stationary Equilibria in Quitting Games

The significance of linear complementarity problems for stochastic games is
exhibited by the following result, which states that for a given positive recursive
quitting game, if a certain matrix that is derived from the payoff function is not
a Q-matrix, then the game admits a stationary undiscounted 0-equilibrium. In
the rest of this chapter we will denote the number of players by n.

Theorem 13.7 Let Γ = 〈I, ({Ci, Qi})i∈I , p∗, (ri∗)i∈I〉 be a positive recursive
quitting game. Denote by n := |I| the number of players and by R the n × n
matrix whose i’th column is the vector r∗(Q

i, C−i), that is, the payoff if player i
quits alone. If R is not a Q-matrix, then the game admits a stationary undis-
counted 0-equilibrium.

Proof. Since the matrix R is not a Q-matrix, there is a vector q ∈ Rn for
which the linear complementarity problem LCP(R, q) has no solution. Consider

the auxiliary quitting game Γ̂ that is identical to Γ, except that the nonabsorbing
payoff in Γ̂ is q, and not ~0. Thus, the quitting game Γ̂ is not recursive.

To distinguish the payoff (resp., the λ-discounted payoff) in the original game

Γ from the payoff (resp., the λ-discounted payoff) in the auxiliary game Γ̂, we
denote the former by γ(x) (resp., γλ(x)), and the latter by γ̂(x) (resp., γ̂λ(x)).
Recall that we identify a mixed action of player i with the probability to select
Qi.

Let λ 7→ xλ be a semi-algebraic mapping that assigns a stationary strategy
profile in the auxiliary game Γ̂ to each discount factor λ ∈ (0, 1], and denote
x0 := limλ→0 xλ. We argue that if the stationary strategy profile x0 is absorbing,
that is, if p∗(x0) > 0, then

lim
λ→0

γλ(xλ) = γ∞(x0) = r∗(x0) = γ̂∞(x0) = lim
λ→0

γ̂λ(xλ). (216)

Indeed, since x0 is absorbing, by the definition of the undiscounted payoff we
have γ∞(x0) = r∗(x0) = γ̂∞(x0). Moreover, by Theorem 10.1 (Page 162),
limλ→0 γλ(xλ) = r∗(x0) and limλ→0 γ̂λ(xλ) = r∗(x0).

By Corollary 8.14 (Page 111), there is a semi-algebraic mapping λ 7→ x̂λ that

assigns a stationary λ-discounted equilibrium of the game Γ̂ to each discount
factor λ ∈ (0, 1]. Denote x̂0 := limλ→0 x̂λ.

We will show that if x̂0 is nonabsorbing, then the problem LCP(R, q) has a
solution, which contradicts the choice of q. We will then use earlier results to
show that x̂0 is a stationary undiscounted 0-equilibrium.

Step 1: p∗(x̂λ) > 0 for every λ > 0 sufficiently small.

Since the mapping λ 7→ x̂λ is semi-algebraic, so is the function λ 7→ p∗(x̂λ).
By Exercise 6.10 on Page 85, either (a) p∗(x̂λ) = 0 for every λ > 0 sufficiently
small, or (b) p∗(x̂λ) > 0 for every λ > 0 sufficiently small. Assume, by contra-

diction, that (a) holds. This implies that x̂λ = ~C for every λ > 0 sufficiently
small. Consequently, for every λ > 0 sufficiently small and each player i ∈ I,

qi = γiλ(~C) ≥ γiλ(Qi, C−i).
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By Theorem 10.1 (Page 162),

qi ≥ lim
λ→0

γiλ(~C) ≥ ri∗(Qi, C−i).

It follows that the problem LCP(R, q) admits the trivial solution, which contra-
dicts the choice of q.

Step 2: If x̂0 = ~C, then the linear complementarity problem LCP(R, q) has a
solution.

For each player i ∈ I and every λ ∈ (0, 1), set

ziλ :=
x̂iλ

λ+
∑
j∈I x̂

j
λ

and

z0
λ :=

λ

λ+
∑
j∈I x̂

j
λ

.

The denominators in the definitions of (ziλ)i∈I and z0
λ are positive, and therefore

(ziλ)i=0,1,...,n are well defined. Since the mapping λ 7→ x̂λ is semi-algebraic, if
follows that the function λ 7→ ziλ is semi-algebraic for every i ∈ {0, 1, . . . , n}.
Set

zi0 := lim
λ→0

ziλ, ∀i ∈ {0, 1, . . . , n}.

The vector (ziλ)ni=0 is a probability distribution for every λ ∈ (0, 1], hence so is
z0 := (zi0)ni=0.

Set
w := lim

λ→0
γ̂λ(x̂λ). (217)

We claim that
w = z0

0q +
∑
i∈I∗

zi0R[i]. (218)

Indeed, by the definition of the discounted payoff,

γ̂λ(x̂λ) =
λq
∏
i∈I(1− x̂iλ) +

∑
∅6=J⊆I

(
r∗(Q

J , C−J)
∏
i∈J x̂

i
λ

∏
i 6∈J(1− x̂iλ)

)
λ
∏
i∈I(1− x̂iλ) +

∑
∅6=J⊆I

(∏
i∈J x̂

i
λ

∏
i 6∈J(1− x̂iλ)

) .

(219)

Since x̂0 = ~C, we have limλ→0 x̂
i
λ = 0 for every i ∈ I, hence letting λ → 0 in

Eq. (219) we obtain

lim
λ→0

γ̂λ(x̂λ) = lim
λ→0

λq +
∑
∅6=J⊆I

(
r∗(Q

J , C−J)
∏
i∈J x̂

i
λ

)
λ+

∑
∅6=J⊆I

(∏
i∈J x̂

i
λ

) . (220)

When |J | > 1 and i0 ∈ J ,

lim
λ→0

∏
i∈J x̂

i
λ

x̂i0λ
= lim
λ→0

∏
i∈J\{i0}

x̂iλ = 0.
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That is, in the sums in the numerator and denominator of Eq. (220), the coeffi-
cient that corresponds to the set of players J vanishes relative to the coefficient
that corresponds to the set J = {i0}. It follows that Eq. (220) further simplifies
to

lim
λ→0

γ̂λ(x̂λ) = lim
λ→0

λq +
∑
i∈I x̂

i
λ · r∗(Qi, C−i)

λ+
∑
i∈I x̂

i
λ

,

and Eq. (218) follows.
We verify that (w, z0) is a solution of the linear complementarity problem

LCP(R, q), contradicting the assumption that this problem has no solution. In
view of Eq. (218) it remains to show that wi ≥ Ri[i] for every i ∈ I and that the
complementarity condition holds.

The fact that x̂λ is a λ-discounted equilibrium of the auxiliary game Γ̂ and
Eq. (216) imply that

wi = lim
λ→0

γ̂iλ(x̂λ) ≥ lim
λ→0

γ̂iλ(Qi, x̂−iλ ) = γ̂i∞(Qi, C−i) = Ri[i] = ri∗(Q
i, C−i), ∀i ∈ I.

(221)
If zi0 > 0 for some player i ∈ I, then ziλ > 0 for every λ sufficiently close to
0, hence x̂iλ > 0 for every λ sufficiently close to 0, which implies that we have
equality in Eq. (221). It follows that the complementarity condition holds, hence
(w, z0) is indeed a solution to the linear complementarity problem LCP(R, q),
as claimed.

Step 3: If x̂0 is absorbing, then x̂0 is a stationary 0-equilibrium in Γ.

The argument in Case 1 of the proof of Theorem 10.4 (Page 165) shows that
if x̂0 is absorbing, then it is a stationary uniform 0-equilibrium in the original
game Γ. Indeed, by Case 1 of the proof of Theorem 10.4 we know that no
player i ∈ I can profit by deviating from x̂0 to an action ai ∈ {Ci, Qi} when
p∗(a

i, x̂−i0 ) > 0, while, since the game is recursive and positive, no player can
profit by deviating to Ci when p∗(C

i, x̂−i0 ) = 0.

We now present another relation between the linear complementarity prob-
lem and equilibria in quitting games: if there is a probability distribution
z ∈ ∆(0, 1, . . . , n) that is part of a solution of the linear complementarity prob-
lem LCP(R, q) for every q ∈ Rn, then the quitting game admits a stationary
undiscounted ε-equilibrium, for every ε > 0.

Lemma 13.8 Let R be an n × n matrix. If the probability distribution z ∈
∆({0, 1, . . . , n}) is part of a solution of the linear complementarity problem
LCP(R, q), for every q ∈ Rn, then z0 = 0.

The proof of the lemma is left to reader (Exercise 13.8).

Theorem 13.9 Let Γ = 〈I, ({Ci, Qi})i∈I , (ri∗)i∈I〉 be a positive recursive quit-
ting game. Denote by n := |I| the number of players and by R the n × n
matrix whose i’th column is the vector r∗(Q

i, C−i). If there is a vector (w, z) ∈
Rn × ∆({0, 1, . . . , n}) that is a solution of the linear complementarity problem
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LCP(R, q) for every q ∈ Rn, then the game Γ admits a stationary undiscounted
ε-equilibrium, for every ε > 0.

Proof. Let (w, z) be a solution of the problem LCP(R, q), for every q ∈ Rn.
By Lemma 13.8, z0 = 0, and therefore

∑
i∈I z

i = 1. By the definition of a
solution to LCP(R, q),

w =
∑
i∈I

zir∗(Q
i, C−i), (222)

wi ≥ ri∗(Qi, C−i), ∀i ∈ I, (223)

zi > 0 =⇒ wi = ri∗(Q
i, C−i), ∀i ∈ I. (224)

Fix ε > 0 and let xiε := εzi be the stationary strategy of player i in which she
quits at every stage with probability εzi. Let xε := (xiε)i∈I . Since limε→0 x

i
ε = 0

for each i ∈ I, it follows that the probability that under the stationary strategy
profile xε two players quit at the same stage goes to 0 as ε goes to 0. Conse-
quently, and since

∑
i∈I z

i = 1,

lim
ε→0

γ∞(xε) = lim
ε→0

r∗(xε)

=
∑
i∈I

εzi∑
j∈I εz

j
r∗(Q

i, C−i)

=
∑
i∈I

zi∑
j∈I z

j
r∗(Q

i, C−i) (225)

=
∑
i∈I

ziri∗(Q
i, C−i)

= w.

By Eqs. (225) and (223), for every δ > 0 there is an ε0 > 0 such that

γi∞(xε) ≥ wi − δ ≥ ri∗(Qi, C−i)− δ, ∀ε ∈ (0, ε0). (226)

We argue that xε is an undiscounted (Mε+ 3δ)-equilibrium, provided ε > 0
is sufficiently small. To this end we fix i ∈ I and show that player i cannot
profit by deviating more that (Mε+ 2δ).

Suppose player i quits at some stage. Her expected absorbing payoff will be
ri∗(Q

i, x−iε ). Since xiε = εzi for each i ∈ I and since
∑
i∈I z

i = 1, we have

ri∗(Q
i, x−iε ) ≤ ri∗(Qi, C−i) +Mε ≤ γi∞(xε) +Mε. (227)

If zi = 0, then under xε player i always continues, hence the only devia-
tion she has is to quit at some stage, which, as we have seen in the previous
paragraph, does not increase her payoff by more than Mε.

If zi = 1, that is, under xε all other players continue, then γ∞(xε) =
r∗(Q

i, C−i). Since the game is positive and recursive, player i cannot profit
by deviating: if she ever plays Qi her payoff is ri∗(Q

i, C−i) = γi∞(xε), while if
she always plays Ci her payoff is 0 < ri∗(Q

i, C−i) = γi∞(xε).
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It remains to treat the case zi ∈ (0, 1). In that case, there is j ∈ I \ {i}
with zj > 0, hence even if player i always continues, the play will be eventually
absorbed by some other player. We will show that if the game is absorbed while
player i continues, then her expected absorbing payoff is close to r∗i (Qi, C−i) as
well, thereby complete the proof.

By Eq. (222), wi is a convex combination of (ri∗(Q
j , C−j))j∈I , and can be

expressed as

wi =
∑
j∈I

zj∑
j′∈I z

j′
ri∗(Q

j , C−j) (228)

=
zi∑

j′∈I z
j′
ri∗(Q

i, C−i) +
1− zi∑
j′∈I z

j′

∑
j 6=i

zj

1− zi
ri∗(Q

j , C−j),

where the denominator is positive because zi < 1. The fact that zi > 0 and
Eq. (224) imply that wi = ri∗(Q

i, C−i); hence, we deduce from Eq. (228) that

wi =
∑
j 6=i

zj∑
j′ 6=i z

j′
ri∗(Q

j , C−j). (229)

As in the derivation of Eq. (225), as ε goes to 0 the probability that under
(Ci, x−iε ) two players quit simultaneously goes to 0, hence by Eq. (229)

lim
ε→0

γi∞(Ci, x−iε ) = lim
ε→0

ri∗(C
i, x−iε )

=
∑
j 6=i

εzj∑
j 6=i εz

j
ri∗(Q

j , C−j)

=
∑
j 6=i

zj∑
j 6=i z

j
ri∗(Q

j , C−j)

= wi = ri∗(Q
i, C−i), (230)

where the last equality holds by the complementarity condition (Eq. (224)).
This shows that for every δ > 0 there is ε1 > 0 such that

γi∞(Ci, x−iε ) ≤ wi + δ, ∀ε ∈ (0, ε1).

It follows from Eqs. (226) and (230) that for every ε ∈ (0,min{ε0, ε1}) we
have

γi∞(Ci, x−iε ) ≤ wi + δ ≤ γi∞(xε) + 2δ. (231)

Eqs. (227) and (231) imply that player i cannot profit more than (Mε+ 2δ) by
deviating from xε.

13.3 Cyclic Equilibrium in Three-Player Positive Quitting
Games

In Section 12.2 we analyzed a specific three-player quitting game, and showed
that it has a periodic undiscounted ε-equilibrium. In this section we extend the
analysis to all three-player positive recursive quitting games.

225



Theorem 13.10 Every three-player positive recursive quitting game admits a
periodic undiscounted ε-equilibrium, for every ε > 0.

In view of Theorem 13.7, it remains to show the following.

Theorem 13.11 Let Γ be a three-player positive recursive quitting game. De-
note by R the 3 × 3 matrix whose i’th column is the vector r∗(Q

i, C−i). If R
is a Q-matrix, then the game admits a periodic undiscounted ε-equilibrium, for
every ε > 0.

Proof. By Theorem 13.6, we can assume without loss of generality that the
three diagonal entries of R are 1; that is, ri∗(Q

i, C−i) = 1 for each i ∈ I.

Step 1: If there is i ∈ {1, 2, 3} such that R[i] ≥ (1, 1, 1), then the game admits
a stationary undiscounted ε-equilibrium, for every ε > 0.

In this case, the following pair (q, z) is a solution of the linear complemen-
tarity problem LCP(R, q), for every q ∈ Rn:

z0 = 0, zi = 1, zj = 0 ∀j ∈ I \ {i}.

By Theorem 13.9, the game has a stationary undiscounted ε-equilibrium.

Step 2: There is no row in R that contains two entries smaller than 1 (and the
diagonal entry in that row is 1).

If one of the rows in R contains two entries smaller than 1 and the condition
in Step 1 does not hold, then, as in Example 13.5, the matrix R is not a Q-
matrix, which contradicts the assumption.

Step 3: If there is a convex combination of the columns of R that is equal
to (1, 1, 1), then the game admits a stationary undiscounted ε-equilibrium, for
every ε > 0.

Suppose that (zi)3
i=1 ∈ ∆{1, 2, 3} satisfies

3∑
i=1

ziR[i] = (1, 1, 1).

Set z0 := 0, z := (zi)3
i=0, and w = (1, 1, 1). The reader can verify that (w, z) is

a solution of the problem LCP(R, q) for every q ∈ R3, hence, by Theorem 13.9
the game admits a stationary undiscounted ε-equilibrium, for every ε > 0.

By Step 1 we can assume that each column of R contains an entry smaller
than 1. Step 2 implies that in fact every row and every column of R contains
exactly one entry larger than 1 and exactly one entry smaller than 1. By Step 3,
we can assume that there is no convex combination of the columns of R that is
equal to (1, 1, 1).

Assume without loss of generality that the entries of R look as in Figure 35.
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 1 < 1 > 1
> 1 1 < 1
< 1 > 1 1


Figure 35: The matrix R.

Step 4: There is a convex combination of the three columns of R that lies in
[1,∞)3.

Set q = (0, 0, 0) and consider the linear complementarity problem LCP(R, q).
Since R is a Q-matrix, this problem has a solution (w, z) ∈ R3 ×∆({0, 1, 2, 3}).
In particular, wi ≥ Ri[i] = 1 for each i = 1, 2, 3, and

w = z0q +

3∑
i=1

ziR[i].

Since q = (0, 0, 0), it follows that at least one of z1, z2, or z3 is positive, and∑3
i=1 z

iR[i] ≥ (1, 1, 1). The vector (z1, z2, z3) is not necessarily a probability
distribution, because z0 may be positive. However, the vector ẑ = (ẑ1, ẑ2, ẑ3)
defined by

ẑi :=
zi

z1 + z2 + z3
, i ∈ {1, 2, 3}

is a probability distribution and, because z1+z2+z3 ≤ 1, it satisfies
∑3
i=1 ẑ

iR[i] ≥
(1, 1, 1). In particular we identified a convex combination of the three columns
of R that lies in [1,∞)3.

Step 5: Drawing the columns of R in the payoff space.

Figure 36 displays the three columns of R.

R[2] = (< 1, 1, > 1)

R[3] = (> 1, < 1, 1)

R[1] = (1, > 1, < 1)

Figure 36: The vectors (R[i])i=1,2,3.

Let us add to the figure the lines x1 = 1, x2 = 1, and x3 = 1 (see Figure 37).
Note that the line x1 = 1 passes through R[1] (since Ri[i] = 1) and, since R1

[3] > 1
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and R1
[2] < 1, it passes between R[2] and R[3]. Similarly, the line x2 = 1 passes

through R[2] and between R[1] and R[3], and the line x3 = 1 passes through R[3]

and between R[1] and R[2]. The dark region is Figure 37 is the set of all vectors
in the convex hull of R[1], R[2], and R[3] that lie in [1,∞)3. Since there is a
convex combination of the columns of R that lies in [1,∞)3, the dark region
is nonempty. Denote the three extreme points of the dark region by A, B,
and C (see Figure 37). If A = B = C, then there is a convex combination
of the columns of the matrix that is equal to (1, 1, 1), and then, by Step 3, a
stationary undiscounted ε-equilibrium exists for every ε > 0. Assume that such
a combination does not exist. Hence, the dark region in Figure 37 has nonempty
interior. As a result, there are numbers α, β, γ ∈ (0, 1) such that

A = αR[1] + (1− α)B,

B = βR[2] + (1− β)C, (232)

C = γR[3] + (1− γ)A.

R[2] = (< 1, 1, > 1)

R[3] = (> 1, < 1, 1)

R[1] = (1, > 1, < 1)

C

B
A

x1 = 1

x2 = 1

x3 = 1

Figure 37: The vectors (R[i])i=1,2,3 and the lines x1 = 0, x2 = 0 and x3 = 0.

Step 6: Defining a periodic strategy profile σ∗.

Fix ε > 0 and a positive integer m = m(ε) such that

(1− α)1/m > 1− ε, (1− β)1/m > 1− ε, (1− γ)1/m > 1− ε. (233)

Consider the following strategy profile σ∗ in Γ, which is periodic with period
3m. In each period the players proceed as follows:

� In each of the first m stages of the period, Player 1 quits with probability
1− (1− α)1/m, and Players 2 and 3 play C2 and C3, respectively.

� In each of the following m stages of the period, Player 2 quits with prob-
ability 1− (1− β)1/m, and Players 1 and 3 play C1 and C3, respectively.

� In each of the following m stages of the period, Player 3 quits with prob-
ability 1− (1− γ)1/m, and Players 1 and 2 play C1 and C2, respectively.
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Under σ∗, the probability that Player 1 continues in each stage of the first
m stages of a period is (1 − α)1/m, hence the probability that she continues
in these stages is 1 − α, and therefore the probability that she quits in these
stages is α. Similarly, the probability that Player 2 quits in the next m stages
of the period, conditioned that the play was not absorbed before these stages,
is β, and the probability that Player 3 quits in the last m stages of the period,
conditioned that the play was not absorbed before these stages, is γ.

For every t ∈ N we let

γ∞(σ∗ | t∗ ≥ t) := Eσ∗ [1{t∗<∞}r∗(t∗) | t∗ ≥ t)

denote the undiscounted payoff under σ∗ conditioned that the play was not
absorbed before stage t.

Step 7: Calculating γ∞(σ∗ | t∗ ≥ t).

Under σ∗, the probability of absorption in each period is bounded away from
0, hence under σ∗ the play is absorbed with probability 1, that is, Pσ∗(t∗ <
∞) = 1.

Set a := γ∞(σ∗), b := γ∞(σ∗ | t∗ > m), and c := γ∞(σ∗ | t∗ > 2m). That is,
a is the undiscounted payoff under σ∗ from the beginning of the game, b is the
undiscounted payoff under σ∗ if Player 1 did not quit in the first m stages, and c
is the undiscounted payoff under σ∗ if Players 1 and 2 did not quit in the first 2m
stages. Since the strategy profile σ∗ is periodic, we have a = γ∞(σ∗ | t∗ > 3m).

Since the probabilities that the three players quit in each period are α, β,
and γ, respectively, the quantities a, b, and c satisfy

a = αR[1] + (1− α)b,

b = βR[2] + (1− β)c,

c = γR[3] + (1− γ)a.

Since α, β, γ ∈ (0, 1), this system has a unique solution. However, (A,B,C) is
also a solution of this system, see the system of equations (232). We conclude
that γ∞(σ∗) = a = A, and similarly γ∞(σ∗ | t∗ > m) = b = B and γ∞(σ∗ | t∗ >
2m) = c = C.

We will now study γ∞(σ | t∗ ≥ t) for t ∈ {1, 2, . . . ,m + 1}. Since t ∈
{1, 2, . . . ,m + 1}, between stages 1 and t − 1 the only player who may quit
under σ∗ is Player 1. Therefore,

A = γ∞(σ∗) = Pσ∗(t∗ < t) ·R[1] + Pσ∗(t∗ ≥ t) · γ∞(σ | t∗ ≥ t),

and hence

γ∞(σ | t∗ ≥ t) =
A−Pσ∗(t∗ < t) ·R[1]

1−Pσ∗(t∗ < t)
.

Since A1 = R1
[1] = 1 (see Figure 37), it follows that γ1

∞(σ | t∗ ≥ t) = 1, and the

point γ∞(σ | t∗ ≥ t) lies on the line that connects A and B. For t = 1 we have
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γ∞(σ | t∗ ≥ 1) = A, for t = m + 1 we have γ∞(σ | t∗ ≥ m + 1) = B, and as t
increases from 1 to m the point γ∞(σ | t∗ ≥ t) moves from A towards B.

Similarly, for every t ∈ {m+1,m+2, . . . , 2m+1}, the point γ∞(σ | t∗ ≥ t) lies
on the line that connects B and C, and for every t ∈ {2m+1, 2m+2, . . . , 3m+1},
the point γ∞(σ | t∗ ≥ t) lies on the line that connects C and A. In particular,

γi∞(σ | t∗ ≥ t) ≥ 1, ∀i ∈ I, ∀t ∈ N. (234)

That is, if the game was not absorbed in the first t−1 stages, then the expected
payoff to all players from stage t and on is at least 1.

Step 6: σ∗ is an undiscounted Mε-equilibrium.

We will show that Player 1 cannot profit more than Mε by deviating. If
Player 1 is supposed to continue at stage t and she deviates and quits at that
stage, then, by Eq. (234), her payoff if she does not deviate is at least 1, while
since the player who is supposed to quits at stage t does so with probability
smaller than ε (see Eq. (233)), Player 1’s payoff by quitting is bounded by
1 + Mε. It follows that such a deviation cannot increase Player 1’s payoff by
more than ε.

Suppose that Player 1 continues throughout the period. Player 2 (resp. Player 3)
still quits with probability β (resp. γ) in stages {m+1,m+2, . . . , 2m} (resp. {2m+
1, 2m+ 2, . . . , 3m}). We argue that Player 1’s expected absorbing payoff along
the period conditional on the event that absorption occurs in the period remains

1. Indeed, this payoff is
βR1

[2]+(1−β)γR1
[3]

β+(1−β)γ . The system of equations (232) implies

that

A =
αR[1] + (1− α)βR[2] + (1− α)(1− β)γR[3]

α+ (1− α)β + (1− α)(1− β)γ

=
α

α+ (1− α)β + (1− α)(1− β)γ
·R[1]

+
(1− α)β + (1− α)(1− β)γ

α+ (1− α)β + (1− α)(1− β)γ
·
βR[2] + (1− β)γR[3]

β + (1− β)γ

Since A1 = R1
[1] = 1, we deduce that

βR1
[2] + (1− β)γR1

[3]

β + (1− β)γ
= 1,

as claimed.
Thus, Player 1’s profit if she quits at a given stage is at most Mε, and she

cannot profit by continuing throughout a period. It follows that she has no
deviation that yields a profit higher than Mε. Similarly, Players 2 and 3 cannot
profit more than Mε by deviating from σ∗.
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13.4 Comments and Extensions

Linear complementarity problems were studied extensively starting in the 1960’s,
as they generalize several optimization problems, like Nash equilibrium in two-
player nonzero-sum games (see Exercise 13.1). Readers who are interested in
this topic are referred to Cottle, Pang, and Stone (1992). In this literature,
a linear complementarity problem is defined differently than the way we did.
Denote the non-negative orthant by

Rn+ :=
{
x ∈ Rn : xi ≥ 0 ∀i ∈ {1, 2, . . . , n}

}
.

Let R be an n × n matrix, and let q ∈ Rn. The linear complementarity prob-
lem LCP(R, q) is the following problem that consists of linear equalities and
inequalities:

Find z, w ∈ Rn+, (235)

such that w = q +Rz,

zi = 0 or wi = 0, ∀i ∈ {1, 2, . . . , n}.

Problem (235) differs from Problem (213) in two ways.

� Whereas in Problem (235) we require that w lies in the non-negative or-
thant, in Problem (213) the vector w is compared to the diagonal of the
matrix R.

� Whereas in Problem (213) the vector z is required to be a probability
distribution on {0, 1, . . . , n}, in Problem (235) the vector z is in the non-
negative orthant in Rn and the weight of q is 1. Alternatively, we could
have required the vector z in Problem (235) to be a probability distribution
on {0, 1, . . . , n} such that z0 > 0.

In our application it is more convenient to use the form (213) than the form (235).
In this chapter we provided conditions that involve linear complementarity

problems and ensure the existence of an undiscounted 0-equilibrium: if the
matrix R whose i’th column is the payoff vector r∗(Q

i, C−i) is not a Q-matrix,
then the game admits a stationary undiscounted 0-equilibrium. It follows from
Ashkenazi-Golan, Krasikov, Rainer, and Solan (2020) that if the matrix R and
all its principal minors are Q-matrices, then for every ε > 0 the quitting game
admits an ε-equilibrium, in which in every stage at most one player quits with
positive probability. It is not known whether an undiscounted ε-equilibrium
exists in the intermediate cases, where R is a Q-matrix, but some of its principal
minors are not.

Theorem 13.7 (Page 221) appeared in Solan and Solan (2020), who proved
that if the matrix R is a Q-matrix, then there exists a sunspot undiscounted
ε-equilibrium for every ε > 0. This is an undiscounted ε-equilibrium in an
extended game in which the players observe at every stage a public signal in
[0, 1] that is drawn from the uniform distribution, independently of past signals.
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This result was extended by Solan and Solan (2021) to positive recursive quit-
ting games in which players may have more than one continue action, and the
absorbing payoff depends on the set of players who quit at the terminal stage, as
well as on the continue actions that the other players adopt at that stage. This
latter result was used by Solan, Solan, and Solan (2020) to prove that every
positive recursive quitting game in which at least two players have at least two
continue actions has an undiscounted ε-equilibrium, for every ε > 0.

Solan (1999) proved that every three-player absorbing game admits a uni-
form ε-equilibrium, for every ε > 0. Theorem 13.11 (Page 226) shows that in
certain cases this uniform ε-equilibrium is periodic.

Exercise 13.1 is adapted from Cottle and Dantzig (1968).

13.5 Exercises

1. In this exercise we show a relation between the linear complementarity
problem and equilibrium in strategic-form games. We will use the follow-
ing notations. For every k ∈ N denote by ek := (0, . . . , 0, 1, 0, . . . , 0) the
vector with all coordinates equal 0, except for coordinate k, which is equal
to 1, by ~1n := (1, 1, . . . , 1) ∈ Rn the vector with all coordinates equal to
1, and by 0k the k × k matrix with all entries equal to 0. All vectors are
row vectors, and the column vector that corresponds to the row vector x
is denoted by xt. Similarly, when A is an (n ×m) matrix, the transpose
of A is denoted by At.

Let A and B be two n×m positive matrices; that is, the entries of A and
B are positive real numbers. Let G be the two-player strategic-form game
where Player 1 has n actions, Player 2 has m actions, and the losses of
the two players are given by the matrices A and B, respectively. Thus,
the pair of vectors (x, y) ∈ ∆n ×∆m is an equilibrium of G if and only if

x∗Ay
t
∗ ≤ xAyt∗ ∀x ∈ ∆n, x∗Ay

t
∗ ≤ x∗Ayt ∀y ∈ ∆m.

(a) Show that (x∗, y∗) ∈ ∆n×∆m is an equilibrium of the game G if and
only if

(x∗Ay
t
∗)~1n ≤ Ay∗ and (x∗By

t
∗)~1m ≤ Btx∗.

(b) Let R =

(
0n A
Bt 0m

)
and q = −~1m+n. Show that if (x∗, y∗) is an

equilibrium of the game G, then there is a vector w ∈ Rn+m such
that (w, z) is a solution of the problem LCP(R, q), for a proper vector
z ∈ R1+n+m.

(c) Show that if the problem LCP(R, q) has a solution (w, z), with z =

(z0, ζ, ζ̂) ∈ R1+n+m, then the pair ( ζ∑n
i=1 ζ

i ,
ζ̂∑m
j=1 ζ̂

j
) is an equilibrium

of G.
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2. Find a 3×3 matrix R and a vector q ∈ R3 such that the problem LCP(R, q)
has exactly four solutions.

3. Find a 3×3 matrix R and a vector q ∈ R3 such that the problem LCP(R, q)
has exactly seven solutions.

4. Let R be an n×n matrix that satisfies the following condition: there exists
i ∈ {1, 2, . . . , n} such that Rj[i] ≥ Rj[j] for every j ∈ {1, 2, . . . , n}. Prove

that the matrix R is a Q-matrix.

5. Let R be an n×n matrix that satisfies the following condition: there exist
i, j ∈ {1, 2, . . . , n} such that (a) Rj[i] < Rj[j] and Ri[k] < Ri[i] for every k 6= i.

Prove that the matrix R is not a Q-matrix.

6. (a) Prove that the two 3×3 matrices that appear in Figure 33 (Page 220)
are Q-matrices.

(b) Prove that the matrices that appear in Figure 34 (Page 220) are not
Q-matrices.

7. Let Γ = 〈I, ({Ci, Qi})i∈I , p∗, (ri∗)i∈I〉 be a positive recursive quitting game
such that the matrix R whose i’th column is the vector r∗(Q

i, C−i) is a
Q-matrix. Providing an example to show that the game Γ may have a sta-
tionary undiscounted 0-equilibrium. Does this contradicts Theorem 13.7?

8. Prove Theorem 13.8 on Page 223: Let R be an n× n matrix. Show that
if the probability distribution z ∈ ∆({0, 1, . . . , n} is part of a solution of
the linear complementarity problem LCP(R, q), for every q ∈ Rn, then
z0 = 0.

9. In this exercise we extend Theorem 13.11 to the situation in which the
absorption probability when some players quit is not necessarily 1. Let Γ =
〈I, ({Qi, Ci})i∈I , p∗, (ri∗)i∈I〉 be a three-player positive recursive absorbing
game where each player i ∈ I has two actions, Ai = {Ci, Qi}, and the
transition rule satisfies p∗(C

1, C2, . . . , Cn) = 0 and p∗(Q
J , C−J) > 0 for

every nonempty subset ∅ 6= J ⊆ N . Denote by R the matrix whose i’th
column is the vector r∗(Q

i, C−i).

(a) Prove that if the R is not a Q-matrix, then the game admits a sta-
tionary undiscounted 0-equilibrium.

(b) Prove that if R is a Q-matrix, then the game admits a periodic undis-
counted ε-equilibrium, for every ε > 0.

10. Is it true that in the conditions of Step 4 of the proof of Theorem 13.11
(Page 226) there is a convex combination of the columns of R that lies in
(1,∞)3? Justify your answer.
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11. Let Γ = 〈I, ({Qi, Ci})i∈I , (ri∗)i∈I〉 be a four-player positive recursive quit-
ting game where

r∗(Q
1, C2, C3, C4) = (1, 4, 0, 0),

r∗(C
1, Q2, C3, C4) = (0, 1, 4, 0),

r∗(C
1, C2, Q3, C4) = (0, 0, 1, 4),

r∗(C
1, C2, C3, Q4) = (4, 0, 0, 1).

For every d ∈ (0, 1) and every m ∈ N let σid,m ∈ Σi be the following
strategy of player i, that is periodic with period 4m:

� Quit with probability d in each of the stages (i − 1)m, (i − 1)m +
1, . . . , im− 1 of the period.

� Continue in all other stages of the period.

Show that for every ε > 0 there are d ∈ (0, 1) and m ∈ N such that the
strategy profile σd,m := (σid,m)4

i=1 is an undiscounted ε-equilibrium.
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set-valued, 103
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on a graph, 75
polynomial, 86
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recursive, 155, 181
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stochastic, 52

perfect information, 115
symmetric, 73
with perfect information, 75
zero-sum, 62

stopping, 185
deterministic, 195
periodic, 187
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Markov chain, 90
Markov decision problem, 9

hidden, 35, 37
matrix stochastic, 29
metric
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equilibrium, 119

payoff, 119, 122
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