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THE VALUE OF ZERO-SUM STOPPING GAMES
IN CONTINUOUS TIME∗

RIDA LARAKI† AND EILON SOLAN‡

Abstract. We study two-player zero-sum stopping games in continuous time and infinite hori-
zon. We prove that the value in randomized stopping times exists as soon as the payoff processes are
right-continuous. In particular, as opposed to existing literature, we do not assume any conditions
on the relations between the payoff processes.
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1. Introduction. In many competitive interactions the main strategic issue is
timing. To model such situations, Dynkin (1969) introduced stopping games, as a
variation of optimal stopping problems. In Dynkin’s setup, two players observe the
realization of a payoff process in discrete time. Once one of the players decides to
stop, player 2 pays player 1 the amount indicated by the payoff process. However, at
every given stage only one of the players is allowed to stop; the identity of that player
is governed by another process. The strategic choice of each player is the choice of
his stopping time. Dynkin (1969) proved that those games admit a value.

Dynkin’s seminal paper was extended in various directions. Neveu (1975) allowed
the players to stop simultaneously and provided a sufficient condition for the existence
of the value. Several authors, including Bismut (1977), Alario-Nazaret, Lepeltier, and
Marchal (1982), Lepeltier and Maingueneau (1984), and Stettner (1984) studied the
problem in continuous time.

Yasuda (1985) studied stopping games in discrete time (with either finite horizon
or discounted payoff), and allowed the players to choose randomized stopping times.
Yasuda (1985) proved that the value exists under merely an integrability condition.
Rosenberg, Solan, and Vieille (2001) studied the infinite horizon game in discrete
time and proved an analogous result. Touzi and Vieille (2002) provided a sufficient
condition that ensures the existence of the value in randomized stopping times in
continuous time. As their proof utilizes a fixed point argument, it is not constructive.

In the present paper we prove that under merely integrability and continuity
conditions, every stopping game in continuous time admits a value in randomized
stopping times. In addition, we construct ε-optimal randomized stopping times which
are as close as one wishes to (nonrandomized) stopping times; roughly speaking, there
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is a stopping time µ such that for every δ sufficiently small there is an ε-optimal
randomized stopping time that stops with probability 1 between times µ and µ + δ.

Several models that have been extensively studied in different disciplines and that
fall into the category of stopping games are wars of attrition (see, e.g., Maynard-Smith
(1974), Ghemawat and Nalebuff (1985), and Hendricks, Weiss, and Wilson (1988)),
preemption games (see, e.g., Fudenberg and Tirole (1991, section 4.5.3)), duels, and
pricing of options. We will illustrate the applicability of our results by discussing the
last two models.

We first present the model of duels. In the simplest version, duels are two-player
zero-sum games in which each of two gunners is endowed with a single bullet. The
two gunners are located at some distance from each other and move closer to one
another as time goes on. Since the accuracy of their shots improves as they get closer,
it is not clear what the optimal moment is to shoot the opponent. If the accuracy is
a stochastic process that depends on, e.g., wind velocity, the gunners face a stopping
game.

Although for various classes of duels the existence of the value has been estab-
lished, and optimal strategies have been computed (see, e.g., Blackwell (1949), Bell-
man and Girshick (1949), Shapley (1951), Karlin (1959), and the recent survey by
Radzik and Raghavan (1994)), the general case is still open.

As we argue below, our results can be applied to any duel, regardless of the
number of bullets each player initially has.

We now discuss the relevant literature in pricing of options. In most cases, a
holder of an option has the right to exercise the option either on prespecified dates or
whenever he chooses, so that the optimization problem reduces to an optimal stopping
problem. Callable warrants (see, e.g., Merton (1973)) and convertible bonds (see, e.g.,
Brennan and Schwartz (1977)) allow for a certain action by the issuer as well. Recently
Kifer (2000) introduced game contingent claims, which are general American options
in which the issuer can terminate the contract early at some cost. Kifer showed that
pricing these options boils down to determining the value of a certain stopping game,
and he provided a general characterization for the value. Game contingent claims have
been studied also by, e.g., Kallsen and Kühn (2004) and Kühn and Kyprianou (2003).
Kyprianou (2004) used Kifer’s characterization to explicitly calculate the value of
game contingent claims in some cases. McConnell and Schwartz (1986) studied a
specific example of callable option notes, which were actually issued in the 1980s.

In the formulation of game contingent claims in Kifer (2000), the right of the
holder to exercise the option supersedes the right of the issuer to terminate the con-
tract early, so that if those two events occur simultaneously, the holder gets to exercise
the option. However, if the payment when those two events occur simultaneously is
different from the payment if the holder were to exercise alone, or the issuer were to
terminate the contract alone, Kifer’s analysis would no longer be valid. Our result
establishes the existence of the value in this case, and may be used, as was done by
Kyprianou (2004), to find optimal strategies in given examples.

The paper is arranged as follows. The model and the main result appear in section
2, and the proof of the main result appears in section 3. Further topics, namely,
introducing final payoffs and the right-continuity of the value process, are discussed
in sections 3.4–3.5. We end by using the right-continuity of the value process to derive
a more general existence result for noisy stochastic duels in section 3.6.

2. Model, literature, and main result. A two-player zero-sum stopping game
in continuous time Γ is given by the following:
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• A probability space (Ω,A, P ): (Ω,A) is a measurable space, and P is a σ-
additive probability measure on (Ω,A) .

• A filtration in continuous time F = (Ft)t≥0 satisfying “the usual conditions.”
That is, F is right-continuous, and F0 contains all P -null sets: for every
B ∈ A with P (B) = 0 and every A ⊂ B, one has A ∈ F0. All stopping times
in what follows are of the filtration F .
Denote F∞ := ∨t≥0Ft. Assume without loss of generality that F∞ = A.
Hence (Ω,A, P ) is a complete probability space.

• Three uniformly bounded F-adapted processes (at, bt, ct)t≥0.
1

Definition 1. A randomized stopping time is a progressively measurable func-
tion φ : [0, 1] × Ω → [0,+∞] such that for every r ∈ [0, 1], µr (ω) := φ(r, ω) is an
optional stopping time.

For strategically equivalent definitions of randomized stopping times, see Touzi
and Vieille (2002). Throughout the paper, the symbols µ and ν stand for stopping
times, while φ and ψ stand for randomized stopping times.

For every pair (µ, ν) of stopping times we denote

γ(µ, ν) = EP

[
aµ1{µ<ν} + bν1{µ>ν} + cµ1{µ=ν<+∞}

]
.

The expected payoff that corresponds to a pair of randomized stopping times (φ, ψ)
is

γ(φ, ψ) =

∫
[0,1]2

γ(µr, νs) dr ds(1)

= Eλ⊗λ⊗P

[
aµr

1{µr<νs} + bνs
1{µr>νs} + cµr

1{µr=νs<+∞}
]
.

Though the payoff function given by (1) is bilinear, without strong assumptions
on the data of the game, the payoff function is not continuous for the same topology
which makes the space of randomized stopping times compact.

Definition 2. If supφ infψ γ(φ, ψ) = infψ supφ γ(φ, ψ), then the common value
is the value in randomized stopping times and is denoted by V . Every randomized
stopping time φ such that infψ γ(φ, ψ) is within ε of V is ε-optimal for player 1;
ε-optimal randomized stopping times for player 2 are defined analogously.

Observe that for every φ one has infψ γ(φ, ψ) = infν γ(φ, ν), where ν ranges over
all stopping times. Indeed, for every φ and ψ one has, by Fubini’s theorem,

γ(φ, ψ) = Eλ⊗λ⊗P [γ(µr, νs)] ≥ inf
s

Eλ⊗P [γ(µr, νs)] ≥ inf
ν
γ(φ, ν) ≥ inf

ψ′
γ(φ, ψ′).

This implies that supφ infψ γ(φ, ψ) = supφ infν γ(φ, ν). Similarly, infψ supφ γ(φ, ψ) =
infψ supµ γ(µ, ψ), where µ ranges over all pure stopping times. Recall that one always
has supφ infψ γ(φ, ψ) ≤ infψ supφ γ(φ, ψ).

Touzi and Vieille (2002) provided a restrictive condition that ensures the existence
of the value. The main result we present is the following.

Theorem 3. If the processes (at)t≥0 and (bt)t≥0 are right-continuous, and if
(ct)t≥0 is progressively measurable, then the value in randomized stopping times ex-
ists.

3. Proof of the main result and extensions. From now on we fix a stopping
game Γ that satisfies the assumptions of Theorem 3.

1Our results hold for a larger class of payoff processes, namely, the class D that was defined by
Dellacherie and Meyer (1975, section II-18). This class contains in particular integrable processes.
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3.1. Preliminaries. The following lemma will be used in what follows.

Lemma 4. For every stopping time τ and every ε > 0 there is δ > 0 such that
P ({|at − aτ | < ε ∀t ∈ [τ , τ + δ]}) > 1 − ε.

A similar statement holds when one replaces the process (at)t≥0 by the process
(bt)t≥0.

Proof. For every n ∈ N, set An = {sup{|at − aτ |, τ ≤ t ≤ τ + 1/n} < ε}. Since
(at)t≥0 is right-continuous, P (∪n∈NAn) = 1, and the result follows.

One then obtains the following result.

Corollary 5. Let a stopping time τ and ε > 0 be given. There exists δ > 0
sufficiently small such that for every Fτ -measurable set A ⊆ {τ < +∞} and every
stopping time µ that satisfies τ ≤ µ ≤ τ + δ,

|EP [aµ1A] − EP [aτ1A]| ≤ ε.

3.2. The case at ≤ bt for every t ≥ 0. In this section we prove the following
result: when at ≤ bt for every t ≥ 0, the value in randomized stopping times exists
and is independent of (ct)t≥0.

The idea is as follows. Assume player 1 decides to stop at time t∗. If ct∗ ≥ at∗ , and
player 1 stops with probability 1 at time t∗, player 2 has no incentive to stop at t∗ as
well. However, if ct∗ < at∗ , player 1 needs to mask the exact time in which he stops,
so that player 2 cannot stop at the same time. Since payoffs are right-continuous,
player 1 can stop randomly in a small interval after time t∗. This way he makes sure
that player 2 does not know the exact moment he will stop, and since at ≤ bt for every
t, player 2 has no incentive to stop in this time interval. In both cases, whatever the
process (ct)t≥0 is, if the game has not stopped before time t∗ player 1 can guarantee
a payoff close to at∗ .

Proposition 6. If at ≤ bt for every t ≥ 0, then the value in randomized stopping
times exists. Moreover, the value is independent of the process (ct)t≥0. If at ≤ ct ≤ bt
for every t ≥ 0, then there are ε-optimal (nonrandomized) stopping times for both
players that are independent of (ct)t≥0.

Proof. Consider an auxiliary stopping game Γ∗ = (Ω,A, P ;F , (a∗t , b
∗
t , c

∗
t )t≥0),

where a∗t = at and b∗t = c∗t = bt for every t ≥ 0.

Lepeltier and Maingueneau (1984) and Stettner (1984) proved that the game Γ∗

admits a value, and that there are ε-optimal (nonrandomized) stopping times for both
players. We denote the value of Γ∗ by v∗ and prove that it is the value in randomized
stopping times of the original game. Since Γ∗ does not depend on the process (ct)t≥0,
the second assertion of the proposition follows.

Fix ε > 0. Let µ be an ε-optimal (nonrandomized) stopping time for player 1 in
Γ∗. In particular, infν γΓ∗(µ, ν) ≥ v∗ − ε.

We now construct a randomized stopping time φ that satisfies infν γΓ(φ, ν) ≥
v∗−3ε. By Lemma 4 there is δ > 0 such that P ({|at−aµ| < ε ∀t ∈ [µ, µ+δ]}) > 1−ε.
Define a randomized stopping time φ by

φ(r, ·) = µ + rδ ∀r ∈ [0, 1].

That is, φ stops at a random time in the interval [µ, µ + δ]. We denote such a
randomized stopping time by φ = µ + rδ.
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Let ν be any stopping time. Since µ is ε-optimal in Γ∗, by the definition of Γ∗,
by Fubini’s theorem, and since λ⊗ P (µ + rδ = ν) = 0,

v∗ − ε ≤ γΓ∗(µ, ν)

= EP [aµ1{µ<ν} + bν1{µ≥ν}](2)

= Eλ⊗P [aµ1{µ+rδ<ν} + aµ1{µ<ν<µ+rδ} + bν1{µ≥ν}].

Since λ⊗ P (µ + rδ = ν) = 0 and (ct)t≥0 is progressively measurable,

γΓ(φ, ν) = Eλ⊗P

[
aµ+rδ1{µ+rδ<ν} + bν1{µ+rδ>ν} + cν1{µ+rδ=ν<+∞}

]
= Eλ⊗P

[
aµ+rδ1{µ+rδ<ν} + bν1{µ+rδ>ν}

]
(3)

= Eλ⊗P

[
aµ+rδ1{µ+rδ<ν} + bν1{µ<ν<µ+rδ} + bν1{µ≥ν}

]
.

By Corollary 5, and since at ≤ bt for every t ≥ 0,

Eλ⊗P [aµ1{µ<ν<µ+rδ}] ≤ Eλ⊗P [aν1{µ<ν<µ+rδ}] + ε ≤ Eλ⊗P [bν1{µ<ν<µ+rδ}] + ε.
(4)

Corollary 5 implies in addition that for every r ∈ [0, 1]

Eλ⊗P [aµ1{µ+rδ<ν}] ≤ Eλ⊗P [aµ+rδ1{µ+rδ<ν}] + ε.(5)

By (2)–(5),

v∗ − ε ≤ γΓ∗(µ, ν) ≤ γΓ(φ, ν) + 2ε.

Since ν is arbitrary, infν γΓ(φ, ν) ≥ v∗ − 3ε.
Consider a second auxiliary stopping game Γ∗∗ = (Ω,A, P ;F , (a∗∗t , b∗∗t , c∗∗t )t≥0),

where a∗∗t = c∗∗t = at and b∗∗t = bt for every t ≥ 0.
A symmetric argument to the one provided above proves that the game Γ∗∗

has a value v∗∗ and that player 2 has a randomized stopping time ψ that satisfies
supµ γΓ(µ, ψ) ≤ v∗∗ + 3ε.

Since c∗∗t = at ≤ bt = c∗t for every t ≥ 0, one has v∗∗ ≤ v∗. Since supµ γΓ(µ, ψ) ≥
γΓ(φ, ψ) ≥ infν γΓ(φ, ν),

v∗ ≥ v∗∗ ≥ sup
µ

γΓ(µ, ψ) − 3ε ≥ inf
ν
γΓ(φ, ν) − 3ε ≥ v∗ − 6ε.

Since ε is arbitrary, v∗ = v∗∗, so that v∗ is the value in randomized stopping times of
Γ, and φ and ψ are 3ε-optimal randomized stopping times for the two players. The
first assertion of the proposition is established.

We now turn to the third assertion of the proposition. If at ≤ ct ≤ bt for every
t ≥ 0, then γΓ∗∗(µ, ν) ≤ γΓ(µ, ν) ≤ γΓ∗(µ, ν) for every pair of stopping times (µ, ν).
Hence

v∗∗ = sup
µ

inf
ν
γΓ∗∗(µ, ν) ≤ sup

µ
inf
ν
γΓ(µ, ν)

≤ inf
ν

sup
µ

γΓ(µ, ν) ≤ inf
ν

sup
µ

γΓ∗(µ, ν) = v∗ = v∗∗.

Thus supµ infν γΓ(µ, ν) = infν supµ γΓ(µ, ν): the value exists and there are ε-optimal
stopping times for both players. Moreover, any ε-optimal stopping time for player 1
(resp., player 2) in Γ∗ (resp., Γ∗∗) is also ε-optimal in Γ. In particular, if at ≤ ct ≤ bt
for every t ≥ 0, both players have ε-optimal stopping times that are independent of
(ct)t≥0.
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3.3. Proof of Theorem 3. Define a stopping time τ by

τ = inf{t ≥ 0, at ≥ bt},

where the infimum of an empty set is +∞. Since (at − bt)t≥0 is progressively mea-
surable with respect to (Ft)t≥0, τ is a stopping time (see, e.g., Dellacherie and Meyer
(1975, section IV-50)).

We show below that it is optimal for both players to stop at or around time τ
(provided the game does not stop before time τ). Hence the problem reduces to the
game between times 0 and τ . Since for t ∈ [0, τ [, at ≤ bt, Proposition 6 can be applied.

The following notation will be useful in what follows. For a pair of stopping times
(µ, ν) and a set A ∈ A we define

γΓ(µ, ν;A) = EP [1A(aµ1{µ<ν} + bµ1{µ>ν} + cµ1{µ=ν<+∞})].

This is the expected payoff restricted to A. For a pair of randomized stopping times
(φ, ψ) we define

γΓ(φ, ψ;A) =

∫
[0,1]2

γΓ(µr, νs;A)dr ds,

where µr and νs are the sections of φ and ψ, respectively.
Set

A0 = {τ = +∞},
A1 = {τ < +∞} ∩ {cτ ≥ aτ ≥ bτ},
A2 = {τ < +∞} ∩ {aτ > cτ ≥ bτ}, and

A3 = {τ < +∞} ∩ {aτ ≥ bτ > cτ}.

Observe that (A0, A1, A2, A3) is an Fτ -measurable partition of Ω.
Define an Fτ -measurable function w by

w = aτ1A1 + cτ1A2 + bτ1A3 .

Define a stopping game Γ∗ = (Ω,A, P, (Ft)t≥0, (a
∗
t , b

∗
t , c

∗
t )t≥0) by

a∗t =

{
at t < τ
w t ≥ τ

, b∗t =

{
bt t < τ
w t ≥ τ

, c∗t =

{
ct t < τ
w t ≥ τ

.

That is, the payoff is set to w at and after time τ .
The game Γ∗ satisfies the assumptions of Proposition 6 and hence, has a value V

in randomized stopping times.
We now prove that V is the value of the game Γ as well. Fix ε > 0. We show

only that player 1 has a randomized stopping time φ such that infν γΓ(φ, ν) ≥ V −7ε.
An analogous argument shows that player 2 has a randomized stopping time ψ such
that supµ γΓ(µ, ψ) ≤ V +7ε. Since ε is arbitrary, V is indeed the value in randomized
stopping times of Γ.

Assume δ is sufficiently small so that the following conditions hold (by the proofs
of Lemma 4 and Proposition 6 such δ exists):

(C1) There exists a stopping time µ such that the randomized stopping time φ∗ =
µ + rδ is ε-optimal for player 1 in Γ∗.
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(C2) P ({µ+ δ < τ}) ≥ P ({µ < τ})− ε/M , where M ∈]0,+∞[ is a uniform bound
of the payoff processes.

(C3) P ({|at − aτ | < ε, |bt − bτ | < ε ∀t ∈ [τ , τ + δ]}) > 1 − ε.
We now claim that we can assume without loss of generality that µ ≤ τ . Indeed,

assume that P ({µ > τ}) > 0. The set {µ > τ} is Fτ -measurable. Define a stopping
time µ′ = min{µ, τ}. We will prove that the randomized stopping time φ′ = µ′ + rδ
is also ε-optimal in Γ∗, which establishes the claim. Given a stopping time ν define a
stopping time ν′ by ν′ = min{ν, τ}. By (C1),

V − ε ≤ γΓ∗(µ + rδ, ν′)

= γΓ∗(µ + rδ, ν′; {µ > τ}) + γΓ∗(µ + rδ, ν′; {µ ≤ τ < µ + δ})
+ γΓ∗(µ + rδ, ν′; {µ + δ ≥ τ}).

On the right-hand side the first term is equal to γΓ∗(µ′ + rδ, ν; {µ > t}), by (C2)
the second term is bounded by ε, and the third term is equal to γΓ∗(µ′+rδ, ν; {µ+δ ≥
τ}). Therefore, by (C2),

V − ε ≤ γΓ∗(µ′ + rδ, ν; {µ > t}) + ε + γΓ∗(µ′ + rδ, ν; {µ + δ ≥ τ})
≤ γΓ∗(µ′ + rδ; ν) + 2ε,

as desired.
Define a randomized stopping time φ as follows:

φ(r, ·) =

⎧⎨
⎩

µ + rδ {µ < τ} ∪A0,
τ {µ = τ} ∩ (A1 ∪A2) ,
µ + rδ {µ = τ} ∩A3.

The randomized stopping times φ and φ∗ differ only over the set {µ = τ} ∩
(A1 ∪A2). Since over this set the payoff in Γ∗ is w, provided the game terminates
after time τ regardless of what the players play, and by (C2),

inf
ν
γΓ∗(φ, ν) ≥ V − 3ε.(6)

Let ν be an arbitrary stopping time. Define a partition (B0, B1, B2) of [0, 1] × Ω
by

B0 = {µ + δ < τ} ∪ {ν < τ},
B1 = {µ < τ < µ + δ} ∩ {ν ≥ τ},

and B2 = {µ = τ} ∩ {ν ≥ τ}.

Over B0 the game terminates before time τ under (φ, ν). In particular,

γΓ(φ, ν;B0) = γΓ∗(φ, ν;B0).(7)

By (C2), P (B1) < ε/M , so that

γΓ(φ, ν;B1) ≥ γΓ∗(φ, ν;B1) − 2ε.(8)

Over B2 ∩A0 the game never terminates under (φ, ν), so that

γΓ(φ, ν;B2 ∩A0) = γΓ∗(φ, ν;B2 ∩A0) = 0.(9)
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Over A1 ∪A2, min{aτ , cτ} ≥ w, so that

γΓ(φ, ν;B2 ∩ (A1 ∪A2)) = Eλ⊗P [1B2∩(A1∪A2)(aτ1{τ<ν} + cτ1{τ=ν})]

≥ Eλ⊗P [w1{τ≤ν}∩B2∩(A1∪A2)](10)

= γΓ∗(φ, ν;B2 ∩ (A1 ∪A2)).

Finally, since λ ⊗ P ({µ + rδ = ν}) = 0, since {µ = τ} on B2, by Corollary 5, since
(ct)t≥0 is progressively measurable, and since aτ ≥ bτ = w on A3,

γΓ(φ, ν;B2 ∩A3) = Eλ⊗P [1B2∩A3(aµ+rδ1{µ+rδ<ν} + bν1{µ+rδ>ν} + cν1{µ+rδ=ν})]

= Eλ⊗P [1B2∩A3(aµ+rδ1{µ+rδ<ν} + bν1{µ+rδ>ν})]

≥ Eλ⊗P [1B2∩A3(aτ1{µ+rδ<ν} + bτ1{µ+rδ>ν})] − 2ε(11)

≥ Eλ⊗P [w1B2∩A3
] − 2ε

= γΓ∗(φ, ν;B2 ∩A3) − 2ε.

Summing (7)–(11) and using (6) gives us

V − 3ε ≤ γΓ∗(φ, ν) ≤ γΓ(φ, ν) + 4ε,

as desired.

3.4. On final payoff. Our convention is that the payoff is 0 if no player ever
stops. In fact, one can add a final payoff as follows. Let χ be an A-measurable and
integrable function. The expected payoff that corresponds to a pair of pure strategies
(µ, ν) is

EP [aµ1{µ<ν} + bν1{µ>ν} + cµ1{µ=ν<+∞} + χ1{µ=ν=+∞}].

The expected payoff can be written as

EP [χ] + EP

[(
aµ − E

Fµ

P [χ]
)
1{µ<ν} +

(
bν − EFν

P [χ]
)
1{µ>ν}

+
(
cµ − E

Fµ

P [χ]
)
1{µ=ν<+∞}

]
,

where E
Fµ

P [χ] is the conditional expectation of χ given the σ-algebra Fµ.

Define a process dt := EFt

P [χ] . Since the filtration satisfies the “usual conditions,”
(dt)t≥0 is a right-continuous martingale (see, e.g., Dellacherie and Meyer (1980, section

VI-4) or Lepeltier and Maingueneau (1984, Theorem 4)). Hence we are reduced to
the study of the standard stopping game Γ∗ = (Ω,A, P, (Ft)t≥0, (a

∗
t , b

∗
t , c

∗
t )t≥0) with

a∗t = bt − dt, b
∗
t = bt − dt, and c∗t = ct − dt.

3.5. Right-continuity of the payoff process. For every s ≥ 0, let Γ[s] be the
stopping game that starts at time s. Formally, Γ[s] is given by (Ω,A, P, (F ′

t, a
′
t, b

′
t, c

′
t)t≥0),

where for every t ≥ 0, F ′
t = Ft+s, at = at+s, bt = bt+s, and ct = ct+s. Let vs be the

value of Γ[s].
The next proposition states that if the payoff processes are right-continuous, the

process (vt)t≥0 is right-continuous as well.
Proposition 7. If the processes (at, bt, ct)t≥0 are right-continuous, then so is

(vt)t≥0.
Proof. For every t ≥ 0, denote τ [t] = inf{t ≥ s : as ≥ bs} and define the sets

A0[t], A1[t], A2[t], and A3[t] as in the proof of Theorem 3 with respect to τ [t]. Set

wt = aτ [t]1A1[t] + cτ [t]A2[t] + bτ [t]1A3[t].
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Now fix t ≥ 0. On {at < bt}, one has wt = ws for every s > t sufficiently
close to t, so that by Lepeltier and Maingueneau (1984, Theorem 9), the value is
right-continuous on this set.

On {at > ct > bt}, one has vs = cs for every s ≥ t sufficiently close to t, and by
the right-continuity of (ct)t≥0 the same conclusion holds.

On {at = ct ≥ bt}, one has τ [t] = 0 and vt = at = ct. Moreover, for every ε > 0
and every s > t sufficiently small, one has (i) as > at−ε = vt−ε and cs > ct−ε = vt−ε,
so that vs > vt − ε, and (ii) bs < bt + ε ≤ vt + ε and cs < ct + ε = vt + ε, so that
vs < vt + ε. In particular, (vt)t≥0 is right-continuous at t on this set.

A similar argument shows the right-continuity of (vt)t≥0 in all of the remaining
cases.

3.6. Noisy stochastic duels. As mentioned in the introduction, the right-
continuity of the payoff process can be used to derive, by induction and proper
definition of a final payoff, the existence of an equilibrium in a more general class
of games, in which (i) each player has to act at most M times, and (ii) the payoff
depends on the number of times each player acted, as well as on the exact times in
which the players acted. That is, the game is given by a filtration (Ft)t≥0 and,
for every 0 ≤ n,m ≤ M , a right-continuous process um,n(t1, . . . , tm, t′1, . . . , t

′
n)

that is defined whenever t1 < t2 < · · · < tm and t′1 < t′2 < · · · < t′n, and such
that um,n(t1, . . . , tm, t′1, . . . , t

′
n) is Fmax{tm,t′n}-measurable. If player 1 acts at times

t1 < · · · < tm and player 2 acts at times t′1 < · · · < t′n, with 0 ≤ m,n ≤ M , the payoff
is um,n(t1, . . . , tm, t′1, . . . , t

′
n). This implies, in particular, that every noisy stochastic

duel in which each player is endowed with finitely many bullets, the payoff is 1 if
player 1 hits player 2, the payoff is –1 if player 2 hits player 1, and the accuracy
process is right-continuous, admits a value.

Details are standard and omitted.
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J. Kallsen and C. Kühn (2004), Pricing derivatives of American and game type in incomplete
markets, Finance Stoch., 8, pp. 261–284.

S. Karlin (1959), Mathematical Methods and Theory in Games, Programming and Economics
Vol. II: The Theory of Infinite Glames, Addison-Wesley, Reading, MA.

Y. Kifer (2000), Game options, Finance Stoch., 4, pp. 443–463.
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