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Abstract

A multi-player Dynkin gamés a sequential game in which at every stage one of the players is
chosen, and that player can decide whether to continue the game or to stop it, in which case all
players receive some terminal payoff.

We study a variant of this model, where the order by which players are chosen is deterministic,
and the probability that the game terminates once the chosen player decides to stop may be strictly
less than 1.

We prove that a subgame-perfeetquilibrium in Markovian strategies exists. If the game is not
degenerate this-equilibrium is actually in pure strategies.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Dynkin (1969)introduced the following zero-sum game of optimal stopping. The game
involves two players, and two stochastic processgs; <y is a {1, 2}-valued process,
which indicates which player is active at stagand(r,, )<y is aR?-valued process, which
indicates the terminal payoff.

At every stage:, the two players are informed of past and current values of the two
processes. Playgy, theactiveplayer at stage, decides whether he continues or stops. The
game stops at the first stagén which the active player chooses to stop. The payoff (paid
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by player 2 to player 1) ig if 6 < +00 and zero otherwise. purestrategy of player is
a stopping time that is consistent with the rules of the game.

Dynkin proved that this game has a value if syplr,| € L', and constructed pure
e-optimal strategies for the two players. Dynkir*®ptimal strategies are subgame-perfect
in the sense that after every finite history, the continuation strategyoptimal in the
subgame defined by that history.

An extensive literature developed from this seminal work. In a discrete time framework,
much attention was paid to the case where the players are allowed to stop simultaneously.
In the zero-sum case, several authors, includitefer (1971)and Neveu (1975) pro-
vided sufficient conditions for the existence of the value, when players are restricted to
stopping timesRosenberg et al. (200pyoved (under a minimal boundedness condition)
that the value always exists, provided the players are allowed toams®mizedstop-
ping times. In the two-player non-zero-sum c&&iemaya and Solan (200@)oved that an
g-equilibrium always exists in randomized stopping times (again, under some boundedness
condition).

Dynkin’s (1969)result implies that in evemnulti-playerDynkin game (without simulta-
neous moves) asrequilibrium exists. Indeed, let' be a pure-optimal strategy of player
in the zero-sum game in which playienaximizes his expected payoff, and all other players
try to minimize playet’s payoff. Leto,._" be a pures-optimal strategy of's opponents in
this game. One can verify that the strategy profile in which each plafpdiows o' until
a deviation occurs (since eachis pure, a deviation is detected immediately), and upon
deviation of player; all his opponents switch t@;’, is a Z-equilibrium.

The model of multi-player Dynkin games offers a stylized framework to analyze various
issues of timing games. For example, in situations of shrinking markets (seehemawat
and Nalebuff, 1985Fine and Li, 1989 » firms have to decide when to exit a shrinking
market. Once a firm exits, we remain with a market with 1 firms, which can be solved
inductively, hence the overall game reduces to a Dynkin game.

A similar situation occurs in takeover games, whefams strategically decide to make
a takeover attempt on opponent firms.

Another related model is that of multi-player duels qouels (see, e.dilgour, 1975,
1977or Kilgour and Brams, 1997 In this modelz gunners alternately have the option to
shoot one of their opponents or to abstain. Since once a gunner hits one of his opponents
we are left with a game with — 1 players, which can be solved inductively, the game is
essentially reduced to a Dynkin game where players baveralstop actions.

As thee-equilibrium we presented above involves threats of punishment, which might
be non-credible, it is desirable to know whetheudgame-perfeetequilibrium exists for
everye > 0. To this day, it is still not known whether every multi-player Dynkin game has
aneg-equilibrium.

When|I| = 2, the proof ofShmaya and Solan (2002an be used to show the existence
of a subgame-perfeetequilibrium.Solan (2002uses the theory of differential inclusions
to prove the existence of a subgame-perteequilibrium when (i) the sequendg,) is
i.i.d., and (ii)r, depends only o), (so that the terminal payoff depends only on the identity
of the player who terminates the game).

In the present paper, we analyze the following class-pfayer games. A deterministic
sequencei,, pn, rn) € I x [0, 1] x R'is given. At each stage, playeri, chooses whether
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to continue or to stop. If he continues, the game continues to the next stage, while if he
stops a lottery is performed. With probabilipy, the game terminates, yielding the payoff
r», while with probability 1— p, the game continues.

The assumption that the order of players is deterministic is restrictive but sometimes
relevant. On the other hand, allowing the probability of termination to be strictly less than
1is quite natural: a takeover attempt is not always successful, and the accuracy of a gunner
is not always perfect.

Our main result states that if the sequengg of payoffs is bounded, a subgame-perfect
g-equilibrium in Markovian strategies exists. Moreover, unless the game is degenerate,
this e-equilibrium is in pure strategies. However, in degenerate cases, a subgame-perfect
0-equilibrium need not exist. Since the subgame-pereauilibrium we identify is in
Markovian strategies, it is robust to the information players receive along the game; all they
need to know is the stage of the game. Translated ta-ihel model, this means that there
is a subgame-perfeetequilibrium which is also a subgame-perfeetquilibrium in the
silentr-uel, in which players do not observe missed shots.

Indegenerate cases, there need not be subgame-peefgaiibria in pure strategies. This
is to be contrasted with (i) finite games of perfect information and (ii) two-player zero-sum
Dynkin games, where a subgame perfee} €quilibrium in pure strategies always exists.

We hope that the combination of the arguments we use here with the techniques presented
by Shmaya and Solan (20028hd Solan (2002kan be used to further study multi-player
Dynkin games.

Another motivation to our study is linked to the observation that deterministic Dynkin
games form a simple class of stochastic games. By now, some results are available on
the existence of equilibrium payoffs in multi-player stochastic gamesSsén (1999)
andVieille (2000). By contrast, apart from few classes of games, there are no results on
the existence of subgame-perfect equilibrium payoffs and useful techniques are yet to be
found. We hope that this paper will contribute to this emerging literature.

The paper is arranged as follows.3ection 2ve present the model and the main result.
Several examples appearSection 3 The proof of the main result appears3action 4

2. Themodel and the main result

2.1. Deterministic multi-player Dynkin games

A deterministic multi-player Dynkin gamé = (1, (i,,, pu, m)nen) iS given by

e afinite setl of players;
e foreveryn € N, atriplet(i,, p,, ) € I x [0, 1] x R’.

The triplet(i,,, p,, 1) specifies who is allowed to stop at stagehe probability that the
game terminates if playeég decides to stop, and the terminal payoff if the game terminates
at stage:, respectively.

The game is played in stages. At each stageN, provided the game has not terminated
yet, playeri,, has to choose whether ©ontinueor Stop If he decides to continue, the
game continues to stage+ 1. If he decides to stop, a lottery takes place (all lotteries in
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the game, including random choices by the players, are independent). With probability
the game terminates, and the terminal payoff for the players is given by the wedidith
probability 1— p, the game continues to staget 1. If the game never terminates, the
payoff is zero for all players.

We denote by the termination stage of the game, i.e. the first stage in which a player
decides to stop and the game terminates. Thus, the payoff to playkis r(",19<oo.

2.2. Strategies and results

A strategy of player € I maps the set of information sets of play¢o the set of mixed
moves of playei. We letN; = {n € Nli, = i} be the set of stages in which playieis
active.

We are going to restrict the players to Markovian strategies; namely, strategies that depend
only on the stage, and not on the history. We will prove below that the game admits a
subgame-perfect-equilibrium in Markovian strategies. By a general observation (see,
e.g.Fudenberg and Tirole (1991, p. 591this subgame-perfeetequilibrium remains a
subgame-perfeetequilibrium without the restriction to Markovian strategies.

In the present context, a (behavior Markoviatrategyof playeri is a functions’: N; —

[0, 1], whereo’ (n) is the probability assigned by playeto stop at stage, provided the
game does not terminate before that stage. We denote the set of strategies afiptayer

A strategy profilglor simply aprofile) is a vectolo = (o);<; of strategies, one for each
player.

Every strategy profile € x X!_, induces a probability distributioR, over the space of
plays, orinfinite histories. The corresponding expectation operalr. iEhus, the expected
payoff to player given a strategy profile is

Y'(0) = Eslrilocco].

Before we state our result, we first recall standard equilibrium notions.

Definition 1. Lete > 0. A strategy profiles is ane-equilibriumif for every playeri € 1
and every strategy’ € X',

i

Y@ =y 1) —e
We mention that, for any’ > ¢, ane-equilibrium is a uniforme’-equilibrium; that is, it is
an¢’-equilibrium (a) in every discounted game, provided the discount factor is sufficiently
small, and (b) in every-stage game, providel is sufficiently large. Indeed, the proof
provided inSolan and Vieille (2001, Proposition 2.18)es adapt to the present framework.
Forn € N, we denote by, (o) the expected payoff induced by the strategy prefiia
the subgame starting at stage
A strategy profile is a subgame-perfeet)(equilibrium of a game if it induces an-
equilibrium in any subgame. In the present context, this amounts to the following definition.

1 Equivalently, we may assume that, with probability, playeri, is given the opportunity to stop for sure. For
each strategy profile, the payoff is the same under both interpretations of the game.
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Definition 2. Lete > 0. A strategy profile is asubgame-perfeetequilibriumif for every
n € N, every playet € I, and everyr' € X',

Yi(o) > Yo, T) —e.

Our main result is the following.

Theorem 1. Let I' = (I, (i, pn, Fn)nen) be a deterministic Dynkin game. If the se-
quence(r, ), en is boundedthen for every > 0 the gamel” admits a subgame-perfect
g-equilibrium in Markovian strategies

We conclude this section with two comments.

As will be clear from the proof, in most cases, there jsuse subgame-perfeet-equi-
librium. However, thisis not always true (see Example 3 below). This is in sharp contrast with
finite extensive games of perfect information and with two-player zero-sum Dynkin games.

Our proof is valid as long ag(o) is uniformly bounded, for every profile (which is
the case when the sequeneg), <y is bounded). If this does not hold, there are strategies
o such that the corresponding payoff for at least one player is infinite, so that the payoff
function of the game is not well-defined.

3. Examples

In the present section we provide several examples that illustrate the main features of the
model.

Examplel. Takel = {1, 2, 3} and

(1,1,(1,0,3), n=1modulo3
(in, pn.1n) = 2,1,3,1,0), n=2 modulo 3
(3,1,(0,3,1)), n=0modulo3

In words, at the first stage, player 1 can stop the game, thereby yielding the payoff vector
(1,0, 3). If player 1 chooses to continue, at the second stage player 2 can stop the game,
yielding the terminal payoft3, 1, 0). If player 2 chooses to continue as well, at the third
stage player 3 can stop the game, yielding the terminal pa9o8, 1). The process then
repeats itself cyclically. This game is a variation upon a game studietebgh et al. (1997)

We will characterize all pure subgame-perfect 0-equilibrium profiles of that game, using
backward induction.

Let o be such a 0-equilibrium. Assume that at stagef8r somen > 2, player 3 stops
with probability 1; that isg3(3n) = 1. In particularys, (o) = (0, 3, 1).

Consider the subgame starting at stage 3. In that subgame, player 2 receivx§§(o) =
3if he chooses to continue at stage-31, while he receives only 1 if he chooses to stop. By
the subgame-perfect equilibrium condition, player 2 continues at stage B that is,
02(8n — 1) = 0. Henceya,—1(0) = yz.(0) = (0, 3, 1).



6 E. Solan, N. Vieille/ Journal of Mathematical Economics 1097 (2003) 1-19

We repeat this argument with the subgame starting at stage 8 By continuing at
stage 3 — 2 player 1 receives 0, as the game will be terminated at stage/3ile by
stopping he receives 1. By the subgame-perfect equilibrium conditie8y — 2) = 1 and
yan—2(0) = (1,0, 3).

Applying this backward induction argument repeatedly, we getdfigdn — 3) = 0,
02(3n—4) = 1,61(3n—5) = 0ands3(3n—6) = 1. The cycle of length 6 then repeats itself.

On the other hand, #3(3n) = 0 for somen > 2, theno3(3n — 3) = 1 and the previous
analysis holds.

Thus, there are two pure subgame-perfect 0-equilibria: (a) at odd stages the active player
stops, and at even stages the active player continues, and (b) at even stages the active player
stops, and at odd stages the active player continues.

In each pure equilibrium, the players agree on who shoots first. We believe that the
interpretation of these two equilibria is quite appealing: suppose there are three gunners. If
gunner 1 thinks that gunner 2 is going to shoot tomorrow gunner 3 (or gunner 1 if gunner
3 is already dead), he has no reason to shoot today: he is better off by letting gunner 2 be
done with gunner 3, and shoot gunner 2 the next time he can. On the other hand, if gunner
1 thinks that gunner 2 is not going to shoot tomorrow if gunner 3 is still alive, but shoot
gunner 1 if gunner 3 is already dead, and that gunner 3 is going to shoot him the day after,
he is indifferent between shooting and not shooting gunner 2, as he is going to die anyway,
so he can as well shoot gunner 2 today.

Remark 1. This game admits other subgame-perfect equilibria. In particular, the profile in
which each player stops with probabilityZ2Zwhenever active, is a subgame-perfect equili-
brium. Inasense, it corresponds to the cyclic equilibrium constructetblsgh et al. (1997)

In the next example, we allow for probabilities of success below 1.

Example 2. Consider the following modification dixample 1 wherel = {1, 2, 3}, and

(ny, Pnstn) =1 (2,1/2,(3,1,0)), n=2modulo3
(3,1/2,(0,3,1)), n =0modulo3

Thus, when player 1 stops the game terminates with probability 1, while when either player
2 or player 3 stops the game terminates with probability 1/2.

As we did inExample 1 we characterize the set of subgame-perfect 0-equilibrium in
pure strategies. Let be such a strategy profile. Let> 0 andi be the active player at stage
n. By the subgame-perfect equilibrium conditiofi(n) = 1if y/ ;(0) < 1ando’(n) =0
if y,’;+1(o) > 1.

Letn > 3, and assume thaf'(3n + 1) = 1. Thenys,1(0) = (1,0, 3), and therefore
03(3n) = 0. Thisimplies thays, (o) = y3,41(0) = (1, 0, 3), and therefore?(3n—1) = 1.

It follows that

yan-1(0) = 33, 1,0) + 3(1,0,3) = (2. 5. 3),
and thereforeX(3n — 2) = 63(3n — 3) = 0 ando?(3n — 4) = 1.
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Then,
ya—a@ = 13,100+ 32335 =339,

and therefore1(3n — 5) = 0 ando3(3n — 6) = 1.
One therefore has

ya-6(0) =30.3D+35.§.D =G ¥ 9
and therefore(3n — 7) = 0,6(31 — 8) = 0 ando3(3n — 9) = 1.

Finally,
yan—9(@) = 30,3 D+ 33. 2. H =G 2. D).

and therefore2(3n — 10) = 0, ando*(3n — 11) = 1.

Therefore, any pure subgame-perfect 0-equilibrium must repeat the sequence of actions
(starting with player 1) (S, C, S; C, C, S; C, S, C; C, S, C). Along this cycle, player
1 first stops, then player 3 stops twice in a row, then player 2 stops twice in a row. This
difference with the subgame-perfect 0-equilibriunttsmple larises since the probability
of termination is here below 1. By further decreasing the probabilgjefor n = 2 or 3
modulo 3, while keeping, = 1 forn = 1 modulo 3, one can create examples in which all
pure subgame-perfect equilibria have cycles of arbitrary length.

This example highlights one effect of low values {pt,). Note indeed that the expected
payoff, starting from some stage is a convex combination af, and of the continuation
payoff (the expected payoff, starting from stage- 1). The weight of-,, depends on the
probability of termination, but cannot exceeg. In particular, when the probability of
termination is low, the expected payoff is close to the continuation payoff. Therefore, if
some player has an incentive to stop only once the continuation payoff reaches a certain
threshold, many stages may be required so that this threshold is reached. Thus, if the game
has a periodic equilibrium, lowering the probabilities of termination often results in periodic
equilibria with longer and longer periods.

We next introduce a two-player game that has no subgame-perfect 0-equilibrium and no
pure subgame-perfeetequilibrium.

Example 3. Takel = {1, 2}, and

(1,1, (-1,2), nisodd

(b P T) ! (2,1,(-2,1)), niseven

Fixe € (0, 1), and leb be the strategy profile defined bY(2n+1) = 1ando?(2n+2) =
¢ for everyn > 0. We claim thav is a subgame-perfeetequilibrium. One should verify
that player 1 (respectively player 2) cannot profit by deviating in the subgames that start
at odd (respectively even) stages. Consider first the subgame that starts atistade 2
for somen > 0. By stopping at stagen2+ 1 player 1 receives-1, while, since player 2
eventually stops with probability 1, player 1's payoff is at me&t whatever he plays. Inthe
subgame starting at stage-2 2, player 2’s expected payoff undeise+2(1—¢) = 2—¢,
whereas the maximal payoff to player 2 in the game is 2.
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We next prove that the game has no subgame-pesfequilibrium in pure strategies.
Assume to the contrary that there exists such a prefile

We first claim that there is an infinite set of even stages in which player 2 chooses to
stop. Otherwise, leV be the maximal integer such that player 2 stops at stagés2t
N = 0 if player 2 never stops). Consider now the subgame that starts at sYage22
By the definition ofN, player 2 never stops in this subgame. Siads a subgame-perfect
e-equilibrium, this implies that under player 1 never stops in this subgame: by never
stopping he receives 0, while by stopping he receivésBut this leads to a contradiction,
as it implies that player 2 can profit 1 by deviating: by never stopping he receives 0, while
by stopping he receives 1.

We next claim that there is at most one even stage in which player 2 chooses to stop. To-
gether with the previous paragraph, this shows that there cannot be a subgame-perfect
g-equilibrium. Assume that player 2 stops at stagg Zith N > 1. Sinceo induces an
g-equilibrium in the subgame that starts at stage-2 1, and since player 2 stops at stage
2N, undero player 1 stops at stageV2— 1. However, since player 1 stops at stage21,
undero player 2 continues in all stages for k < N: by continuing in all these stages he
receives 2, while his payoff upon stopping is 1.

This example shows that pure subgame-perdemuilibria need not exist. Such a case
may arise when there is a playiewho by stopping gives everyone else high payoff, but
he himself receives low payoff. It is then in the interest of his opponents to threaten him
that if he does not stop, one of them will eventually stop and punish play&e punisher,
however, stops with low probability, so that playdnas a chance to correct his behavior
and stop the game at a later stage.

We finally prove that there is no subgame-perfect 0-equilibrium. We argue by contra-
diction, and we letr be a subgame-perfect 0-equilibrium. Foe 1, 2, we denote by
the strategy that always continues, t&n) = 0 for eachn € N;. Note first that, for each
n € N, one has

P,(6 < +00|6 > n) = 1. 1)

Indeed, the sequend®, (6 < +o0|6 > n)),en Would otherwise decrease to zero, hence
the sequenceéy, (0)),eny Would converge to zero, and player 2 would have a profitable
deviation in the subgame starting at stagéor n large enough. By1) the game terminates
with probability 1, hence at least one of the players eventually stops with probability 1:

P,1 2(0 < +o00lf > n) = 1foreachm € N, 2
or

P ,2(0 < +00l0 > n) = 1foreachn € N. 3

If (2) holds, therc2 is the best reply tel in all subgames, henee® = ¢2. Since the unique
best reply of player 1 to? is ¢!, one getsr = (¢, ¢?)—a contradiction tq1).

If (3) holds, there are infinitely many even integersuch that(n) > 0. By optimality
of o1, and sincd3) holds, one has'(n — 1) = 1 for any such:. Therefore(2) holds—a
contradiction.
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4, TheProof of Theorem 1
In the present section we provéeorem 1
4.1. Preliminaries

In this subsection, we analyze few degenerate cases, and slightly rephrase the problem.
The core of the proof ofheorem 1lis in Section 4.4

Letl” = (I, (i, pn, ')nen) be adeterministic Dynkin game. Since the sequénggen
is bounded, we can assume w.l.0.g. that payoffs are bounded by 1.

LetI" = (I, (in, Pn> Fn)nen) b€ another game with the same sequence of active players
and the same probabilities of success. Since the payoff functions of the two games differ
by at most sup.y [|7, — 7 |I, any subgame-perfeetequilibrium of I is a subgame-perfect
¢’-equilibrium of I, wheree’ = ¢ + sup,ey 172 — 7l

Since we are looking for ae-equilibrium, and since payoffs are bounded, there is no
loss of generality in assuming that the range of the sequéngey is finite, and that if
(i, r) and(j, 7) are twodistinctelements in that range theh + 7 for everyk e I.

Notice now thatTheorem 1will follow if we prove that there is a subgame-perfect
g-equilibrium in somesubgame off". Indeed, the conclusion faf will then follow by
applying backward induction to the first stages of the game. Moreover, since finite extensive
games with perfect information have pure subgame-perfect equilibria, the resulting profile
will be pure when the subgame-perfeetquilibrium of the subgame is pure.

Let IR be the finite range of the sequenég r,).en. For each(, r) € IR define

w(i,r) =Y {paln € N, (in, ra) = (i, 7))

and setIR, = {(i, r) € IR|n(i, r) = +o0}. If n(i, r) = +o0 then if player stops whenever
(in, ) = (i, 1), and all players continue in all other stages, the game will eventually
terminate, and the terminal payoff will e

We now argue that we may assume w.l.0.g. that

(i, r) = +ooforeach(i, r) € IR. (4)
As a first step, we prove that we may assume w.l.0.g. that
7(i, r) = Oforeach(i, r) ¢ IRx. (5)
Choose firstV € N large enough such that
> pn < €/|IR|foreach(i, r) ¢ IRx. (6)
=N (i) =(i.r)

Such anN exists since IR is a finite set. Denote by the subgame that starts at stage
N.LetI'y = (I, (in, Pn, ra)nen) be the game that coincides withy except thatp, = 0
whenever(i,, 7,) ¢ IRx.

By (6), the payoff functions of the two gamé% and "y differ by at most 2. Therefore,
any subgame-perfeetequilibrium of I'y is a subgame-perfect2quilibrium of Iy, and,
by backward induction, yields a subgame-perfeceguilibrium of I'.
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As the gamdy satisfieg5), one can assume w.l.0.g. th{&) holds.

Thus, we are led to analyze games such that, for éaeh € IR, eithern(i,r) = 0
or n(i,r) = +oo. If #(i,r) = 0 for each(i,r) € IR (so that IR, = @), the payoff
function of the game is identically zero and the conclusionrb&orem 1follows tri-
vially.

Assume now that IR, # . Consider the game obtained by dropping all stagesch that
(i, rn) = 0 (and by relabeling stages). Since there are infinitely many stagesh that
n(iy, ry) = 400, the resulting game is again a deterministic multi-player Dynkin game.
Plainly, any subgame-perfeetequilibrium of this new game is also a subgame-perfect
e-equilibrium of the initial game (with the proper identification of stages, and with an
arbitrary behavior in the stages that have been dropped).

It follows that we can assume w.l.0.g. th{@) holds.

4.2. A partition into blocks

In the present section we fix < 1/40. Giveng, we define a partition of the s@t of
stages into blocks. This partition will be used in the sequel to pftnaorem 1
We will use the following technical result.

Lemma 1 (Rosenberg et al., 2002emma 18).Letn € N, and letpy, ..., p, be non-
negative reals that satisfy""_; p; < 1/20.Then

n i—1

n n 2 n
Y pi _20<2Pi> <Y p[[a-prp<D pi
i=1 i=1 i=1

i=1 j=1

Observe thap_"?_; p; ]_[3.;11(1 — pj) is the probability that the result of at least one out
of n coins with parameters, . .., p, is Head. In particular itis equal to-1[/_; (1 — p;).

Corollary 1. Lete < 1/40,n € N, and py, ..., p, be non-negative reals that satisfy
iy pi = e Theny ) pi[T3(1— pj) > &/2.

Proof. The proof is divided into three cases.
If >°7 1 pi < 1/20 the claim follows fromrLemma land since: < 1/40.

If there isi such thatp; > ¢ the claim holds trivially.
Otherwise, there is a subsett {1, ...,n}suchthat 120—¢ < }",.; pi < 1/20. Then

n

i—1 n
dop[Ja-pp=1-T]a-p)=1-T]A-p)
i=1

=1 j=1 iel

- 20( 2 2> 20e% > ¢/2
=20 ° 20 °) =° =ere

where the second inequality follows froomemma 1 and the third one holds since the
functionx — 20x2 is monotonic decreasing far< 1/20 and since < 1/40. O
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We are now ready to define the partitionMfinto blocks. Sekg = 1 and, forl € N,
define the initial stage; of block! to be

ny=minin > n;_1| Z pr>¢€ V(i,r)elIR

ni—1<k<n,(ig,re)=(r)

Sincern(i, r) = +oo foreach(i, r) € IR, all n;, I € N, are finite.
By Corollary 1 in each bloclall players have a probability at least2 to terminate the
game with any vector they choose.

4.3. Asimple case

Under the assumption thai{i, r) = +oo for each(i, r) € IR, the proof proceeds by
induction over the number of elements in IR. The conclusion is ealfy|i= 1, and is left
to the reader.

We now analyze a somewhat degenerate case that geneiata@ple 2 This is the only
place in the proof where we use the induction hypothesis.

Lemma 2. Assume that there existsr) € IR such that
rl > 7 forevery(j, 7) € IR.

Then for eacls > 0 there is a subgame-perfectequilibrium

The lemma states that if there is a terminal paydffat is preferred by each playeto all
terminal payoffs controls, then a subgame-perfeetquilibrium exists.

Proof. We assume w.l.0.g. that< 1/40, and we split the discussion into three cases.

Casel. ri > 0.
Let o be the pure strategy profile in which playestops wheneve(i,, r,) = (i, r), and
all players continue in all other stages, i.e.

o' (n) = lifandonlyif (in, r,) = @, r).

Fix n € N. We prove that induces a 0-equilibrium in the subgame that starts at stage
n. Sincer(i, r) = +o0, the game eventually terminates, and therefore the expected payoff
is . Playeri cannot gain by deviating, since his payoff is at mdsif he terminates the
game, and &< ! if he always continues. Every playge4 i cannot gain by deviating either,
since his payoff under is /, while if he deviates his payoff is in the convex hull:dfand
(¥, (j, ) € IR}, hence at most/.

Case2. r' <0, and thereigj, 7) € IR such that # j andi < ri.

In this case, we elaborate upon the constructidixiample 3We will have playe¥ stop
at all stages iin € N: (i, rn) = (i, r)}, and player;j stop with some small probability at
stages inn € N: (iy, ;) = (j, 7)}. The choices of the corresponding probabilities should
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fulfill two conditions: (i) these values should be small enough so thato) — || < e,
for eachn € N and (i) they should be high enough so that, if playerere to continue at
all stages, the game would still stop a.s. in finite time. These two conditions relate to the
two dual aspects of the threat. By condition (i) the threat will be used on the equilibrium
path with small probability. By condition (ii) it will provide incentives to playdo act as
required.

Recall the partition oWV into blocks that was defined iBection 4.2and thats; is the
first stage of block, [ > 0.

Since for everyl > 0 one hasy_, _,_,,..:G,.=(;» Pn = & there is a function:
N — [0, 1] such that for every > 'O one haD ., <n<nya:(in r)=(jp) XnPn = e2.

We leto be the strategy profile in which playestops wheneveti,,, r,) = (i, r), player;
stops with probability,, wheneveli,, r,) = (j, ), and all players continue otherwise, i.e.

17 If (insrn)z(is r)v
o) =1 xp, i (i, 1) = (. D),

0, otherwise

We prove that is a subgame-perfect2quilibrium. Let: € N and consider the subgame
that starts at stage

The definition ofs, Lemma landCorollary limply that (a) the probability that player
i stops undew in each blockl/, conditioned that the game reaches stages at least
(1—¢2)e/2, and (b) the probability that playgistops undes in each block, conditioned
that the game reaches stagegis between(1 — £)s2/2 ands?.

This implies that||y, (0) — r|| < 2¢. Furthermore, (a) and (b) imply that under any
unilateral deviation the game terminates with probability one.

Since for every playek and everyk, ') € IR one has’* < r¥ < (o) + 2¢, no player
k # i can profit more than£by deviating fromo in the subgame that starts at stage
Sincei < r' < yi (o) + 2¢, the same applies to player

Case3. r' <0, and# > r for every(j, 7) € IR with i # j.
Inthat case, by the assumption of the lemma, the strategy of pltharalways continues
is a weakly dominant strategy.

Consider the modified game where one ggis= 0 whenevel, = i, or, alternatively,
one drops all stages in which = i. Note that player is a dummy in the modified game.
By the induction hypothesis, the modified game admits a subgame-pedqgatlibrium
o’. Extendo’ to a profiles in the original game, by instructing playgeto continue at all

stages:. Theno is a subgame-perfeetequilibrium.

4.4. The general case
In view of Lemma 2 Theorem will follow from Proposition Ilbelow.
Proposition 1. LetI” be a deterministic multi-player Dynkin game. Assume that for every

(i, r) € IR, (i) 7(i, r) = 400, and(ii) there is(j, 7) € IR such that/ > r/. Then for every
¢ > 0,the game™ has a subgame-perfestequilibrium in pure Markovian strategies
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Note thatExample 3does not fit intdProposition 1We do not know whether a subgame-
perfect 0-equilibrium exists or not. The rest of this section is devoted to the proof of the
proposition.

As remarked at the beginning &ection 4.1 we can assume w.l.0.g. that for every
(i, 1), (j, ) € IR, either(i, r) = (j, ), or rk # 7 for everyk.

For everyi € I set

m' = max{(r'|(, r) € IR}.

This is the maximal terminal payoff playecan receive when stopping alone. lgte R’
be the unique vector such that(i, r) € IR andr’ = m' (uniqueness is guaranteed by the
preceeding paragraph).

Finally, set

W = {w e R¥|w' < m' for some € I}.

This is the set of all payoff vectors such that at least one player is better off by stopping
at some stage rather than continuing forever and receiving

An important property of the sé¥ is that if the continuation payoff at stageis w €
W, and if playeri, prefers to stop rather than continue (thatig: < r;), then the
expected payoff if playet, stops at stage, (1 — p,)w + pury, isin W. Formally, for every
neN,

w e Wandw™ < rinimply (1 — p)w + purn € W. (7)

Indeed, under the assumptio®,— p,)w + p,ri’ < ry < m', and(7) follows.

We will prove the existence of a subgame-perteequilibrium. We assume w.l.0.g. that
e < 1/40, and that furthermore < 2ming (7 ' — 7.

Let/ € N be given. We will define a pure profite up to stage:;. We will simultaneously
constructa sequenCez,(n))lel of vectors inW. As a first approximation, the vectar; (n)
may be interpreted as the expected payoff undigom stage: onwards.

As for now, we fix/ ¢ N and we writeo andw instead ofs; andwy, respectively.

We define botlr andw backwards. We leiv(n;) be an arbitrary point iV N [—1, 1]'.
We deal with each of the blocks inductively (starting with itheone). Letc < /. Assuming
w(ng) € W is already defined, we define nawand w over the stages = nj_1, ...,
n; — 1.

Givenw(n + 1) ando'» (n), we setw(n) = o' (n) purn + (L — o' (n) pp)w(n + 1), SO
that we need only defing (n). Thus, ifw(n + 1) is the expected payoff from staget- 1
onwards,w(n) is the expected payoff from stageonwards. We will definer’ (n) such
that (i) o™ (n) is pure, and (i’ (n) = 1 impliesr,’ > w(n + 1). Sincew(n;) € W and
by (7), this implies thatw(n) € W for everyn < n;.

Casel. wi(ny) < m' — eforsomei € I.

We definer by backward induction, with an appropriate tie-breaking ruleoSet) = 1
if ;7 > wi(n + 1), ando’" (n) = 0 otherwise. .

Thus, at stage, playeri, compares his continuation payaff: (n + 1) to the payoffr;
he would get by stopping, and he continues or stops accordingly.
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Case?2. wi(ny) > m' — e foreachi € I.

Fix i, € I such thatw’(ny) < m'™. Sincew(n;) € W, such a player exists. We will
defineo so that at the final stages of the block only plaiewill possibly stop. In earlier
stagesg will be defined using backward induction as in Case 1.

Formally, letny_1 < n < ng. Assume that has been defined for staggs= n +
1,...,n — 1. We definer at stagen as follows. Denote byr(n + 1, ny) the probability
undero that, starting from stage + 1, the game terminates undebefore stagey, i.e.

w(ng, nx) = 0, and
(g, k) = 0'1(q) pg + (1 — "1(9)) (g + L np) forn + 1 < g < ny.
Then:

o if m(n + 1, mi) < e, we seto’(n) = 1if bothi, = i, andrly > w'*(n) hold. We set
o't (n) = 0 otherwise; _ , ‘ _
o if m(n + 1, ng) > e, we seto’n(n) = 1if i > wi(n), ando’ (n) = 0 otherwise.

We now prove that under, the probability of termination in any single block is bounded
away from zero.

Lemma3. For eachk such thatd < k < [, one has

P, (0 < nis1l0 = np) > Le.

Proof. We will prove thatr(ny, ng+1) > ¢/3. We consider Cases 1 and 2 in_ turn.
We first assume that Case 1 holds, and wé,let / be a player such that' (ny11) <
m'* — €.

1. If of* (n) = 1 wheneveli,, r,) = (ix, pi,), One has by’:oroll.ary 1r(ng, ngga) > g/2.
2. If o'*(n) = 0 for somen such thati,, r,) = (ix, pi,), thenw’ (n + 1) > m'+. Observe
now that, since payoffs are bounded by one, one has

w(n+1) < wn + 1, ngy1) + L= w(n + 1, 1) w'™ (nggn).

By the choice of, one hasw'*(n;41) < m’* — ¢, so that

& &
1, > > .
n(n + nk+1)_1_m,*+8_3

Sincern(ng, ngt+1) > w(n + 1, ng+1), the conclusion also follows in that case.

We next assume that Case 2 holds and we,let I be the player distinguished in the
definition ofo.

1. Assume first tha#/(n) = 1 for somen and some playef # i,. By definition of the
profilec, onethenhas(n+1, ni1+1) > ¢/2,hencer(ng, ny+1) > n(n+1, ngy1) > /2.
2. Assume now that’»(n) = O wheneveti, # i.. In that casew’*(n) < m'* for each
n. Indeed, only playet, stops, and his payoff is the averagewf (n; 1) < m™
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and pf: = m'. Therefore,o’*(n) = 1 whenever(,,r,) = (i, pi,), and one gets
w(ng, ngr1) > €/2,asin Case 1, item 1. O

We will now let! vary and we denote by; andw; the objects that were defined above.
The pure strategy profile; may be identified with a point if0, 1} (the nth component
being the behavior at stageof the active playet,). Since the product spad, 1}V is
compact (and metrizable), the sequengg;>o has a subsequence that converges to some
pure strategy profile,.. For notational convenience, we still denote this subsequence by
(o1)i=0. Sinceo; is a pure strategy for every e N, for every fixedn € N the firstn
components o, coincide with the firsk components of;, provided is sufficiently large.

For such’’s, the behavior in the first stages of the game under the two strategy profiles
ando; coincide.

Our goalisto prove that, is a subgame-perfegtequilibrium. We first prove that the play
terminatesP,, -a.s. in each subgame. We will then relate the pay@ff) to the sequence
(w))ien (Lemma 4 and prove that no player has a profitable one-stage deviationrha §
undero,. The conclusion followsRroposition 2, after we prove that no single player is
responsible for the termination of the ganeifima §.

Corollary 2. For eachk € N, one has

Py, (0 < nis1l > ni) > 3e.

Proof. Let/ > k be large enough so that coincides witho; up to stage:1, and apply
Lemma 3 .

Lemma4. For eachn € N, one has
vu(oy) = lim wy(n).
[—00
Proof. We prove the result for = 1. The proof is similar for the subgame that starts at

any stage: € N.
Letk € N be given. For each> k, one has

y(oy) = EO'* [r910<nk] + Po* (G nk)ynk (04),
and
wi(1) = Eg[relo<pn ] + Py (0 = ni)wy(ng).

For [ large enough, the two profileg and o, coincide up to stagey. In particular,
E; [rolo<n,] = Eglrolo<n,] @and Py, (0 > ny) = P (0 > ng). By Corollary 2

(o) — wi (Dl < 2(1 — Fe)

provided! is large enough, and the result follows. O

The next lemma says in substance that no player can increase his payoff by more than
3¢ by modifying his strategy in a single stage.
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Lemmab. Letn € N be given The following implications hold

o If 0}’ (n) = Otheny,’,; (0x) = 1y — 3e.
o If 6" (n) = 1theny!, () < ry.

Proof. Letn € N be given. Let € N be sufficiently large so that; > n. We first prove a
related statement for the strategy profileLetk < [ be determined by, < n < ng41.

By constructlonp’” (n) is defined using backward induction, except in one case where
a" (n) is required to be zero. In Case 1 onebfign) = 1if ri’ > w)" (n+1) ando)" (n) =
otherwise. In Case 2 one haé" (ngy1) = m — e andm(n + 1, n41) < e. Therefore,
|w§" (ng+1) — wf” (n + 1) < 2¢, which yieldswf" n+1) >mn -3¢ > rf," — 3¢. Hence,
in both cases, one has

l" n+1 < pin if ali" (n)=1,and
wl" n+1) >rn — 3, if a’” (n) =

The conclusion follows by taking the limit— +oco and using.emma 4 O

We now prove that the play terminates a.s., even if a single player chooses to continue
whenever active. Recall thatis the strategy of playerthat always continues.

Lemma6. For everyi € I and every: € N, one has

o, 71(9<+oo|9>n)—1

Proof We argue by contradiction, and we assume that, for some playérthe sequence

«i o1 (0 < F00]6 = n) converges to zero whengoes to+oco. By Corollary 2the game
eventually terminates, so th&t, (6 < +o0|0 > n) = 1 for everyn. Therefore, it must be
the case that playérterminates the game?,; .—i(6 < +o0l¢ > n) = 1 for everyn, and
My 400 llYn(ow) — vn(oy, ¢ DIl = 0.

We first prove that lim_, 1~ ¥, (0x) = p;, and then deduce a contradiction with the basic
assumption made onf.

Step 1. The sequencey,"l (04))nen has a limit. _ '
Letn € N be arbitrary. Ifa € N; thenLemma Simplies thaty, (o) > ¥, ,,(04). Onthe

other hand, for ¢ N;, one hag/(c,) = ¥4 (0y) f oi"(n) = 0, and
17300 = V10| = palry, = ¥ap1(0)] < 2py
if " (n) = 1. Therefore, for every two positive integers> m, one has

V() Z Vi) —2 Y pyl ®)

o (=1
m<g<n;q¢N;
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Let ¢ € (0,1/40) be given. Choos&V; € N sufficiently large so thaP J;,-(G <
400|060 > N;) < &/2. For suchVg, one has byCorollary 1ZNg§q<+oo;q¢N,- pql
¢. Therefore, by(8),

i <
ol (=1~

i (0x) = vl (0,) — 28, foreveryn > m > Ns.

This implies the convergence @f,’l (04))neN, Since it is a bounded sequence.

Step 2. 1imy,— 1o yn(o%) = pi- ) )

Denotel = lim,,_, {0 vu (04). We first prove thak' = m'.

Fix § > O sufficiently small, and take sufficiently large so that (i)y,, (cx) — A| < 6,
(i1) [Yngyq (o) — Al < 8, and (iii) PC;’U;,‘(G < 4+00|0 > ny) < 6.

By Lemma 4and sinces, = lim,_, 10y, there isl > k sufficiently large such that
(i) lwi(ng) — A < 8, (il) |wi(ng+2) — Al < 8, and (jii) P.i 5, (6 < ng+1]0 = ng) < 8.

Consider now the block that is played between stagemdn,.1 undero;. By (iii), the
probability that the game terminates by a playe# i is smaller thars. Therefore, player
i never stops at a stagesuch that, = i andr, < A" — 25. However, the probability that
playeri stops at a stagesuch that, = i andr, = m' is at least/2. Therefore,

28 > wj(ng) — wi(ngs1) > ze(m’ — 1) —3sand — 8 <m' — A,

so that—§ < m' — A’ < 105/¢. As § is arbitrary, the first claim follows.

Hence, IlmHJrooyn(a*) = m'. This yields Ilm,HJrooyn(a*, ¢y =m! Slncep, e R!
is the unique vector such that r) € IR andr' = m', and smcey,,(a ¢~ is in the
convex hull of{F: (i, 7) € IR}, one has |Im_>+ooy,,(0 ¢~y = p;. Finally, this implies

Iimn—>+ooyfz(0*) = Pi-

Step 3. The contradiction.

By assumption, there existg, 7) € IR such that/ > ,ol.j. SincePc,vﬂ;i 0 < +o0lf >
m) < 1 for somem € N, and sincer(j, /) = +oo, there are infinitely many stagessuch
that (in. ) = (j. 7) ando?(n) = 0. For each such, by Lemma 5 one has/ = ri <

)/n+l(a*) Therefore, lim sup_>+ooyn(a*) > 7. Sincef > ,o = |lmn—>+ooJ/n(0*) we
get a contradiction.

Proposition 2. o, is a subgame-perfe&-equilibrium

Proof. Leti € I be given. We prove that playetannot gain more thare®y deviating from
ox. The same proof will hold in any subgame, thereby showing the subgame-perfectness
property.

Define the sequend&,,),n of random variables by, = rhif 0 < nandX, = yi(ox)
if 6 > n. Lett' be an arbitrary strategy of playerBy Lemma 6 the sequencéX,,),en
converged ; -i-a.s. t0Xoo := rolo<too, hence

lim E —1[Xn] = fz —l[rt919<+oo] =Y (T ) 9)

n——+o00
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On the other hand, let € N, and denote by{, the past play up to stage We shall
prove that

Eti’o_*—i[xn_t,_ll?‘[n] < X, + 31y, as. (20)

On the evend < n, bothX,, and X, are equal toé. Consider now the evelit> n. If
iy # i, 0ne has

Xy = ¥3(04) = Eq, [ Xns1lHal = E i il Xp41lHa),

where the last equality follows since the two profile§ o) ando, coincide at stage.
In both cases(10) follows trivially. Finally, if i, = i, one hasX,, = X,,11 = y}1+1(o*) if

o'(n) =0 andE; —i[Xni1/Hn] = purl + (L — p,,)y,"l“(o*) otherwise. Inequality10)
then follows byLemma 5

By taking expectations ifL0), and by summing over, one obtains Iirn_>+ooEr[,U;,- [X2]
< X1 + 3¢ which yields, by(9),

Y, o) < yi(ow) + 3. O
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