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Abstract. We study stopping gamesin the setup of Neveu. We prove the existence of auni-
form value (in a sense defined below), by allowing the players to use randomized strategies.
In constrast with previous work, we make no comparison assumption on the payoff process-
es. Moreover, we prove that the value is the limit of discounted values, and we construct
e-optimal strategies.

1. Introduction

Dynkin (1969) introduced the following optimization problem. Two players ob-
serve stochastic sequences (r(n), x(n)),. Player 1 (resp. player 2) is alowed to
stop whenever x(n) < 0 (resp. x(n) > 0). The two players choose stopping times
w1 and w2 which obey this rule, and the payoff is given by

Yy (1, u2) = E{L <por(ua) + Ly s puor (u2)}.

The goal of player 1isto maximize y (i1, 2), whereas player 2 triesto minimize
v (1, n2). Dynkin proved that this game has a value if sup, |r(n)| € LY, and
constructed e-optimal strategies for the two players.

Kiefer (1971) and Neveu (1975) gave other sufficient conditions for existence
of the value in this zero-sum game and in avariant of it. Neveu extended the game
by allowing the playersto stop simultaneoudly: aprocess (a,, by, ¢,,) isgiven (with
sup,, sup(lax |, 1bal, lcal) € L1), the two players choose stopping times 1 and 1o,
and the payoff to player 1is

Efau, Lyus<pn + buplpg<ps + ¢y Lun=po<+o0l-

He proved that, under the assumption a,, = ¢, < b,, the game has avalue.
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Thereis abroad literature on continuous time Dynkin games giving sufficient
conditions for the existence of the value and optimal strategies. Bismut (1979)
proved that under the hypothesis a,, = ¢, < b,, some regularity assumption
and Mokobodski’'s hypothesis (namely that there exist positive bounded super-
martingales z and 7’ satisfying a < z — 7’ < b) the value exists. The regularity
assumption was weakened by Alario-Nazaret, Lepeltier and Marchal (1982),
and then Lepeltier and Maingueneau (1984) established the existence of the
value and optimal strategies without Mokobodski’s hypothesis, assuming only
an = ¢y < by.

In the present paper, we focus on discrete time Dynkin games and we allow
the players to use randomized stopping times. We prove the existence of the value,
under the single integrability condition.

Thisresult isrelated to aresult due to Maitra and Sudderth (1993), for general
stochastic games. In such games, the players receive a payoff in each stage. Maitra
and Sudderth define the payoff associated to a play as the lim sup of the payoffs
received along the play. They prove that such games have a value, provided the
payoffs are bounded and deterministic functions of the state.

It is clear that, under some regularity assumptions on the processes (ay,,), (b,)
and (c,,), stopping games may be viewed as genera stochastic games with a very
specific transition structure (note however that boundedness of the payoff function
will not be satisfied). Thus, the result of Maitra and Sudderth has some bite in
stopping games. We emphasize that our method bears no relation to their approach
(which is based on transfinite induction).

Our contribution isthreefold. (i) We prove that the value exists under the single
integrability requirement, and, moreover, itisuniformin a sense defined below. (ii)
We prove that the value is the limit of the so-called discounted values, studied by
Yasuda (1985). In particular, it follows that the discounted values converge. (iii)
We construct e-optimal strategies for the players.

Our method is to construct a strategy for player 1 that guarantees him an ex-
pected payoff whichis, upto an ¢, thelimit of some sequence of discounted values.
We provide two different constructions for an e-optimal strategy. In the first con-
struction the player plays at each stage an optimal discounted strategy, where the
discount factor may change from time to time. In the second construction, which
has the flavor of Dynkin’s construction, the player plays amost the limit of the
optimal discounted strategies.

The paper isarranged asfollows. In section 2 we present the model and themain
results, in section 3 we introduce few tools, in section 4 we explain the main ideas
of the two constructions, and finally, in sections 5.2 and 5.3 we provide the two
constructions of e-optimal strategies. Section 6 concludes the paper by discussing
related issues.

2. Themodel and the main results

Let (22, .7, P) be aprobability space, and (#,,) be afiltration over (2, o7, P) (the
information available at stage n). Let (ay,), (b,), (c,) be processes, defined over
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(22, o7, P). We assume
SUP [dy |, SUP By, SUP [c, | € LE(P). (0]
n n n

We also assume that (a,), (b,), and (c,) are adapted. This assumption can be dis-
pensed with. Oneneedsonly replaceeverywhere (a,,), (b,), and (c,) by their condi-
tional expectationsgiven & ,,. Itisalso convenient to assume .o/ = o (% ,,n > 0).

By properly enlarging the probability space (2, .7, P), one can assumew.|.0.g.
that it supports a double sequence (X, Yy,),2, of iid variables, uniformly distrib-
uted over [0, 1], such that, for each n: (i) (X,, Y,) isindependent of the process
(ak, b, cp)i; (i) (Xp, Yy) is 7 ,11-measurable, and independent of 7 ,.

Definethe stopping gameasfollows. A strategy for player 1 (resp. player 2) isa
[0, 1]-valued, adapted processx = (x;) (resp. y = (yn)): x, isthe probability that
player 1 stops at stage n, conditional on stopping occurs after n — 1. Theinterpreta-
tion of a strategy as a randomized stopping time will be discussed in Section 6.

Given strategies (x, y), define the stopping stages of players 1 and 2 by 11 =
infin >0, X, <x,},r=inf{n >0,Y, < y,}, and set

t = min(zy, 12). )]

Noticethat ¢ + 1 isastopping time, but ¢ needs not be.

Weset r(X,y) = an Ly <i, + b1y liy <y + ¢y 1=ty <+00. The payoff of the game
isy(x,y) = E(r(x,y)). Thegoal of player 1 isto maximize y (X, y), and the goal
of player 2 isto minimizeit.

Definition 2.1. v € R isthe value of the game if v = sup, infy y(X,y) = infy
sup, ¥ (X, y). Let € > 0. A strategy x that satisfies infy y(X,y) > v — € isan
e-optimal strategy for player 1. A strategy y that satisfies sup, y (X,y) < v+ € is
an e-optimal strategy for player 2.

We will establish the following:
Theorem 2.2. Every zero-sum stopping game that satisfies (1) has a value v.

Let 1 €]0, 1[. Define the A-discounted payoff by r;(x, y) = (1 — A)'1r(x, y)
and y;. (X, y) = E(ra(X, y)).

Definition 2.3. v, isthe A-discounted value of the game if
vy = supyinfyys (X, y) = infysup,ya (X, y).

Yasuda (1985) proves that the A-discounted value always exists. In the sequel
we prove that

Theorem 2.4. v = limy_quv;.

In particular, lim; .o v, exists.

Set y, (X, y) = E(*r(x,y)1;<,). The natural interpretation of y,(x,y) isin
terms of average payoffs: for k € N, set gx = r(x,y)on{t < k}and g, = 0O
otherwise. Then y, (X, y) = E(2 Y725 g0).
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By dominated convergence, lim, y,(X,y) = y(X,Y). Therefore, if x* is an
e-optimal strategy of player 1, then for every y there exists a stage N such that
vn(X*,y) > v — 2¢ holdsfor every n > N.

We prove that the value v is uniform in the sense below.

Theorem 2.5. For every € > 0, there exist x* and N € N, such that, for every y
andeveryn > N, y,(X*,y) > v — €. Asymmetric result holds for player 2.

Thus, Theorem 2.5 is a strengthening of Theorem 2.2. It can be shown that it
aso implies Theorem 2.4. We then say that v is the uniform value of the game.

Theorem 2.5 was proved by Mertens and Neyman (1981) for general stochastic
gameswith bounded payoffs, in which thefunction A > v, satisfiessome bounded
variation property. In the case of recursive gameswith bounded payoffs, Rosenberg
and Vieille (2000) proved that Theorem 2.5 holds, if (v,) converge uniformly as
goesto O (the uniformity iswith respect to the initial state of the game). Our proof
does not require any conditions on the discounted values.

3. Local games
3.1. Reminder and definitions

Letg : A x B — R, where A and B arefinite sets (g is the payoff function of a
zero-sum matrix game with action sets A and B). Denote by A(A) and A(B) the
sets of probability distributions over A and B, and still by g the bilinear extension
of g to A(A) x A(B).

Themin max theoremstatesthat sup inf g(x,y) = inf sup g(x,y),
xeA(A) YEA(B) YEA(B) xeA(A)

which we denote by val g. Any x (resp. y) which achieves the sup on the left side
(resp. inf ontheright side) is called an optimal strategy of player 1 (resp. player
2). It is well known that the operator val is non-decreasing and non-expansive:
val f<va gif f <g,and|val f —val g| <supy,plf —gl

For any real-valued % ,-measurable function f, we let G, (f) be the 0-sum
game with (% ,,-measurable) payoff matrix

S |bn

An |Cn

in which player 1 chooses arow and player 2 a column.

A strategy of player Linthisgameisal0, 1]-valued, & ,-measurable variable
x,, to be interpreted as the probability that player 1 chooses the bottom row. A
strategy of player 2 is defined analogously.

Define G, (x,,, yn; f) to be the (#,,-measurable) payoff to player 1 when the
players use strategies x,, and y,:

Gn(Xn, yu: f) = X (1— Yn)an + yn(l — Xp)by + xpyncy + (L —x,)(1 — yn) f.
By the min max theorem, for every w € Q the game with payoff matrix

f (@) |by(w)

an(@)|cn (@)
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has avalue, denoted by val G, (f)(w), for every w € .
We now argue that each player has an optimal strategy in G, (f).

Proposition 3.1. Let f be #,,-measurableand real-valued. There existsa strategy
xn IN G, (f), such that, for every y,

Gn(xn, y; f) = val Gn(f) everywhere.
A symmetric property holds for player 2.

Proof. For every w € €, the game with payoff matrix

f (@) |by(w)

an(@)|cn (@)

has optimal strategies for both players. Since f, a,, b, and ¢, areal % ,,-measur-
able, the map which associates to each  the set of optimal strategiesfor player 1is
upper-semi-continuous and . ,-measurable. By Kuratowski and Ryll-Nardzewski
(1965) it has an # ,,-measurabl e selection. o

Any x,, that satisfiesthe conclusion of Proposition 3.1issaid to beoptimal inthe
gameG, (f).If x, and y, areoptimal strategiesinG,,(f),onehasG,, (x,, yu; f) =
va G, (f) everywhere. In particular, val G, (f) is # ,-measurable.

3.2. Local games and discounted values

It is useful to extend the notions of discounted values to the game starting at
Stage n.

Forn e N,set X, = {X,x, =0,Vp < n},and T, = {y,y, = 0,VYp < n}.
Those are strategies where the probability that the players stop before stage n is
zero. Set

v, (A) = esssupy, essinfz, E[(1 — 1) "r(X, Y)|F ],
and

V(1) = essinfz, esssupy, E[(1—2)7"ra(X, Y)|F,].
The proposition below contains obvious properties.

Proposition 3.2. (v,(1)), and (v,(1)), are adapted processes. Moreover,
sup, [9, (V)| , sup,, [v,(M)| € L(P).

Yasuda (1985) proves that (v, (1)), and (v, (1)), are both solutions of the
recursive equation

vn(A) = (1= ava Gu(E[va1MIF 0], P—as. (©)

He then proves that any solution of this sequence of equations is at most (v, (1))
and at least (v, (1)). Sincev, (1) > v, (1) it follows that the two are equal, P-as.



438 D. Rosenberg et al.

We give a shorter argument, adapted from Shapley (1953). Since the value
operator is non-expansive,

[Un (V) — v, M| = A = DIE[V42(R) — 0,1 (W[ F 4]
< (A= DE[[vp41(R) — 0, 1 WIF]

By taking expectations, one obtains

[V, (A) — v, M)l = A = M [[Vn41(A) — 1,11 (M) 12
= A= MPIVntp ) = v, Ml

for each p € N. Since sup,, [0, (M)!, sup, |v, ()| € L1(P), one obtains by letting
p — oo that v,(A) = v, (1), P-as. We define v, (1) = v,(A) (= v,(1)) to bethe
A-discounted value of the game starting at stage n. Notice that v(A) = E[vo(1)].

We now let () p_be any decreasing sequence which converges to 0. Set v,
=limsup,_, o v (%), and w = E[vg]. We shall prove the next proposition.

Proposition 3.3. For every ¢ > 0, thereisa strategy X of player 1, and a positive
integer N such that

Vyyvn 2 Na Vn(i, y) 2 w — €.

We now explain why Proposition 3.3 implies Theorem 2.5 — w is the value of
the game. Definezg = liminf ,_, vo(ip), and z = E[zp]. By symmetry, for each
¢, thereexistsastrategy y such that y,, (x, ) < z+ € for each x, provided n islarge
enough. Thisreadily impliessw — € < z 4 €. Sincez < w, and ¢ is arbitrary, one
obtainsw = z. Thisshowsthat w isthe uniform value of the game. The claim about
the limit of discounted values is now immediate, since the sequence (1 p) used to
define w isarbitrary.

The following result will be used later.
Proposition 3.4. One hasv, < va G, (E[v,+1|Z 1]), for every n.

Proof. Recall that v, (A) = (1 — A)val G, (E[v,+1(A)|F,]). By monaotonicity of
the value operator,

Un(hg) < agval G, (E[SUp vu41(2p)| 7)), foreachq, 4
prP=q

wherea, = 1 — A, if theval is negative, and 1 otherwise. By dominated conver-
gence, lim,_, ;o E[suppzq V1A p)|F ] = E[vp41|F ,]. Since the val operator
is non-expansive, the right-hand side of (4) converges to va G, (E[v,+1|Z.]),
P-a.s. Theresult follows. O
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3.3. Locally optimal strategies and martingale properties

Denote by x,(1) and by x; optimal strategies of player 1 in the local games
G, (E[va+1(M)|Z ) and G, (E[v,+1|7 1]), which exist by Proposition 3.1.
Thus, for every strategy y and every n > 0, one has

Gn(x:v Vi E[vp41|F4]) = vy, P-as. 5
and
1 —=2)Gn(xn(X), yu; E[vpr1(M)|F4]) = v (1) P-as. (6)

Recall that v, (1) isto beinterpreted asthe value of the (discounted) game start-
ing in stage n, conditional on the fact that the game has not been stopped. Define
the strategies X(A) = (x, (1)), and X* = (x,5),.

Equation 3and Proposition 3.4 providerecursiveformulasfor (v,,),, and (v, (1)),,.
In order to interpret these formulas in terms of submartingale properties, we use
auxiliary processes.

For clarity of exposition, given any two events E and A in .o, we say that E
holds P-a.s. on A if P(A N E€) = 0. We will frequently omit the qualification
P-as.

Let (ay,), be an adapted integrable process on (2, .7, (¥ ,), P), and s1 < s2
two stopping times (with valuesin NU {4-o0}). We say that («;,),, isasubmartingale
between 51 and s if, for every n > 0, theinequality E[, 1|7 1] > «, holdsP-as.
ontheevent {s1 < n < s»}. The process («,), isasubmartingaleupto s2 if itisa
submartingale between 0 and s». It isstraightforward to adapt the sampling theorem
asfollows. Let («,) be asubmartingal e between s1 and s,. Let s beastopping time,
with P-as. finite values, such that s < s». Denote by 7, the o -algebra of events
known &t stage s1. Then one has E[o; |7 ,] > «y,, P-a.s. onthe event {s1 < s}.

Let (X, y) beapair of strategiesand ¢ theinduced stopping stage defined by (2).
We define (@) asa, = a, on{t > n}anda, = r(X,y) if t < n. Theprocess (a,)
depends on (X, y). To avoid ambiguity, we will sometimes write: under (x, y), the
process (&) etc, when we wish to emphasize which strategies are being used in
the definition of (). With a (convenient) abuse of terminology, we refer to (&)
asthe process («,,) stopped at ¢.

We use repeatedly the following relation, which holds P-a.s. on the event
{t = n}:

Elan+1|7 4] = G (xn’ yns E [an+l|v97n]) (7

if (X,,Y,) isindependent of «,+1. This latter independence property holdsin al
cases of interest, for instanceif «,+1 = vp4+1 OF @41 = v,y+1(A), SO that we shall
apply (7) without further justification.

Set 72 = o (F,, Yy), Sothat 72 includes past and present val ues of the payoff
processes, past “decisions’ of the players and the decision of player 2 at stage n.

Lemma 3.5. Lety bea strategy of player 2, and A €]0, 1[. Under (x(1), y), ((1 —
A", (X)), isasubmartingaleupto ¢ + 1. Under (x*,y), (9,), isasubmartingale,
both for (#,) and (Z2),.
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Notice that sup, |, (1)| and sup, |9, | belong to L1(P), for every choice of (X, y).

Proof. Letn > 0. Ontheevent {r > n},
E[(l - )\)ﬁn+1()»)|97n] =1 -=2Gr(x,(A), yu; E[vn+1()\)|f97n]),

which is at least v, (1), by (6). This proves the first claim since 4,,(A) = v, () if
t>n.
For asimilar reason, using (5),

E[ﬁn+l|g;n] > 17na

ontheevent {t > n}. On {t < n}, v,4+1 = v,. The same computation works also
for thefiltration (& ,%)n. This compl etes the proof. |

Corollary 3.6. For everyy, y.(X(1),y) = E(vo(1)).

Proof. Fix astrategy y of player 2. Letn > 0, and apply the submartingal e property
with the stopping time min(z + 1, n):

E[(L = 0™ g 11.m] = E(uo(h),
that is, using the definition of the stopped process (v,,),:
E[(1— 1) v (M)Lrzn + (L= 1) (X1, ) 1i<n] = E(wo(2).

By dominated convergence, the left-hand side convergesto y;. (X(1), ¥). ]

A similar proof proves the following.

Corollary 3.7. Letn € N. Let X(1) bethe strategy that isidentically O until stage
n, and coincides with x(1) afterwards. Let y be any strategy of player 2 that is
identically O until stagen. Then

E[(X— )" (xX(L), Y)IF 0] = va(3).

Corollary 3.6 implies that in the discounted game it is an optimal strategy for
player 1 to play x(1). No such result holds for the original problem: playing x*
needs not be an optimal strategy.

Example

19]

This matrix notation is a shortcut for the stopping game with payoffs a, =
b, = 1, ¢, = 0, P-as. for every n. Clearly v, and v, (1) are independent of n
and constant, so we simply write v and v(1). Thereal number 0 < v(1) < lisa
solution to theequation v(1) = (1 —A)va G(v(1)), fromwhichitiseasily derived
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v(h) = 1— VA, and x(1) = vA/(1+ +/A). Therefore v = 1. Denote by 0 the
strategy (of either player 1 or player 2) that never stops (0, = O for al »n). Then
x* = 0. However, y (x*,0) = 0.

Nevertheless, if 11 is P-as. finite under x*, then x* is optimal for player 1.
Lemma3.8. If P(11 < +00) = 1 under x*, then x* guarantees w for player 1.

Proof. Lety bean arbitrary strategy of player 2. By Lemma3.5, (v,) isasubmar-
tingale under (x*,y). Since P(11 < +00) = 1, P(t < +00) = 1 aswell, hence it
follows that

E[r(X*, ¥)1 <1 00] = E[U0] = E[v0] = w,

as desired. O

4. Themain ideas of the proofs

We give a detailed sketch of the proofs in the deterministic case. Many techni-
cal issues disappear in that case. Therefore the main ideas appear, hopefully more
clearly. Assumethat (a,),, (by)n, (cn)n, and thereforeaso (v,), and (v, (1)),, are
sequences of real numbers, bounded by 1.

For every y, (9,), isabounded submartingale under (x*, y), thus

E [1700] > E[vg] = w (8)

with 9 = limy, y,.

Fory = 0, (v,) coincideswith v, upto ¢1. Thus, 11 < 400, P-as., or (v,), IS
a convergent sequence. In thefirst case, x* is optimal by (8).

We now assumethat (v,,) isaconvergent sequence, and givene > 0, wechoose
No such that sup,, >y, [vn — Um| < /2. We aso assume for simplicity No = 0
(inthe general case, the strategies below would be supplemented by: play x* up to
No). If w < g, 1o < 3¢/2, s0 that x* is 3e/2-optimal by (8). We are thus led to
consider thecase w > .

First proof. Choose Ag suchthat v(Ag) > w—e¢/3ande’ € (0, ¢/6). Player 1 starts
playing according to x(Ag). For each 'y, ((1 — A0)" ¥, (Ap)), iSasubmartingale up
tot. Set sy = inf{n, v,(Ag) < &'}. Since (¥, (X0)), iSbounded, min(z, s1) isP-as.
finite. Moreover, since vy, (Ag) < v(ho) — (¢/6 — &) if 51 < ¢, the probability that
t < s1 isbounded away from 0.

At stage 51, the approximation of (v,) by (v, (Ao)), gets poor, so we switch to
anew discount factor: Ag is replaced by A1, with vy, (A1) > vs, — €/3 > ¢/6, and
X(r1) isplayed until so = inf{n > s1, v,(A1) < &'}, where we again switch from
A1 to A2, and so on.

Call X the resulting strategy. Under (X, y), t is P-a.s. finite, since for every n,
the probability of stopping between s,, and s,,+1 isbounded away from 0. Introduce



442 D. Rosenberg et al.

the sequence (wy),, where w, = v,(1,) if s, < n < s,11. By construction,
wo > v — ¢/3 and (,), is asubmartingale. Since r < +o0, it converges to
r(X, Y)1 < 100, therefore y (X, y) > w — g/3.

Second proof.  The definition of X here is motivated by the observation

limsupa, > w —¢ 9

whichisderived asfollows. For each A, under (x(1), 0),7 = t, andr(X(1), 0) = a,
if r < 4o00; thus,

B[ =0T ctoo | = 72X, 0) = 00,

Theleft-hand sideliesin the closed convex hull of {0, a,,, n € N}. Givenany § > 0,
v(L) > w — 8, for asuitable A. Therefore, sup, a, > w — 6. Sincev, > w — ¢ for
every n, this proof may be repeated, and (9) holds.

We defineX by x, = x + ¢ if a, > w — 2¢, and x,, = x; otherwise. Since
(9) halds, 11 < +o00 P-a.s. under X. To see that this strategy guarantees player 1 an
expected payoff of w, we note that the following points hold:

1. If player 2 stops the game (¢ = t2), then the expected payoff of player 1isat
least w (upto ane).

2. In the case that player 2 aways continues, since player 1 changes his
strategy only when a unilateral stopping is favorable for him, E[v,] >
w — €.

5. Two e-optimal strategies
5.1. Preliminaries

For the rest of the section wefix € > 0. Set m = sup, (sup(lax |, |bxl, |cxl)). Since
m € LY(P), there exists n > 0 such that, for every A € .«7,

P(A) < n= E@nly) <e. (10)

Noticethat |v,(A)|, |v,| < E[m | #,], P-as. for every n.

The sequence (v,,) needs not converge. On the other hand, the process (v,),
being a submartingale under (x*, y) (with sup©, € L(P)) converges P-as. andin
L1(P), for everyy.

The stopping time #1 isafunction of player 1's strategy. Under (x*, 0), r = 11,
P-a.s. Thisimpliesthat (v,,) converges P-a.s. on the set {r1 = +o00}.

Choose Ng € N such that

P{ sup |vy — vl > €/2,11 > No} < 1. (11)

n,m>Ng

Thus, after stage N, with high probability v,, does not change by much.
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5.2. An e-optimal strategy for player 1 —1

We first define the switching stages (s),) and the approximating discount factors
(Ap): v(xp) approximates v between s, and s,1. Set so = No if vy, > €, and
so = +oo otherwise. Choose ¢’ € (0, ¢/6) and an .F y,-messurable function Ag
with vy, (Ao) > vsy — €/3if 5o < +00.

Sets,+1 = inf{n > sp,v,(1,) < &'} and choose an F 5,41-Measurable func-
tion A 41, such that Uspig (Ap41) > Us,yy —€/3 if sp41 < 4o00.

Let X be the strategy that coincides with x* until so, and with x(2 ,) between s,
and Sp+]_:

* n<sg

X, =1
=
Xp(Ap) Sp<n<spi1

We shall prove that X is 7e-optimal.

By Lemma 3.5, for every y, (v,), is a submartingale up to sg, and ((1 —
Ap)'0,(Xp)), is @ submartingale between min(s,, r + 1) and min(s,41, ¢ + 1),
for each p.

We introduce an auxiliary variable z,, defined as

o= v, —€/3 n<sp
" Un(Ap) Sp =n <Sp41

Intuitively, z, is (up to €/3), the parameter we are interested in: the limit v, before
stage so, and the A ,-discounted valuefor s, <n < sp11.

We ultimately wish to get a submartingale. A minor adjustment is needed. De-
fine the stopping time s by s = 400 if s9 = 400 and s = inf{n > No, v, < ¢/2}
otherwise. By the definition of Ng, P(s < 400, t1 > No) < n. We use s to define
aprocess (wy,) by

_JE[m|ZF,] s<n
Wn = n otherwise

Observe that
Wpi1 = Upy1(hp) ONtheevent {s, <n < sp41}. (12

Indeed, thisisclearif s <n+1orifr <n -+ 1. If not :

Bpi1 = { Vp+1(Ap) n+l<spy1
Vpr1(Apy1) n+1l=sp41
Ifn+1<s,r1, then, 1 = Uyp1(1p), Whileif n + 1 =s,41,
Wnt1 = Vpt1 — €/3= & = vap1(hp).
Weset7 +1=min(t +1,s). Observethat P(r =) > 1 — 1.

Lemmab5.1. For everyy, (w,) isasubmartingale upto 7 + 1 under (X, y).
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Proof. Fix astrategy y of player 2. Let n € N. We provethat E[w,, 41| ] > Wy,
P-as.ontheevent {r + 1 > n}.

Ifn < so,w, = v, —€/3, wy1 > vyp1—€/3(Withequality if n+1 < sp), and
Xn = x5 ThUSE[W,11|F 1] = Gu(x,), yu; E[vn41—€/3|F 1)) = v, —€/3, where
the second inequality follows from the inequality G, (x}}, y,; E[vat1|Z4]) > v
and since the val operator is non-expansive.

Ifs, <n <spt1, wp = v,(Ap), AN X, = x,(A,). Inthat case, by (12),

- _ 1
EWn1170) = Gu(En, Yus E[vn+1()\p)|g;n]) = 1_2a vn()\p) = vn()\p) = Wp,
—Ap

where the last inequality holds since v, (1) > 0. ]

Lemma5.2. For everyy, under (X,y), < +oo, P-a.s. on the event so = No.

Proof. Fix astrategy y of player 2. We proceed in two steps. We prove first that
min(s,41,t) < 4o00,P-as.on{s, < s}. Frommin(s,, +1) uptomings,1, t+1),
((L—=xp)"w,) isasubmartingale. Thus, forevery N € Nandn < N, thesampling
property applied to the finite stopping time min(s 41, t + 1, N) yields

1 '
w, < —— E [m(l _ kp)m'n(S”+l’l+1)1min(sp+1,r+l)§N
A—ap)n

iy (L= 2V Lnings, .40 817 |

on{s, <n <min(sp41, ¢t + D}
By taking N — +o0 and by dominated convergence for conditional expecta-
tions, one obtains

¢ < vn(Ap) = wy < E [m(l _ Ap)min(sl’+1’t+l)_n1min(sp+1,t+l)<+oo|g;ni| (13

ontheevent {s, <n < min(s,;1,t + 1)}.

By taking the limit n — oo in (13), one gets limsupw,, < 0, P-as. on the
event {s, < +o00,1 = 5,11 = +00} N {s, < s}. Butonthisevent w, > ¢, P-as.
for every n. Thisends thefirst step.

One can rephrase the conclusion of the first step as min(s,11,7) < +oo if
min(s,, f) < +oo, P-as. By induction, min(s,, 7) < 4o0 if so < 400, P-ass. for
every p.

Since (9, (xp)), isasubmartingalebetweenmin(s,, 7+1) and min(s 41, 7+1),
andsince vy, , (Ap) < g,

/ F
v, (Ap) S Elmliacg €L gl Py

on{s, < t + 1}. Since vs,(Ap) > €/6, it follows by taking expectations that

€ _ -
EP(SP <t+ 1) < E(mlsp<;+1<+oo) —+ E,P(Sp+l <t+ l),
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hence

€ _
(é — 8/> P(Sp <t+1< E(mlsp<?+l<+oo)

As p goesto infinity, theleft-hand side convergesto (/6 — &")P(so = No, f =
+00), while the right-hand side converges to 0. The result follows. ]

Proposition 5.3. There exists N € N such that, for everyy and n > N, one has
Ya(X,y) = w — Te.

Proof. By Lemmab5.2withy = 0, there exists some positiveinteger N1 > Ng such
that under (X, 0)

P(so = No,t > N1) < 1. (14)

Thisreadily implies that (14) holds under (X, y), for every y.
Let now N2 be sufficiently large such that
%E[m] <e. (15)

Using (14), (10) and (15) we have:

1 & 1
E -E|——
|:n+1kzogkj| |:n—N1+1ng:|

k=N1

< 2¢, providedn > N». (16)

Fix n > N> and any strategy y.

By definition, y,11(X.y) = E[Z;Y G o] We will evaluate
E I:Wl]ﬂ-l ZZ:N;{ gk:l Let N]_ < k <n.

On{t < N1}, gk = Wn;.

On {r > N1, so = No}, |gk| < m, but this event has a probability at most 25.

Consider now the event {r > N1,s0 = +oo}. The event {r > N1,s0 =
+00, sUp,> v, Vg > 3¢/2} has probability at most 7. On the event {r > N1, 50 =
+00, SUp,> N, Vg < 3e/2}, gk = wi if k > 1, while gy = 0> wy — 3e/2ifk < 1.
Therefore,

E [gkltZNl,So:-ﬁ—Oo] > E [ﬁ)kltle,so:—i-oo] - 38/2 —&
= E [ﬁ)NlltZNl,So=+<>o] - 58/27

where the second inequality usesthefact that {r > N1, so = +oo} € F y,, and the
submartingale property of (0,,),,.

Thus,
Elgk] = E[wn,] —5¢/2— 2e > w — 9¢/2,

where the second inequality uses w = E [wg] and the submartingale property of
(Wy)y. Theresult follows from (16). O
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5.3. An e-optimal strategy for player 1 —1I

By Lemma 3.8, if P(11 < +00) = 1 under x*, then x* guarantees w for player 1.
Therefore, we assume from now on that under x*

Pty < +0) < 1. (17)
Recall that ¢ > Oisgiven, and that n > 0 issuch that
P(A) < n = E[m1,] <e. (18)
Assume moreover that nE[m] < s.

Recall also that Ng is such that, under (x*, 0),

P< sup vy — Ul >8/2,t12No> <. (29

n,m>No
By (17) we can assume w.l.0.g. that Ng is sufficiently large so that under x*,
P(t1 < +o0 | 1 > No) < n.
Define the strategy X by

n =

P inf{x} +n, 1} ifn> Noande < vy, <a, +€
Xy otherwise.

Wewill provethat y (X, y) > w—29e, for every y. Thestronger statement: y,, (X, y) >
v — 6¢, for every n > N1 and every y also holds, provided N; islarge enough. We
will not provide a proof.

Lemmab5.4. One has

limsupa, > limsupv, ontheevent {limsupv, > 0}.
n n n

Proof. Let . > 0and g € N be given. Denote by X(1) the strategy that coincides
with 0 for n < ¢, and with x(A) for n > ¢. From Corollary 3.7, under (X(1), 0),

(L= M TE[rRO), 0@ =N ool #2000 (20)

Since player 2 never stops, t =ty andr = a;,0nt < +00. Since (1—x) 14 <1,
P-a.s., the left-hand side of (20) is at most

E[af1t<+oo|97q] <E |:wpan+|97q:| s
n>q
with a;7 = max(ay,, 0). Using (20),

E [supa;fl?q} > vy (A).
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By letting A go to zero, one obtains E [sup,-, a7 ,] > v,. The sequence
(E [sup,>, a7 |7 4]), converges P-as. to limsup, af. Therefore limsup, a,” >
limsup, v,. Thus, on the event {limsup, v, > O}, limsup, a, > limsup, v,, as
desired. O

Set Q1 = {t > No, v, > €} € F n,-

Proposition 5.5. Let y be given. One has
E [r()A(, y)1911t2:t<+00] = E [UN01911t2:t<+oo] —4e
under (X, y).

Proof. We explicit the idea that, if player 2 stops at stage n, the corresponding
expected payoff (where the expectation istaken with respect to player 1's decision)
isat least v,, up to nm, since player 1 plays x,; up to ».

Recall that ﬁf,zl =o(F,,Y,), sotha 9?5 includes past and present values of
the payoff processes, past “decisions’ of the players and the decision of player 2 at
stagen. Observethat {r, =t = n} € 975 and that by assumption X, isindependent
of 7 2. Therefore, on the event {r, = 1 = n},

E [r(ﬁ, y)|975] = Gy (%> 1; E [003117,])

(Note that the variable E [v,,+1|57n] is here irrelevant). Since x,, is an optimal
strategy in the local game G, (E [vn4+1/7 4 ]), by Lemma 3.4,

Gy (xnv LE [Un+l|97n]) >val G, (E [Un+l|g:n]) > Up.
Since |2, _55}1| =,
|Gn (xn, LE [Un+l|<g/7n]) -Gy (xAna LE [Un+1|37n])’ =nm,
sothat E [r(R, y)|#2] > v, — nm ontheevent {t, = n = t}. In other words,
E [r& V) lum=i|#2] = (00 = 1) Lpmms, P-as

By first taking conditional expectationsgiven # y,, and then summingovern > N,
one obtains

E [V()A(, Y)1N0512:t<+oo|97N0] >E [nTL Uﬂlfz_f_”|g7N0i|
ZINo
—T}E [m1N0§t2:t<+OO|g;No] )

which yields

E [7‘()’\(, y)1911l2=l<+00] > E |:1§21 n|>n)\:/ Un 1[2:1:7!] - TIE [m1911t2:t<+00] .
ZINO
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DefineQy; = Q1N {SUP, > ng [Vn — Um| < €/2}. Thus, P(R21\ R2) < n, therefore

<E [191\921’”] <e.

‘E |:1§21 niZn/tlo Un 1t2_t_n:| —-E I:]-Qg Yllznft’o Un 1t2_t_n:|
On Qy, inf,> N, vr > v, — /2. Onefinally gets

E [r()A(’ y)1911t2:t<+00] >E [vNo]-Qlltz:t<+oo]
—gp(ﬂl N{ro =1 < +o0}) — 3e. (21)

Proposition 5.6. Lety be given. One has
E [I"()/Z, Y)1911z1<z2] = E [UN01§21111<t2] — 2e.

under (X, y).

Proof. Fix astrategy y. Notethat 1 N {f1 < 2} = {No <11 < t2, vy, > €}, and
onthisset, r (X, y) = ay,.

By the definition of Ng, P(r1 =t > No,a; < vy, — €) < n. In particular,
P(No <t1 < t2,a, > vy, — € > 0) > P(Q1 N {1 < 12}) — n. Theresult follows
from (18).

Lemmab.7. For everyy, y(X,y) > w — 9.

Proof. Define the stopping time 6 by 6 = Np on Q1 = {r > No, vy, > €}, and
0 = +oo otherwise. The strategy X coincides with x* up to 8. Therefore, (7,,) isa
submartingaleup to 6.

Noticethat 6 = +o0 if 6 > Np; therefore (v,,) converges, P-a.s. on the event

{6 > Np}, say t0 Veo.
Given the integrability properties of (v,,), one has
E(#) = E(f0) = w. (22)

By definition of (7,,), 0nehasteo = r(X,y) if t < +00, 100 < 3¢/2if t = +00
and sup,, >N, 1Vn — vm| < €/2,and Voo < m otherwise. Thus, by (18) and (19),

E[{}oo19>No] = E[r()A(: y)lt<+o<>1€>No] + 36/2 + €.
Theinequality (22) may be rewritten as
E[UN()]-Q;L + i30019>N()] > w.

and therefore, using Propositions 5.5 and 5.6, E(r (X, ) 1;c100) > w — 1—276, and
the result follows. ]
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6. Concluding remarks

This section contains a discussion of related issues. We first discuss an alternative
way of introducing randomization into stopping games'. We then discuss a fairly
easy extension of our main result.

We introduced randomization by allowing the players, at any stage, to stop with
a probability between zero and one. These strategies are usually called behavior
strategies in the game theory literature. We might as well consider the possibility
for aplayer to select randomly a (deterministic) stopping time at the beginning of
the game, thereby extending differently the set of available strategies. These strat-
egies are called mixed strategies. For many classes of games, the two extensions
are equivalent in astrong sense. Thefirst equivalence result is due to Kuhn (1953).

For stopping games (asfor many other games), thedefinition of mixed strategies
assuggested hereisproblematic, sinceit requiresto define aconvenient measurable
structure on the set of stopping times. There are two ways to avoid this problem.

Following Aumann (1964), one may enlarge the probability space from
(R, o7,P)to (2 x[0,1], / ® 4, P® A1), where A1 isthe Lebesgue measure. A
mixed strategy (for Player 1) isthen defined as an .«/ ® #-measurable function ¢
from Q x [0, 1] to N U {400} such that

for A1-ae.r € [0, 1], ¢(r, -) isastopping time.

Intuitively, ([0, 1], A1) isarandomizing devicefor player 1. Weintroduce an inde-
pendent copy ([0, 1], A2) for player 2.

We claim that these mixed strategies are equivalent to behavioral strategies.
Denote o, = ¢ (r, -). Then o, is A1-ae. astopping time. For each mixed strategy
¢ and every n € N, define H(¢), = [ li5, <n}r1(dr) the probability under ¢
that player 1 stops prior to stagen + 1. Clearly, (H (¢),) is (% ,)-adapted. It can
be viewed as the (random) distribution function corresponding to some behavior
strategy X, that we denote by i (¢). The map i from mixed to behavior strategiesis
onto. Indeed, given abehavior strategy x, denote by F* the distribution function of
1. Set X (r, w) = inf{n > 0, FX(n, w) > r}. Then ¢* isamixed strategy, such
that 2(¢*) = X. It is easy to verify that, for each pair (¢, ) of mixed strategies,
the expected payoff under (¢, 1) coincideswith the expected payoff under the pair
(h(¢), h(y)) of behavior strategies. For more details, see Touzi and Vieille (1999).

Another approach to define mixed strategiesisdueto Bismut (1977): it consists
of interpreting such a strategy as an element of the dual space of a Banach space
containing the stopping times, and of using functional analysis methods.

We argue now that the first proof of the main result can be extended to handle
alarger class of stochastic games.2 The class of games we consider now is the fol-
lowing. Each player has finitely many actions. The sets of actions are respectively
A and B for the two players. The two players choose repeatedly elements from A
and B. For each pair (a, b) € A x B, two processes (g%?),, and (p%?),, are given:
pfj’b isthe probability that the game stopsin stagen, if (a, b) isplayed in that stage

1 We thank areferee for pointing out the issue.
2 Wethank Sylvain Sorin for suggesting this generalization.
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and the game has not stopped earlier; gZ"’ is the payoff that is received by player
1linthat case. The payoff is zero if the game never stops.

In words, those are games where the actions of the players may influence the
probability of termination and the terminal payoff, but, if the game continues, they
do not influence the information of the players at the next stage.

Clearly, stopping games belong to this class, with A = B = {stop, continue},
and p? = 0if a = b = continue, and p?*® = 1 otherwise. To specify properly
the game, we need to tell what isknown at stage n about past choices of the players.
Thisturnshereto beirrelevant (in contrast with other classes of stochastic games).

We briefly sketch how the proof in Section 5.2 has to be adapted. All nota-
tions are the same. The only difficulty lies in defining Ng, since, loosely speak-
ing, there exists no least terminating strategy. Partition Q into Q. and 24, where
Q. € o/ = F  istheconvergence set of the sequence (v,),, and Q4 = Q\Q2.. We
chooseaninteger Ng largeenoughandanevent F € 7 y, suchthat P(FAQ,) < 7.

We define a strategy X that has the following features: it coincides with x* un-
less F occurs and vy, > ¢; in that case, it switches at stage Ng to the strategy
we defined in section 5.2, i.e., it plays a sequence of locally optimal strategiesin
properly chosen discounted gamesif vy, > ¢.

It can be shown that X guarantees w up to 7¢.

Itisnot clear whether the second proof can be generalized to this class of games.

We conclude with abrief discussion on our assumptions related to thefiltration
(7 n)n- We assumed that the payoff processes (a,), (b,) and (c¢,) are adapted, and
that X,, and Y,, are independent of &, but %, 1-measurable. As we argued pre-
vioudly, the first assumption can be totally dispensed with. Informally, the second
assumption means that (i) in any stage, each player has no information about the
action the other player is about to choose, and (ii) past choices are observed. The
first part of the assumption is crucial, but the second isirrelevant. Observe indeed
that our e-optimal strategies make no use of the past actions of the opponent. Fi-
naly, it is crucia that both players have the same filtration. The existence of the
value does not extend to the situation where the payoff processes are constant, and
one of the players has more information than the other about their value.
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