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Abstract

We consider normal form games in which two players decide on their strategies before the start
of play and Player 1 can purchase noisy information about his opponent’s decisions concerning
future response policies (i.espy on his opponent). We give a full characterization of the set of
distributions over the players’ payoffs that can be induced by such equilibria, as well as describe their
welfare and Pareto properties. Inx22 games we find three equilibrium phenomena: (i) when the
game is non-degenerate, the information purchased is independent of its cost. The cost determines
only whether information is purchased or not, (ii) the player who spies treats his information as
if it were deterministic, even though it is correct only probabilistically, and (iii) in chain store
models, espionage is used if and only if the perfect equilibrium payoff differs from the Stackelberg
equilibrium payoff with Player 2 being the Stackelberg leader.
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1. Introduction

In many real world interactions, players decide what to do long before they have to play
the chosen action—an army prepares for different situations in the battlefield years before
a war begins; a government decides on its policy and reactions to various scenarios before
starting negotiations; an incumbent firm decides on its reactions to new market entries
before entrants appear.

Once decisions are made in advance, espionage comes to mind. Suppose Players 1 and
2 engage in a two-stage sequential game that prescribes Player 1 to be the first to play an
action and Player 2 to be the second. If Player 2 decides on her reactions to Player 1's
move at the outset of the game, Player 1 might benefit by sending spies who will reveal the
decisions made by Player 2. In fact, even if espionage is costly and provides a noisy signal
of Player 2’s decisions, Player 1 may still profit by utilizing it.

In essence, if it is common knowledge that Player 1 spies on Player 2, it is as if the
order of actions were switched. Espionage then allows Player 2 to commit herself to an
action and Player 1 to subsequently react. Thus, employment of espionage involves an
interplay between the ‘first mover advantage’ of Player 2 and the ‘second mover advantage’
of Player 1.

More formally, in the present paper we study one-shot games that are extended with the
ability to spy. The game is comprised of three stages. In stage 1, Player 2 chooses an action.
In stage 2, Player 1 purchases an information device that reveals some information on the
action chosen by Player 2. Finally, in stage 3, Player 1 chooses an action, and the original
one-shot game is played. The payoff of Player 2 is her payoff in the original one-shot game,
whereas the payoff of Player 1 is the difference between his payoff in the original one-shot
game and the cost of the information device he purchased.

The set of available information devices, as well as their cost, are exogenous. We assume
that Player 1 can always purchase a trivial device that reveals no information and costs
nothing.

When concentrating on games where each player has two actions we find three
phenomena that occur in equilibrium: (i) when a game is non-degenerate, the information
purchased is independent of its cost. The cost determinesatwethier the information is
purchased or not, (ii) the player who spies treats his information as if it were deterministic,
even though it is correct only probabilistically, and (iii) in chain store models, espionage is
used if and only if the perfect equilibrium payoff differs from the Stackelberg equilibrium
payoff with Player 2 being the Stackelberg leader. We also study the welfare and Pareto
properties of such equilibria.

The motivation for our inquiry comes from the attempt to explain the employment
of different institutions providing information in a variety of economic environments. To
mention a few examples, investors can employ experts who report on different attributes
of firms to allow better stock investments; in certain industries, engagement in industrial
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espionage is common practigepecialists are often hired to give forecasts before certain
projects are undertaken (e.g., political advisors for defense projects).

When Player 2 knows of Player 1's espionage opportunities, Player 1's mere option to
spy may in fact reduce his profit. Indeed, the option to spy can allow Player 2 to exploit
a first mover advantage in the game. In such cases Player 1 would prefer not to have the
ability to spy, since this ability reduces his expected payoff in equilibrium. Nonetheless,
not utilizing his spying capabilities may make him even worse off, when it is impossible to
commit himself not to spy.

In other words, espionage creates two opposing effects. A direct effect of espionage
is the improvement of the spying party’s information concerning his opponent’s actions.
This is, in a sense, a ‘second mover advantage.” An indirect effect of espionage is driven
by the opponent’s knowledge that she is being spied upon. She therefore has the ability to
(probabilistically) commit herself to a certain policy and take advantage of a ‘first mover
advantage.’ This latter effect hinges on a common knowledge assumption that is crucial
for the analysis and will be assumed throughout the paper. The interplay between the two
forces determines the outcome of the game.

This intuitive tradeoff comes to light in the standard chain store model. There is a
subgame perfect equilibrium where the Incumbent, serving as Player 2 in our framework,
accommodates or fights, both with positive probability, and the Entrant, who serves as
Player 1, purchases an espionage device and enters or stays out according to the signal he
receives from the device. Indeed, if the Incumbent randomizes her actions, the Entrant is
better off purchasing information on the Incumbent’s action realization, when the cost of
such information is sufficiently low. Once the Entrant employs espionage, the Incumbent
can (probabilistically) commit herself to fight and best responds with a randomization
between her actiorfs.

In this equilibrium the payoff of the Entrant is smaller than his payoff in the subgame
perfect equilibrium of the original game, but (utilitarian) welfare increases when the
cost of espionage is low enough. It turns out that, contingent on the Entrant purchasing
information, the device that he purchases (i.e., the information acquired) does not depend
on its cost. The cost of the device only influences the probability that the Incumbent will
fight. However, if the cost of the device is too high, the Entrant will not profit by purchasing
it, and there will be no equilibrium where the option to spy is used.

In the standard chain store example, Player 2 has a first mover advantage. This aspect
of the game ends up playing a crucial role in the general existence of equilibria with
non-trivial use of espionage. Generally, any pure perfect equilibrium in the original game
is also a perfect Bayesian equilibrium in the extended game, where the players do not
utilize their option of spying. Indeed, if the opponent’s strategy is pure, no information

1 From the 1997 US State Department and Canadian Security and Intelligence Service Reports, corporate
espionage costs US businesses over $8.16 billion per year. Moreover, 43% of American corporations have had at
least six incidents of corporate espionage.

2 This differs from reputational explanations (see, e.g., Kreps et al., 1982; Fudenberg and Levine, 1989, 1992)
both in assumptions and results. We do not assume anything about the distribution of types of Incumbents. Hence,
the somewhat problematic assumption of ‘irrational Incumbents’ is not needed in this model. Moreover, our
results predict that a non-vanishing portion of the population of Incumbents will in fact accommodate.
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can be gained by way of costly espionage. Theorem 4.13 asserts that in general chain
store models (corresponding tox22 normal form games in which one of the rows has
constant payoffs), espionage is used if and only if Player 2 has the first mover advantage;
thatis, the perfect equilibrium of the original game differs from the Stackelberg equilibrium
with Player 2 being the Stackelberg leader. We call this phenomtieqgminciple of first

mover. Interestingly, the principle of first mover is in fact peculiar to chain store models
and does not hold for all 2 2 games. Intuitively, the second mover advantage of Player 1

is sometimes sufficiently strong to assure the existence of equilibria with non-trivial use of
espionage even when Player 2 does not have a first mover advantage.

Another interesting phenomenon is that in practically atk 2 games (excluding
degenerate cases) the cost function of information influences the devibaher to
purchase information or not, but nehich device to purchase. We call this phenomenon
the principle of cost-independence.

We generalize the chain store example and characterize general chain store models for
which only one player profits from the existence of espionage and such games for which
both players profit from the availability of espionage. These two classes turn out to be
exhaustive. We also discover that for both classes, for a sufficiently low cost of information,
espionage provides an efficiency improvement.

The game structure we propose enables players to correlate their actions. Indeed, when
a player receives some information on his opponent’s realized action, making use of this
information would imply a correlation between the players’ actions. Unlike the correlated
equilibria scenario, in which both players receive a signal from a third party, here only
Player 2 can effectively send a signal. In Theorem 4.6 we provide a full characterization
of equilibria with espionage as a modified set of the correlated equilibria of the original
game.

Our model has some similarities to games with communication (see, e.g., Forges, 1986;
Myerson, 1991, and the references therein). There are two main differences between
the models. First, in our framework the signal is a stochastic function of Player 2’s
(irreversible) action, whereas in games with communication signals precede the players’
action choices. Second, the scope of the noise characterizing the signal is a costly
choice of Player 1, whereas in games with communication the signals are determined via
cheap (in fact, free) messages that players send according to an exogenously specified
communication protocol.

Nonetheless, it is worth noting that Crawford and Sobel (1982) considered a commu-
nication protocol related to the current setup. They described a sender-receiver game in
which a better-informed sender sends a noisy signal to a receiver, who then chooses an ac-
tion that affects the utility levels of both players. The analysis presented in this paper could
be used to extend the Crawford and Sobel setup. Namely, the receiver would be allowed
to choose the type of messages, in terms of their noisiness and corresponding cost, that the
sender sends.

The literature on espionage per se appears to be very sparse. Matsui’'s (1989) starting
point is similar to ours. He is interested in analyzing a game in which a player may receive
information on her opponent’s strategy and be able to subsequently revise her own choice
of actions. However, Matsui approaches this general issue from a different angle than
us. He considers the case of an infinitely repeated two-person game in which there is an
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exogenous small probability that one or both of the players will be perfectly informed of the
other’s supergame strategy at the outset of the game. The players have a chance to revise
their strategies on the basis of this information before actual play begins. Matsui’'s main
result is that any subgame perfect equilibrium pair of payoffs is Pareto efficient, provided
that the probability of espionage is sufficiently small.

Matsui’s (1989) result hinges on the fact that #aene game is beingepeated. This
enables a player who acquires his opponent’s supergame strategy to signal this information
to his opponent, whereby both players switch to a Pareto efficient strategy pair. Thus, all
subgame perfect equilibria entail playing a Pareto efficient strategy pair right from the
outset.

In our framework, since there is only one stage, no signaling is possible. To benefit from
being spied upon, Player 2 must commit herself, with positive probability, to play actions
that are bad for herself (if she plays only actions that are good for herself, Player 1 can
anticipate that, and does not need to purchase information). Player 2 hopes to profit by
playing actions that are bad for herself, but also bad for her opponent: once Player 1 finds
out that a bad action was chosen, he will play an action which is better for Player 2. This
implies that a commitment to bad actions might be necessary. In particular, in contrast to
Matsui’s (1989) result, utilizing espionage in a one-shot game does not imply efficiency.

Another related paper is Perea y Monsuwe and Swinkels (1997). They studied a model
of extensive form games, where at every information set, players can purchase a device
from an information seller who is a participant in the game. The available devices differ in
accuracy, and their cost is determined by the information seller. Thus, in their model, the
cost of information is endogenous. Each player’s purchasing decision, as well as the cost
function he faces, are not revealed to the other participants of the game. Perea y Monsuwe
and Swinkels are concerned with problems of evaluating information in such scenarios—
what the value of the information is, how it can be computed, and how the flexibility of
the information seller in setting the price of the information devices influences the play:
whether it is worthwhile to set up the price in advance, or whether it is better to negotiate
at every information set. Despite the underlying similarity to the model studied by Perea 'y
Monsuwe and Swinkels (1997), our paper examines a different set of questions. We take
the information seller as given and study her effects on the outcomes of the game. We
concentrate on properties of equilibria from the point of view of the players and of a social
planner.

Games with espionage are related to games with endogenous timing, that have been
tackled with in the Industrial Organization literature. Timing of output choice in the market
determines the competition structure. Sequential choice corresponds to a Stackelberg
game, where the first firm to make a choice is termed the Stackelberg leader and the
second is termed the Stackelberg follower. Simultaneous choice of output corresponds to
a Cournot competition. Mailath (1993) allows a firm with superior information to delay its
guantity decision until the decision of the less informed firm (so that decisions are made
simultaneously). The unique stable equilibrium turns out to be one in which the informed
firm moves first, even though the leader may earn lower ex-ante profits than it would earn
if it were choosing quantities simultaneously with the follower. Sadanand and Sadanand
(1996) generalized Mailath’s results and showed that when there is demand uncertainty
and firms endogenously choose entry timing, relative firm sizes and uncertainty jointly
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determine the equilibrium. Van Damme and Hurkens (1996, 1997) study the endogenous
timing problem in the context of commitment. In their model, players can see the actions
of players who moved before them. Thus, a player can turn the underlying simultaneous
game into a sequential game in which she is the first to move. A player will then choose
an action early in the game if she has a ‘first mover advantage.” Our paper adds to this
branch of literature in that the underlying game can be sequential and the change of turns
is both probabilistic and costly. Thus, part of the optimization problem is the determination
of how much resources are to be allocated to switching turns and exploiting the ‘second
mover advantage,’ if it exists.

In our model the cost of information is exogenous. There is a vast literature dealing with
the value of information. Several authors (e.g., Hirshleifer, 1971; Green and Stokey, 1981;
Allen, 1986) studied the value of private information to a player. Others (e.g., Kamien
et al., 1990, and the references therein) considered a situation in which an agent possesses
information relevant to the players of a game in which he is not a participant. The value
of information is then defined according to what this agent can achieve by behaving
strategically. We view these theories as possible foundations for the cost function which
we take as given.

We begin by providing the general framework for our analysis in Section 2. We then
analyze a few motivating examples in Section 3. In Section 4 we study properties of
espionage equilibria: we start with existence properties that hold for generat one-
shot games in normal form in Section 4.1. We then provide a full characterization of the
set of equilibria with espionage in one-shot normal form games in Section 4.2. In Sections
4.3 and 4.4 we concentrate on general 2 one-shot games in normal form and on chain
store models. This allows us to point out some of the driving forces in the current setup.
Section 5 summarizes the paper and suggests some possible avenues for future research.
Technical proofs are relegated to Appendix A.

2. General framework

For every finite setk, | K| is the number of elements ik, and A(K) is the set of
probability distributions oveK . For everyu € A(K), w[k] is the probability ofk € K
underp, andu[K'] =), g ulkl], for everyK’ € K. We identify eachk € K with the
probability distribution inA(K) that gives unit weight t@.

2.1. Themodel

We consider two-player non-zero sum games in normal form. Player 1 is the row player
and Player 2 is the column player. We denotelby {1,...,n} andJ = {1,...,m} the
actions of the two players, and by = (a;;) and B = (b;;) the two payoff matrices. The
game in normal forngA, B) will be referred to as thbase game. A game in normal form
with espionage, or simply theextended game, is a tupleG = (A, B, S, Q, ¢) where

(i) (A, B) is a base game,
(i) S is afinite set of signals,
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(iii) Q is a setof functiong : J — A(S),
(iv) ¢:Q — R represents the cost of information, thatggg) is the cost of information
device®(g). We assume > 0.

For eachg € Q there corresponds an information devigéy), which, when actiory is
chosen by Player 2, gives a (probabilistic) sighalith probability ¢ (j)[s]. Note that an
information devicey can be represented by anx |S| Markov matrix, in which the entry
(j,s) is equal tog (j)[s]. In particular,Q is (equivalent to) a subset of a Euclidean space.
In the sequel we identify each functigne Q with the corresponding information device
®(q), and with the corresponding matrix. Finally, the description of the game is common
knowledge.

The extended game is played as follows:

Stage 1: Player 2 chooses an actjoa J.

Stage 2: Player 1 purchases an espionage dexige from the setQ of available devices.
Stage 3: Player 1 receives a signa S, where Prols | j) = ¢ (j)[s].

Stage 4: Player 1 chooses an acticn/.

The players’ payoffs areif; — ¢(q), bi;).

A pure strategy for Player 2 is a pure actipa J, and a mixed strategy is a probability
distributiony over J. A pure strategy for Player 1 is a pai, x) whereq € Q is the
information device he purchases in stage 2, and (x(s))ses € I° is a function that
assigns a pure action to be played in stage 4 for any given signal received in stage 3.
A mixed strategy for Player 1 is a probability distributiorover Q x 5.

We denote byr! (y; 1), [ = 1, 2, the payoff to Playet when Player 2 plays the mixed
strategyy, and Player 1 plays the mixed stratggyFormally,

tyiw= Y / (¢(Dlslaij — (@)1 (x(s) =i)du, and

(i,j,8)el xJ xS (q.x)eQxIS
Tyiw= Y.y / ql(DNIsbijI (x(s) = i) du,
(i,j.8)el xJ xS (g, x)eOxIS

wherel (x(s) = i) is equal to 1 ifx(s) = i, and is equal to 0 otherwise. The functions
andn? are continuous. Moreover! is linear inu, andz2 is linear iny.

Definition 2.1. An information devicey is trivial if it gives no information to Player 1; that
is, g(j)[s1=q(j)[s] for everys € S and everyj, j' € J.

We make the following assumptions on the components of the game:

A.1 Q contains a trivial device.

A.2 The cost of any trivial device is zero.

A.3 The set of available device® (which is equivalent to a subset of a Euclidean space)
is convex and compact.

A.4 The cost functiorp is continuous and convex oveér.
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In some situations it is natural that the signals coincide with the actions of Player 2.

Definition 2.2. The extended gamedsnonical if S = J; thatis, the set of signals coincides
with the set of actions of Player 2.

If Player 2 has only two actions (say, Left and Right), = 2, then a canonical device
is characterized by two numbers: the probability that it reports Left when the actual action
chosen by Player 2 is Left, and the probability that it reports Right when the actual action
chosen by Player 2 is Right. A device in which these two probabilities are the same is called
symmetric. Thus, a symmetric device is characterized by its accuracy: the probability with
which it reports the correct action. Formally, the sesgwhmetric information devicesin a
2 x 2 canonical game is defined by

0" ={g:J > AW | gDIN=q(Ni1V), j € T}.
2.2. Espionage equilibria

Definition 2.3. Espionage equilibria are perfect Bayesian equilibria (PBE) of the extended
game. An espionage equilibriumtisie if Player 1 purchases a costly information device
with positive probability.

Note that if there is a non-trivial information device that costs nothing, then Player 1
cannot lose by purchasing it. The question is, then, whether Player 1 will also purchase a
costly device.

As we see later (Theorem 4.1), assumptidr3 andA.4 are sufficient for the extended
game to admit an espionage equilibrium.

A strategy of Player 1 may involve choosing an information device from countably
many, or even a continuum, of possible devices. We will be interested in those strategies in
which he chooses a device from a finite set of devices.

Definition 2.4. A strategyu of Player 1 hadinite support if there existK € N and
q1.....qx € Q suchthatu[{q1,...,qx} x I15] = 1. The strategy isimpleif K = 1; that
is, u[{g} x 151 =1 for someg € Q.

If  has finite support, so that[{g1,...,qx} x 15] = 1 for someqz,...,qx € O,
we defineay = ul{gx} x I°] to be the probability that the devieg is chosen, and

2k = (zk(s))ses € (A(D))S by
@il = plge) x {x:8— 1 |x(s) =i}] /o

whenevery > 0. If o =0, zx may be chosen arbitrarily, (s)[i] is the probability that,
conditional ong; being purchased, if the signalis received, the action is played by
Player 1. Thus, ify; is purchased and the signals received, Player 1 essentially plays
the mixed actiory, (s). For simplicity we writey = Z,leock(qk, zk). If w is simple, we
write u = (g, 2).

As we prove below (Theorem 4.2), in every extended game there exists an espionage
equilibrium where the strategy of Player 1 has finite support.
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Consider a canonical game and a strategy Z,le ax (g, zk) of Player 1 with finite
support. As discussed above, sinte- J, when Player 1 purchases a non-trivial device
gk and receives the signa| he essentially plays the mixed actigy(j). One can then ask
whetherzi (j) is a best reply againgtin the base game. If this is the case, Player 1 plays
asif he completely believes the report of the device, treating it as if it were deterministic.

Definition 2.5. A strategy with finite supportt = Z,leak(qk, zx) in a canonical game
hascomplete belief if for everyk =1, ..., K such thatp(qx) > 0 and every j € J, zx(j)
is a best reply of Player 1 againstn the base game.

Since the accuracy of the signal Player 1 receives is not perfect, a best reply of Player 1
in the extended game need not have complete belief. In what follows we show thatdn 2
canonical games with symmetric information devices, every equilibrium with finite support
has complete belief (see Lemma 4.8). Example 4.10 below shows that this phenomenon
does not hold in general.

2.3. On the cost function

The cost functiorp is a function from the set of Markov matrices to the real numbers.
One might want to impose conditions on this function. For example, swapping two columns
in the matrix does not change the information of Player 1 whatsoever, but changes the
device we are dealing with. One would like the cost function to give the same cost to two
such matrices.

We would expect that if one information device is ‘more informative’ in some sense
than another, it should also cost at least as much. To make this idea more rigorous, we use
the Blackwell (1950) partial ordering on information devices (known also as ‘garbling’ in
the information theory literature).

Denote byM,,,, the space of alk x m Markov matrices. Then\,,, is a compact
convex subset dR™™.

Definition 2.6. Let Py, P € M,,,. P1 = P> if and only if there exists a Markov matrix
M € M, such thatPo = P M.

Intuitively, P; is defined to be at least as goodBsif P is a noisy distortion ofP;.
Alternatively, P is at least as good &% if a player who receives information according
to P1 can pretend to be playing according®p by ignoring some of his information. In
particular, Player 1 will achieve at least as high a payoff with de¥icas with deviceP,,
for any game.

An example of a continuous and convex cost function that preserves the Blackwell
relation is the following. LeQg be the set of alhon-informativen x m Markov matrices;
that is,

Qo = {q € M, | all rows ofq are identicd|.

Qo is a compact and convex subset Rf", and anyq € Qg corresponds to a trivial
information device.
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Define a continuous functian: M,,,, — R by:
c(q) =distlq, Qo) = min [lg —q’|1,
q'€Qo

where for every matrix = (x;;), llxll1 = Zi,.j %, ;1.

Since Qg is convex,c is a convex function. Moreover, preserves the Blackwell
relation. Indeed, leg’ € Q¢ such that disly, Qo) = llg — ¢’|l1, and denote =g — ¢’.
Then for any Markov matrin/, ¢'M € Qo, ) _,.s My, = 1 for every fixeds € S, and

ersMst

N

c(gM) =distigM, Qo) < llgM —g'M1=IrM|1=
Jst

<N My = z(z |r,,s|)(2 Ms,) =S il =llg 'l
j.t s K j t Jss

=dist(g, Qo) = c(q)-
Note that for every non-negative, continuous and convex funcfiof0, co) — [0, co)
with f(0) = 0, the compositionf o ¢ preserves the Blackwell relation, and is convex.
Indeed, any such functiofi is monotonically increasing. Let € [0, 1] andx, y € M,,;,.
Then, from the monotonicity of and the convexity of and f,
(foo)(ax + (1 —a)y) < f(ac(x) + (1 —a)c(y))
<a(foo)x)+@A—a)(f o)),
and thereforef o ¢ is convex.

3. Examples

In this section we provide several motivating examples that illustrate the main results
of the paper. All the examples are of canonical games in which each player has only
two possible actions, and the information devices are symmetric—they report the correct
action with some fixed probability and the incorrect action otherwise. We therefore identify
Q with the interval[1/2, 1], whereqg € [1/2,1] is the accuracy of the device@(q).

Note thatg = 1/2 corresponds to the trivial device, and hernagé/2) = 0. Moreover,
¢:[1/2,1] — [0, co) is non-decreasing.

For the examples it is convenient to assume furthermore that the cost fupctipis
twice differentiable and strictly convex.

We begin with studying the “Matching Pennies” game. For this game, we find the set
of simple espionage equilibria for every given cost function. In particular, we identify
when espionage is utilized. Moreover, we characterize the set of all distributions over the
entries of the payoff matrix that can be induced by an espionage equilibrium for some cost
function. This characterization is carried out for general games in Theorem 4.6.

We also provide an example where simple espionage equilibria do not exist.

We then study chain store models; we characterize when there is a true espionage
equilibrium, and when this new equilibrium is more efficient.
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We will see that in this case the principle of cost-independence holds: the device that is
purchased in equilibrium is independent of its cost. The cost only influences the decision
whether or not to purchase an information device.

Finally, we provide a game where both players benefit if Player 1 uses his ability to spy.

Example 3.1 (Matching Pennies). We look at the standard Matching Pennies game.
Left|Right

Top |1,0| 0,1
Bottom|0,1| 1,0

If Player 2 assigns probability* to Left in equilibrium, Player 1 solves:
max{y"q + (1= y")q — ¢(q). max(y™, 1 - y}}
=man{q —9(g), max{y*, 1—y*}}. 1)

The first term in the maximization refers to the payoff achieved by purchasing information
and the second term corresponds to the maximal payoff achievable without purchasing
information.

We look for a true simple espionage equilibrium. Denotedby;*) the information
device purchased by Player 1 in such an equilibrium (if it exists).

g™ is chosen to maximize the first term in (1). The first order condition implies that if
q* < 1lthen 1= ¢’'(¢*), andg* depends on the cost function. In Theorem 4.11 we will see
that only rarely does the information device purchased at equilibrium depend on the cost
function. The ‘Matching Pennies’ game is such a degenerate game.

If ¢* <1, for a true espionage equilibrium we need1(1) — ¢(¢'~1(1)) >
max{y*,1 — y*} > 1/2, so that the right-hand side of (1) will be equaldg® — ¢(g™),
and Player 1 will not benefit by not purchasing a device.

Note that for this specific game, anye [1 — ¢* + ¢(¢*), ¢* — ¢(¢™)] is part of an
equilibrium. In particular, the set of distributions over the entries of the matrix that can be
induced by an espionage equilibrium is

Left Right

Top yg |A1=—y)A-¢q)
Bottom/y(1—¢q)| (1—y)q

where Y2 < g <1land 1- ¢ <y < ¢. In Theorem 4.6 we characterize for every one-
shot game the set of distributions over the entries of the matrix that can be induced by
some espionage equilibrium (without the restriction to canonical games or symmetric
information devices).

Example 3.2 (Non-existence of a simple espionage equilibrium). Consider the following
zero-sum game:

Left |Right

Top |1,-1| 0,0
Bottom| 0,0 (2, -2
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This is the Matching Pennies game with different payoffs for different matchings. We claim
that there is no simple espionage equilibrium in this game.

The mixed equilibrium in the base game&{g/3, 1/3), (2/3, 1/3)). Forg small enough
(e.0.,¢(3/4) < 1/3), this mixed equilibrium is no longer an equilibrium in the extended
game. Suppose Player 2 plays a mixed strategy— y). Ifinformation of qualityg > 1/2
is purchased, the payoff of Player 249 — 2(1 — y)g = yg — 2¢, which is maximized
aty =1. If y =1 no espionage is needed, but if espionage is not used, the only possible
equilibrium is the mixed equilibrium of the base game. Hence, for sufficiently low cost
functions there is no simple espionage equilibrium.

The next examples are of chain store models.

Example 3.3 (Standard chain store model). The game is played by an Entrant and an
Incumbent. The Entrant decides whether to enter the market or stay out. If the Entrant
enters, the Incumbent has to decide whether to fight or accommodate. The payoffs are as
givenin Fig. 1, where > 0, b > 0. The first element of any payoff pair corresponds to the
Entrant’s payoff and the second element corresponds to the Incumbent’s payoff.

Itis well known that the unique subgame perfect equilibriumis comprised of the Entrant
entering and the Incumbent accommodating, whereby the equilibrium paybfils.

Suppose now that the Incumbent must decide on her reaction before the Entrant
chooses whether or not to enter and that the Entrant can purchase a symmetric
canonical information device. As mentioned in the Introduction, the pure subgame perfect
equilibrium remains a subgame perfect equilibrium in the extended game. We now proceed
to find another espionage equilibrium where the Entrant uses his ability to spy.

Suppose that in equilibriump* is the probability with which the Incumbent accommo-
dates andb (¢*) is the information device purchased by the Entrant: the Entrant receives
the correct report with probability*.

We will now find the exact values gf* andg™ that constitute a true simple espionage
equilibrium. As mentioned before, inx2 2 canonical games with symmetric devices, any
simple equilibrium has complete belief; hence in such an equilibrium Player 1 plays a best
reply in the base game for the signal he receives.

Entrant

Incumbent

(b, 0) (-1,-1)

Fig. 1. A standard chain store model.
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In a true simple equilibrium G p* < 1 (else no espionage is needed). Since in
equilibrium the Incumbent is indifferent between fighting, which yielg$ + (—1)(1 —
q*), and accommaodating, which yieldsl — ¢*), it follows that
1ta 1 @)
1+2a 2
In particular, it follows that the espionage device that is purchased by the Entrant is
independent of its cost: the cost-independence principle holds. If the costis very high, using
espionage cannot be profitable to the Entrant, but for sufficiently low costs of espionage,
the quality of the purchased device is determined solely by the Incumbent’s payoffs.

The Entrant maximizes his expected payoff with respegt'toThus,¢* is a solution
of:

*

mqax{p*qb +1—-p") x (—1—9)) — ¢(g). max{0, p*b — (1 - p*)}}, 3)

where the first term is his payoff if he purchases the deyicand the latter if he doesn’t
purchase any device. {f is strictly convex then (3) has a unique solution. The first order
condition that corresponds to the first part in (3) implies that if an espionage deuce

is purchased then

b-Dp*=¢'(¢") -1 (4)
Thus, ifb # 1, the probability that the Incumbent fights does depend on the cost function.

To summarize, there exists a true simple espionage equilibrium if and opfy if*,
andg satisfy (2), (4), and:

0<p* <1, (5)
P g+ 1 —p")x (—(1—¢")) —e(¢g*) >0, and (6)
Pra*b+ (1 —p*) x (=(1=¢") —e(g*) = p*b — (1 - p*). @)

Observe that the following is a solution of (2), (4), and (5)-¢'= (1+ a)/(1+ 2a),

p*=1/(b + 1), and ¢ is any continuous and strictly convex function that satisfies

0<@(g*) <b(2g*—1)/(b+1) andg’(¢*) =2b/(b + 1). Egs. (6) and (7) imply that
1—q*+ 9" << G

In particular, ifb = 1 then everyp* that satisfies I ¢* < p* < ¢* is part of a solution,

for an appropriately chosen cost function.

In a true simple espionage equilibrium the Entrant receives a payoff which is smaller
than the payoff he receives in the perfect equilibrium of the base game. Intuitively, if
the Incumbent were able to commit herself in the base game, there would be a perfect
equilibrium in which the Incumbent would commit herself to fight and the Entrant would
stay out. Commitment would enable the Incumbent to increase her payoff relative to
the perfect equilibrium payoff she receives in the base game. The Entrant, however,
would get a lower payoff when the Incumbent can commit herself to her actions. Since
espionage allows the Incumbent to commit herself to her actions (albeit probabilistically),
the trends in the players’ payoffs are similar to those occurring when commitment tools
are introduced.
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Nonetheless, for certain cost functions, espionage provides an efficiency improvement.
Indeed,

Claim 3.4. There exists a cost function such that the payoffs corresponding to the
true simple espionage equilibrium constitute a more efficient outcome than the payoffs
corresponding to the perfect equilibriumin the base gameif and only if one of the following
conditions hold:

e b=1landa > 2,
e b#1landa > b.

The proof of the claim appears in Appendix A.

The payoffs corresponding to equilibria with espionage are not Pareto efficient. Indeed,
since the espionage devices give probabilistic signals, in a true espionage equilibrium,
the payoffs(—1, —1), which are Pareto inferior, are achieved with positive probability.
The games considered here are not repeated (as in, e.g., Matsui, 1989); hence signaling
opportunities are absent, and the main force at play is that of Player 2’s ability to commit
herself to her actions. Since in our model Player 2 can affect Player 1's behavior only if
she commits herself to play actions that are bad both for her and for Player 1, equilibrium
outcomes in the extended game may be Pareto inefficient.

Example 3.5 (Both players profit when the Entrant uses his ability to spy). Consider the
extensive-form game depicted in Fig. 2 (we keep the notation of Entrant and Incumbent,
instead of Players 1 and 2, to make the comparison with Example 3.3 more evident).

Without espionage, the unique perfect equilibrium is comprised of the Entrant staying
out and the Incumbent fighting upon entrance. The corresponding payotfsa ).

One can repeat the analysis performed for Example 3.3 to calculate the set of true
espionage equilibria in this game. An alternative way to calculate this set is to use Theorem
4.6 below. Denote by* the equilibrium probability that the incumbent accommodates if
the Entrant enters, and & (¢*) the equilibrium device purchased by the Entrant. Setting
q* =2/3, for every ¥2 < p* < 4/5 there exists a cost function such thdtandg* are
the parameters that are used by the players in a true espionage equilibrium.

It is clear that both players get at least 10 in such an equilibrium (the Entrant has
the alternative to stay out and get 10, while 10 is the lowest payoff in the game for

Entrant

Out

Incumbent
(10, 10)

(15, 15) (0, 20)

Fig. 2. A modified chain store model.
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the Incumbent). Hence the ability to spy leads to a Pareto improvement over the perfect
equilibrium result.

4. Propertiesof espionage equilibria

In this section we investigate the properties of espionage equilibria. We first prove, using
standard arguments, that an espionage equilibrium always exists. We then show that there
always exists an espionage equilibrium where the strategy of Player 1 has finite support.

Next, we characterize the set of all distributions over the entries of the matrix that can
be induced by espionage equilibria in general normal-form games. This characterization
allows us to derive two principles that hold in classes of normal-form games, hamely 2
games and chain store models.

In Section 4.3 we concentrate on simple espionage equilibriai2 2anonical games.

We provide a characterization of the true espionage equilibrium, identifying when itindeed
exists. In particular, we establish the principle of cost-independence: if the game is non-
degenerate, the device that Player 1 purchases is independent of its cost. One consequence
of this characterization is that while the existence of a first mover advantage plays an
important role in the current setup, it is not a sufficient proxy for the existence of a true
espionage equilibrium.

In Section 4.4 we study the subclass of chain store models. For this class we deduce the
principle of first mover: espionage is used if and only if the subgame perfect equilibriumin
the base game is different from the Stackelberg equilibrium with Player 2 being the leader.
We then characterize when the true simple espionage equilibrium is more efficient than the
pure subgame perfect equilibrium in the base game.

4.1. Mixed espionage equilibrium

It is easy to see that any pure equilibrium in the gameB) corresponds to a pure
equilibrium in the extended game, where the option to spy is not fised.

Theorem 4.1. Under assumptions A.3 and A.4 the extended game admits an espionage
equilibrium.

Proof. The space of mixed strategies of Player 24i6/), which is convex and compact.

By A.3, the space of pure strategies of Player 1 is compact. It follows that the space of
mixed strategies of Player 1, which are probability measures over a compact set, is compact
in the w*-topology and, clearly, is convex. B&.4 the payoff function of each player

is continuous, and linear in his strategy. Hence the best-reply correspondence has non-
empty and convex values, and its graph is closed. By Glicksberg'’s (1952) generalization of
Kakutani’s fixed point theorem, an equilibrium in mixed strategies exists.

3 One class of games that has been recently studied in the literature and is comprised of games that always
possess a pure equilibrium is that of potential games (see Monderer and Shapley, 1996).
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Theorem 4.2. Under assumptions A.3 and A.4, there exists an espionage equilibrium
(y; w) with u = Z,leak(qk,xk), where x; # x; whenever k # [. In particular, © has
finite support.

Proof. By Theorem 4.1 there exists an espionage equilibriwmu). Let K = |]!S! =
n!S!l, and letxy, ..., xx be all the functions fromsS to I. Let Ay = Q x {x}, and
ar = u[Ax] be the probability that under, at stage 4, Player 1 plays accordingdo
Recall thatQ is equivalent to a subset of a Euclidean space. For éveugh thaty, > 0, let
qk = fAk q du /o be the ‘average’ device purchased by Player 1, conditional on playing
If ax =0, letg, be chosen arbitrarily. Let be the strategy of Player 1 defined by

K
V= Zak(Qk,Xk),

k=1
that is, the devicey is purchased with probability; in stage 2, and the action played

in stage 4 is determined by,. The joint distribution on pair§j, s), wherej is an action
chosen by Player 2 andis a signal reported to Player 1, is linear in the device purchased
by Player 1. Hence both andv induce the same joint distribution over the space of these
pairs. It follows thatr2(y’; 1) = 72(y’, v) for every strategy’ of Player 2. ByA.4, ¢ is
convex, and therefore the expected cost of the device chosersbgt most the expected
cost of the device chosen hy. In particular,z1(y, v) > 7l(y; n). Since(y; ) is an
espionage equilibriumzt(y; v) = 71(y; u), and(y; v) is an espionage equilibrium as
well. O

4.2. Characterization of espionage equilibria

In this section we provide a full characterization of the set of distributions over the
entries of the matrix that can arise from espionage equilibria.

Since espionage allows Player 2 to send a probabilistic signal to Player 1, it is natural
to compare espionage equilibria with correlated equilibria and communication equilibria.
Whereas in correlated equilibria both players receive a signal from a third party, and in
communication equilibria both players send costless signals to each other according to an
exogenously determined protocol, here only Player 2 can send one signal, the accuracy of
which is determined by Player 1. These differences cause the set of distributions over the
entries of the matrix that can arise from an espionage equilibrium to neither include, nor be
included, in the set of distributions induced by correlated equilibria or by communication
equilibria in the original matrix game (see, e.g., the Matching Pennies game, Example 3.1).

Nonetheless, the following example shows that sometimes espionage can be used to
form a desirable correlation.

Example 4.3. Consider the following example of ax33 game (Moulin and Vial, 1978):

L |M |R
T10,0/1,5|51
5,1/0,0|1,5
B|1,5|5,1|0,0

~
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The only Nash equilibrium without espionag€({&/3, 1/3, 1/3), (1/3,1/3, 1/3)}.
Assume that the signal space is {'Nbt, ‘Not M’, ‘Not R’}. Let ¢ be the following
device.

g(L)[NotL1=0, q(L)[NotM]=1/2, g(L)[NotR]=1/2,
g(M)[NotL]1=1/2, g(M)[NotM]=0, q(M)[NotR]=1/2,
g(R)[NotL]=1/2, g(R)[NotM]=1/2, g(R)[NotR]=0.

This device allows Player 1 to rule out one of the actions that Player 2 did not choose. Let
Q be the convex hull of and a trivial device.

As the proof of Theorem 4.6 below shows, there is a cost funatiosuch that
the following is an espionage equilibrium. Player 2 plg$g3,1/3,1/3) and Player 1
purchases the deviegand playsT, I, or B, depending on whether the signal was ‘Not
L', ‘Not M’, or ‘Not R’, respectively. The diagonal entries are not reached in equilibrium
and the corresponding payoff pair, not including the cost of espionad8, 33, which
corresponds to the optimal correlated equilibrium of this game.

Unfortunately, the construction introduced in Example 4.3 cannot be universally
replicated, as the following example illustrates.

Example 4.4. It follows from Theorem 4.6 below that no matter what the cost function
is, one cannot get close to the correlated equilibrium payidff3, 10/3) of the following
classical example (Aumann, 1974):

Left|Right

Top |5,1| 0,0
Bottom|4,4| 1,5

Thus, a construction such as the one provided in Example 4.3 indeed cannot be replicated
in general.

Let I’ C I be the set of all actionse I that are not strictly dominated: that isg I’
if and only if there existy € A(J) such that)_ ;. ; aijy; = MaXe; > ar;jyj. Inan
espionage equilibrium, Player 1 will only play actions/in

Definition 4.5. A semi-correlated equilibrium distribution of a base gameéA, B) is a
probability distributionp over the matrix entries such that

(1) Foreveryi,i’ €1, Zje] pijaij = Zje] pijai -

(2) For every j,j" € J with 3 e/ pij» 2ics Pij > 00 Xics Pijbij/ Xier Pij =
Yicr Pijbijt] Lier Pijr-

(3) For everyj, j/ e J with Ziel pij > 0, Ziel pijbij/ZiEI Dij > min,-e,/ bij’-

Condition 1 is the standard condition of correlated equilibrium for Player 1—he cannot
profit by acting as if he received a different recommended action. Condition 2 is the
condition of distribution equilibrium given by Sorin (1998)—the expected payoff of
Player 2 is the same, given any action she plays with positive probability. Condition 3
means that if Player 2 plays an actigrwith positive probability, then upon receiving a



E. Solan, L. Yariv/ Games and Economic Behavior 47 (2004) 172-199 189

recommendation to play, her expected payoff from playingjis at least as high as her
most pessimistic payoff achieved by playing any other acjioriThe most pessimistic
payoff (when perfection requirements are taken into account) corresponds to the payoff
achieved when Player 1 plays (spitefully) the worst action for Player 2, knowing Player 2’s
action, when he is restricted to undominated actions. That is, when Player 1 uses an action
that he can justify to himself as a best response to some strategy of Player 2.

Each strategy pai(y; u) in the extended game induces a probability distribution
p = (pij) on the entries of the matrix

pij = / ZYjC](j)[S]I(X(S)Zi)d;L,
(queQxlSSES

wherep;; is the probability that undefy; 1) the entry(i, j) will be played.
We say that a probability distributiop = (p;;) is non-degenerate with respect to the
game(A, B) if (i) #{i | Zj pij > 0} > 1 and (i) for everyi’ € I thereisi € I such that:

Z pijaij > Z pijai'j.

jeJ jeJ
Thus, p is degenerate if either a single action of Player 1 has positive probability wnder
or if Player 1 does not lose by playing any actidmegardless of the recommendation he
receives.

Theorem 4.6. If p = (p;;) isa probability distribution induced by a true espionage equi-
libriumthen it is a non-degenerate semi-correlated equilibrium distribution. Conversely, if
p is a non-degenerate semi-correlated equilibrium distribution then there is some signal
set S, some convex and compact set of information devices Q C {g: J — A(S)}, and some
continuous and convex cost function ¢ : O — R such that p isthe distribution induced by
some true simple espionage equilibriumin the extended game (4, B, S, Q, ¢).

The result is intuitive. Player 2 chooses an action before Player 1 does, and hence must
be indifferent between all actions she plays with a positive probability (condition 2 of
Definition 4.5). However, she will never play an actigrif all the payoffs in some other
row are strictly higher than her expected payoff from playjn@ondition 3 of Definition
4.5). Player 1, on the other hand, receives a signal; hence in equilibrium, he must play
optimally given his signal (condition 1 of Definition 4.5). pfis degenerate then Player 1
can do just as well without purchasing a costly information device. The proof of Theorem
4.6 appears in Appendix A.

Remark 4.7. If one considers canonical symmetric devices inx2 games, the
characterization given in Theorem 4.6 is still valid, provided one takes, instead of all semi-
correlated equilibrium distributions, only semi-correlated equilibrium distributions of the
form

yg |1-y)A—-gq)
yl—-q)| A—-y)q
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4.3. 2 x 2 canonical games with symmetric devices

In this subsection we restrict ourselves tox2 canonical games with symmetric
information devices. Thus, we identify = 0* =[1/2, 1].

The cost functiony = ¢(g) depends on a single number2l< ¢ < 1; it satisfies
¢(1/2) =0, and is monotonically non-decreasing.

When signals and actions are binary, a device is purchased in equilibrium only if its
signals are followed, in the sense that different signals lead to different actions. This is
a basic observation in information economics, the idea being that if the same action is
taken (even probabilistically) no matter what the signal is, there is no need for the device’s
reports and purchasing it is sub-optimal. In our framework, this translates formally in the
following way:

Lemma 4.8. Let (y; u) be a true espionage equilibriumin a 2 x 2 canonical game with
symmetric information devices, where . hasfinite support. Then o has complete belief.

By Theorem 4.2 there exists a simple espionage equilibrigime) where u =
Z,leak(qk, xx), andxy # x; wheneverk # [. By Lemma 4.8, ify is strictly convex then
¢ (gx) > 0 for at most one indek. We therefore have the following:

Corollary 4.9. In every 2 x 2 canonical game with symmetric information devices, if the
cost function is strictly convex then there exists an espionage equilibrium (y; u) where
="K, a(qr, xx), and (gx) > O for at most oneindex k.

Thus, in 2x 2 canonical games with symmetric information devices, when the
information cost is strictly convex, Player 1 may use one of several costless devices, but at
most one costly device.

If both players have more than two actions, Lemma 4.8 no longer holds. Player 1 may
want to purchase information to differentiate between two of the actions of Player 2, but if
Player 2 plays a third action, then Player 1 essentially ignores the device. This phenomenon
is shown in the next example.

Example 4.10. Consider the following 3« 3 game, where only the payoffs of Player 1
appear.

T
1
B

O| Ol W| I~
OCA)O§

R
0
0
1

Assume that Player 2 plays the mixed actipr= (1/3,1/3,1/3), and that Player 1
purchases the devieg that with probability ¥2 reports the action chosen by Player 2,
and with probability ¥4 reports each of the other two actions.

By an appropriate definition of the cost function, it is optimal for Player 1 to purchase
q (see the proof of Theorem 4.6 for such an appropriate definition).
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A simple application of Bayes' rule shows that if Player 1 receives the sigtiaén the
probability that Player 2 actually chogeis 1/2, and the probability that she chose each of
the other two actions is/4. Analogous statements hold if the signaMsor R.

Therefore, if Player 1 receives the sigral then it is optimal for him to play': his
expected payoffis & by playingT, 3/4 by playing/, and 74 by playingB. Similarly, if
he receives the signa¥, it is optimal for him to play/. However, if the signal i, then
playing B is sub-optimal: it yields him an expected payoff gf21 whereas any convex
combination ofT and! yields 3/4.

The following general result, which is proven in Appendix A, characterizes when a
simple espionage equilibrium exists irk2 canonical games with symmetric information
devices. Moreover, it asserts the principle of cost independence.

Denotex = aj1+ a12 — a1 — az2 andpB = b11 + b12 — bo1 — boo.

Theorem 4.11. Let (A, B) bea 2 x 2 base game where no player has a weakly dominant
action. Assume w.l.0.g. that a11 > a1 and az2 > aj2.

(i) There exists a cost function ¢ for which the canonical game with symmetric
information devices (A, B, J,[1/2, 1], ¢) has a true simple espionage equilibrium if
and only if one of the following holds:

(@) B =0andbi2= bz,
(b) B#0and 1/2 < (b12—b21)/B < 1.

(iiy If @(g) is the information device purchased by Player 1 in equilibrium, and if
¢(g) > 0,then Bg = b12 — b1 [Principle of cost-independence].

One can show that if ## 0 andy is twice differentiable, them = (¢'(g) +a12—az2) /a
is the mixed action chosen by Player 2 in equilibrium. Since this calculation is technical
and rather dull, it is omitted. Note that the Matching Pennies game (Example 3.1) satisfies
a=p8=0.

Remark 4.12. Theorem 4.11 proves the principle of cost-independence: if the game is not
degenerate, the cost function only influenedsther a true simple espionage equilibrium
exists, but nowhich information device is purchased. The exact information device is
determinedwolely by the payoff function of Player 2.

The intuition behind the principle of cost independence, as captured by the second part
of Theorem 4.11, is the following. In an equilibrium, Player 2 should be indifferent between
her actions. The payoff of Player 2 when she plays some pure strategy depends on (i) her
payoff function, (ii) the information device purchased by Player 1, and (iii) the actions that
are chosen by Player 1 given the signal he receives. However, by the principle of complete
belief, Player 1's action completely depends on the signal he receives. Thus, Player 1
essentially does not control the action he plays at stage 4, and the information device
is chosen to induce a proper distribution over the entries of the matrix, so that Player 2
is indifferent between her actions. Such distributions depend only on the payoffs of the
base game and not on the cost functiothat is internalized by Player 1. In particular,
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conditional on an information device being purchased, its specifications do not depend on
the cost function.

4.4. Chain store models

In this subsection we further restrict ourselveschain store models; that is, 2x 2
canonical games with symmetric information devices, where Player 1 has an action that
yields the players the same payoff, regardless of the action of Player 2. The general game
without espionage is as follows.

Left | Right
Top |ai,az|a1,a2
Bottom|b1, b2| c1, c2

We first characterize the conditions under which there exists a true espionage
equilibrium. The theorem shows an equivalence between the existence of a first mover
advantage for Player 2 and the existence of true espionage equilibria. We then characterize
the conditions under which this equilibrium is more efficient than the perfect equilibrium
of the base game.

The proof of Theorem 4.13, which is rather tedious, is relegated to Appendix A.

Theorem 4.13 (Principle of first mover)Consider a chain store model in which ¢z > b».
The following three statements are equivalent.

(a) There exists a cost function ¢ such that the game has a true simple espionage
equilibrium.

(b) The perfect equilibrium of the base game is different from the Stackelberg equilibrium
with Player 2 being the Stackelberg leader.

(c) Either (i) b1 < a1 <c1andaz > ¢, or (i) ¢c1 < a1 < by and bz > ap.

Theorem 4.13 asserts thenciple of first mover: in chain store models, unless Player 2
has the first mover advantage, espionage cannot be useful.

The theorem is rather intuitive. Divergence of the Stackelberg payoff from the perfect
equilibrium payoffimplies that Player 2 would prefer to use a reaction which is sub-optimal
for her in order to get Player 1 to choose an action that differs from that prescribed by
the perfect equilibrium. That is, Player 2 faces a trade-off between choosing a reaction
policy that is optimal if realized (direct effect) and choosing a reaction policy that is sub-
optimal, but causes Player 1 to choose a beneficial action (indirect effect). In the base game
commitment is not possible and thus, according to the definition of perfect equilibrium, no
player chooses an action that is sub-optimal against any tremble (in the extensive form
setting this translates to sub-optimality in some decision node). However, the existence of
espionage allows Player 2 to (probabilistically) commit herself to a sub-optimal reaction.
Thus, as long as the costs of espionage are not extreme (low or high), espionage causes
the trade-off between the direct effect and the indirect effect on Player 2’s payoffs to be
non-trivial.
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Remark 4.14. It is important to note that the principle of first mover is specific to chain
store models and does not hold in general. Indeed, one consequence of Theorem 4.11 is
that, in general, first mover advantage is not the sole determinant of whether or not an
equilibrium with non-trivial espionage exists. Indeed, consider the following two chicken
games:

Chicken 1 Left| Right Chicken 2 Left|Right
Top |2,5| 3,3 Top |[3,5|4,4
Bottom |1,1] 5,2 Bottom |1,1| 5,3

Both games have the same first mover advantage characteristics (if Player 2 moves first,
she will get the payoff corresponding to the Nash equilibrium (Top,Left)). However,

Chicken1: 27R—bs _ 8-1 2 _ }
B 3+5-2-1 5 2
— 4—-1 1
Chicken 2: brr — byt = = :—3 > —.
B 44+45-3-1 5 2

Hence, only the game Chicken 2 satisfies the conditions for the existence of a true simple
espionage equilibrium as specified in Theorem 4.11. Conditional on Player 2 playing Lefft,
the interests of both players are in conflict. Therefore Player 2 would be willing to play a
mixed strategy only if the information structure is such that the entry (Bottom, Left) would
not be reached too often. When the gap between payoffs is large, as in Chicken 1, any non-
trivial device would make mixing sub-optimal for Player 2. This example illustrates the
message of Theorem 4.11: Generally, the existence of espionage equilibria depends both
on Player 2's first mover advantage and on Player 1's motives when the Stackelberg action
is not taken.

Characterization of efficiency improvement. We now give a characterization of when the
existence of espionage provides an efficiency improvement, as captured by the sum of the
players’ payoffs. We assume that> b».

If b1 < a1 < c1 @anday > ¢z, then the game is equivalent to the game studied in Example
3.3. In particular, Claim 3.4 characterizes when there is a more efficient equilibrium that
uses espionage.

If c1 < a1 < b1 and by > ap, then the game is equivalent to the one studied in
Example 3.5. In particular, disregarding the cost of information, espionage provides Pareto
improvement.

5. Concluding comments

In this paper we have demonstrated the effects of players’ option to purchase
information on their opponents’ decisions (i.e., the option to spy on their opponents).
This alteration of the agents’ optimization problem changes the set of predictions of the
game. While pure equilibria of the base game remain equilibria in the extended game
with espionage, the set of mixed equilibria may change for sufficiently small costs of
information. Moreover, there may be additional mixed (perfect Bayesian) equilibria when
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espionage is available. In general, the set of true espionage equilibria coincides with the
set of non-degenerate semi-correlated equilibrium distributions.

We identified two principles that hold in various domains of 2 games. Therinciple
of first mover asserts that in chain store models non-trivial espionage is used if and only
if the perfect equilibrium of the original game does not coincide with the Stackelberg
equilibrium with Player 2 being the Stackelberg leader; that is, espionage may be employed
non-trivially in equilibrium if and only if Player 2 has a first mover advantage. The
principle of cost independence claims that while the cost function of information might
influence the decision whether to purchase information, it has no effect on which device is
purchased in equilibrium.

Our analysis concentrated mostly on one-shot normal form games. The natural next step
is to extend this study to multi-stage games with a sequence of players’ decisions. This
extension has economic relevance to the timing of decisions. Given that spying is possible
only on policies that have already been determined, there might be a trade-off between
committing oneself to policies early on in the game and waiting to a stage where the
opponent’s actions can be spied upon. A resolution of this trade-off can serve to determine
the endogenous timing of policy decisions.

It is also worthwhile noting that espionage can potentially be considered in the context
of private information that is not related to the players’ actions; that is, allowing players to
purchase information on others’ private signals or types could extend the standard models
of games with incomplete information.

Another direction for future investigation concerns the possibility of using espionage
equilibria as a refinement tool. Indeed, when the cost of information is high, it is not
profitable to purchase information, hence the set of equilibria of the base game coincides
with the set of espionage equilibria of the extended game. When the cost of information is
zero, the only equilibria of the base game that remain espionage equilibria of the extended
game are the pure ones. Thus, espionage can serve as a refinement, by considering all Nash
equilibria that are the least vulnerable to espionage. It is interesting to know how this type
of refinement relates to existing ones (e.g. trembling hand equilibria).

Finally, our model could be extended to allow for protection against espionage
(folk wisdom suggests that this phenomenon occurs in army-related enterprises, as well
as in industrial/leconomic ones). Since espionage sometimes leads to a strict Pareto
improvement, it is not clear that even if protection is very cheap, the game is equivalent
to the base game. We do predict, though, that if protection is extremely costly, the game
resembles the extension considered in this paper. The authors do not know how the current
predictions change when protection costs are comparable to the costs of information.
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Appendix A

Proof of Claim 3.4. The Entrant’s payoff ip*q*b — (1 — p*)(1 — ¢*) — ¢(¢*) and the
Incumbent’s payoff ist — g*a. Using (4), the sum of payoffs is

W=q"¢'(q") —1+p" —¢@") +a—q"a.
We look for conditions under whicl > b.

If b =1 then, by (4),¢'(¢*) = 1, and by (6) and (7), + ¢* + ¢(¢*) < p* <
q* — ¢(@*). Thus,W > b =1 if and only if g*(2 — a) — 2¢(¢*) — € > 2 — a, where
€ =q* —p(g*) — p* > 0. This last inequality holds for somg* and some cost function
g ifandonly ifa > 2.

Assume now that # 1 anda > b. Choosee € (0, b) sufficiently small so that
a—b>A+4+a)a—b+¢€)/(1+2a) + (1 + 1/b). Choosep* > 1 — ¢/b, and a cost
functiong that satisfies: (ip(¢*) <€, and (ii))¢'(¢*) =1— p* + p*b > b — €. Then

1
W=a+ P —D+q* @G —a)—eq") >a—6(l+ Z) +q*(b—a—e)

_ 1+1 +1+a(b -
=a € b 1+2a a €)>0,

where the last inequality follows from the choiceeof
Assume now thab > 1 anda < b. By (4) and (5),¢'(¢g*) < b. In particular, W =
a+(p* =1 +q%¢'(q") —q*a— (@) <Db.
Finally, assume that < 1 anda < b. By (4) and (5)¢(¢*) > b. By (4) and (2)
W=a—q"a+q"¢'(g") +p"—1-9@")
=a—q"a+q"0' (g +(1-¢'(q")/Q=b) —1-9(q")

2
_a posf Itae 1 b
_1+2a+‘”(‘”<1+2a 1-p) T 1op 4D
bt b? n a’ o' (q) —a—b—ab @
0TIy T 12 TP T Ar2a—p) M
b2 a? a+b+ab
<b+ + -
1-b 1+2a (14 2a)(1-b)
=b+ a=b , O
- a1+2a\ ’

Proof of Theorem 4.6. Let p = (p;;) be a probability distribution induced by a true
espionage equilibrium in the extended game. Since in equilibrium Player 1 plays a best
response given the signal he receives, condition 1 of Definition 4.5 holds. Moreover,
since in a true espionage equilibrium Player 1 purchases a costly information device,
the distribution is non-degenerate. Lgtand j* be such thad ", ; pij, > ;c; pijy > 0.

It > icrpijbij/ D ici Pij > 2 icr Pij'bij'/ D ic; pijr then Player 2 would not play the
action j with positive probability, and s@ _,.; p;j = 0. In particular, condition 2 of
Definition 4.5 holds for suchi and j’. Now let j” be such thad ., pijbij/ > ic; Pij <
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min;ep b;j». Player 2 cannot play with positive probability in an equilibrium, since she
gains more by playing”, provided Player 1 plays an action Ih. However, equilibrium
perfection requires that Player 1 always plays a best reply against his belief. In particular,
Player 1 can only use actionsin

Conversely, letp be a semi-correlated equilibrium distribution. Define A(J) by
yj =2 ies Pij» and let the signal space Se= I U {w}. The signak» will be used to force
Player 1 to purchase a certain information device. For gaeh/ choose some(;) in
argmin./b;;; thatis,i(j) is a ‘punishing action’ that minimizes the payoff of Player 2 if
she chooses to plgy Sincei (j) € I, there exists a distributiof\j) € A(J) such thai ()
is a best response agaifsy). For eachj e J with y; > 0 define a probability distribution
xj € A(I) by

xjlil=pij/yj = pij / > piji
iel
that is, the probability induced by on the jth column. Define the following function
qg*.J— A(S).

The information deviceg* recommends an action to Player 1: if Player 2 chooses an action
Jj she should not play, it recommends a punishment for Player 2. Otherwise it recommends
playing according to the conditional distribution given

Player 1's beliefs concerning his opponent’s strategy are specified by the Bayesian
posterior whenever defined. If the Bayesian posterior is not defined (which happens when
Player 2 plays an actiog with y; = 0, such thati(j) is not in the support of any
(xjn)j: yj,>0), the belief isy;/, for some;” with i (') =i(j).

Define now a functiorr: I — I by

x(@)=1;

that is, Player 1 follows the recommendation of the device. We will now see that gince
is a semi-correlated equilibrium distribution, if the players playq*, x) then Player 2
cannot gain by deviating from, and Player 1 cannot gain by deviating framWe will
then construc andg that ‘force’ Player 1 to purchase the information devize; ™).

Assume that the players play the simple espionage strategy, x). The probability
distribution induced on the pairs of actions is exagtlyBy condition 2 of Definition 4.5,
Player 2 is indifferent between all actioriswith y; > 0, and by condition 3 she cannot
profit from any deviation. By condition 1, Player 1 cannot profit by not following the
recommendation af*.

We shall now construap andg that ‘force’ Player 1 to purchase the devibég™).

Denote byyg the non-informative device that sends the signatgardless of the action
Player 2 takes. LeD be the convex hull of* andgo (a one-dimensional space). We take
the cost function to be an affine function so that fowadl [0, 1], ¢ (¢g™ + (1 —a)q0) = ap,
for somep > 0.

We now show that it would be optimal for Player 1 to purchaseand to follow its
recommendation, providedis sufficiently small.
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Assume that Player 1 purchases the deyieeag™ + (1 — a)qo, and plays the action
z(s) upon receiving the signale I U {w}.
Player 1's payoff is:

i) =a Z pijazi)j +(1—a) Z Pijlz(w)j — P
ij i,j

Since p is a semi-correlated equilibrium distribution) = i maximizes the first term.
We now show that sincg is non-degenerate, this quantity is maximized:at 1, which
concludes the proof.

The functionz1(y; &, z) is linear ina; it is equal tod; ; pijaij — p ata =1, and to
i Pijlz(w)) Ala = 0. From the non-degeneracy condition, there exists a sufficiently low
0 for which Zi,j pijaij — p > Zi,j Pijazw)j- 0O

Proof of Theorem 4.11. We apply Theorem 4.6 in the case of canonical symmetric
devices in 2x 2 games. In particular, we consider probability distributions of the form

p11=1yq, r12=1-y)1—gq),
pa1=y(d—gq), and prp=(1-y)q. (8)

By Theorem 4.6 we have thab11+ (1—q)b21 = (1—q)b12+qb22, Which is equivalent
to Bq = b12 — b21. In particular, (i) holds.

Sinceq € (1/2, 1], it follows that if a simple espionage equilibrium exists then one of
the claims (i).a or (i).b holds.

For the converse, if8 = 0 then (i).a implies thati11 = bp> and the probability
distribution (8) withg = 1 and anyy € (0,1) is a non-degenerate semi-correlated
probability distribution. If8 # 0, definego = (b12 — b21)/8. By (i).b, g0 € (1/2, 1]. Since
a11 > a1 andaiz < app, there exists a unigug € (0, 1) that solves the equation

yqoa11+ (1 — y)(1 - qo)aiz _ y(1—go)az1+ (1 — y)qoaz2
yqo+ (1—y)(1—qo0) y(1—go0) + (1A —y)q0

Then the probability distribution (8) with = go andy = yg is a non-degenerate semi-
correlated equilibrium distribution. O

Proof of Theorem 4.13. We first prove that (b) and (c) are equivalent. Singe- b2 action
Right of Player 2 is part of any perfect equilibriumalf < ¢1 then the perfect equilibrium

is (Bottom,Right) and the Stackelberg payoffis different if and ontp it ¢ andb1 < aj.

If a1 > ¢1 thenthe perfect equilibriumis (Top,Right) and the Stackelberg payoffis different
if and only if b2 > a2 anday < b1. To summarize, the second statement holds if and only
if one of the following conditions holds:

(1) b1 < a1 < c1andaz > c2; or
(2) ¢1 < a1 < b1 andby > as.

Note that (c) implies (a). Indeed, case (c.i) (respectively case (c.ii)) is equivalent to the
chain store model studied in Example 3.3 (respectively Example 3.5).
It remains to show that (a) implies (c). We will use Theorem 4.6.
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Assume there is a true espionage equilibrium, and denote the corresponding non-
degenerate semi-correlated equilibrium distributioover action combinations by

PTL =Yq, prr=1—-y)1-¢q),
per=y(1—¢q), and ppr=(1-y)q,

where, since is non-degenerate, g € (0, 1). Assume w.l.0.g. that; = 0.

Since p is non-degenerate, and by condition 1 of Definition 4.5, {fminc1} < a1 <
max{b1, c1}. In particular,py # c1 andI = I’. By Lemma 4.8p1 < a1 < c1 if and only if
qg <1/2,andc1 < a1 < by ifand onlyifg > 1/2.

Condition 2 of Definition 4.5 guarantees that

A—-q)b2=qca, 9
and condition 3 of Definition 4.5 indicates that
(1—¢q)b2>min{0,c2} and gcz2 > min{0, by}. (20)

Egs. (9) and (10), together with the assumption that b, imply that either (iJa =0 >
c2 > bpandg > 1/2, or (i) c2 > by > ap =0 andg < 1/2. Thus, (c) holds. O
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