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Abstract

We consider normal form games in which two players decide on their strategies before th
of play and Player 1 can purchase noisy information about his opponent’s decisions conc
future response policies (i.e.,spy on his opponent). We give a full characterization of the se
distributions over the players’ payoffs that can be induced by such equilibria, as well as describ
welfare and Pareto properties. In 2× 2 games we find three equilibrium phenomena: (i) when
game is non-degenerate, the information purchased is independent of its cost. The cost de
only whether information is purchased or not, (ii) the player who spies treats his informatio
if it were deterministic, even though it is correct only probabilistically, and (iii) in chain s
models, espionage is used if and only if the perfect equilibrium payoff differs from the Stacke
equilibrium payoff with Player 2 being the Stackelberg leader.
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1. Introduction

In many real world interactions, players decide what to do long before they have t
the chosen action—an army prepares for different situations in the battlefield years
a war begins; a government decides on its policy and reactions to various scenarios
starting negotiations; an incumbent firm decides on its reactions to new market e
before entrants appear.

Once decisions are made in advance, espionage comes to mind. Suppose Playe
2 engage in a two-stage sequential game that prescribes Player 1 to be the first to
action and Player 2 to be the second. If Player 2 decides on her reactions to Pla
move at the outset of the game, Player 1 might benefit by sending spies who will rev
decisions made by Player 2. In fact, even if espionage is costly and provides a noisy
of Player 2’s decisions, Player 1 may still profit by utilizing it.

In essence, if it is common knowledge that Player 1 spies on Player 2, it is as
order of actions were switched. Espionage then allows Player 2 to commit herself
action and Player 1 to subsequently react. Thus, employment of espionage invol
interplay between the ‘first mover advantage’ of Player 2 and the ‘second mover adva
of Player 1.

More formally, in the present paper we study one-shot games that are extended w
ability to spy. The game is comprised of three stages. In stage 1, Player 2 chooses an
In stage 2, Player 1 purchases an information device that reveals some information
action chosen by Player 2. Finally, in stage 3, Player 1 chooses an action, and the o
one-shot game is played. The payoff of Player 2 is her payoff in the original one-shot
whereas the payoff of Player 1 is the difference between his payoff in the original on
game and the cost of the information device he purchased.

The set of available information devices, as well as their cost, are exogenous. We a
that Player 1 can always purchase a trivial device that reveals no information and
nothing.

When concentrating on games where each player has two actions we find
phenomena that occur in equilibrium: (i) when a game is non-degenerate, the inform
purchased is independent of its cost. The cost determines onlywhether the information is
purchased or not, (ii) the player who spies treats his information as if it were determi
even though it is correct only probabilistically, and (iii) in chain store models, espiona
used if and only if the perfect equilibrium payoff differs from the Stackelberg equilibr
payoff with Player 2 being the Stackelberg leader. We also study the welfare and
properties of such equilibria.

The motivation for our inquiry comes from the attempt to explain the employm
of different institutions providing information in a variety of economic environments
mention a few examples, investors can employ experts who report on different attr
of firms to allow better stock investments; in certain industries, engagement in indu
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espionage is common practice1; specialists are often hired to give forecasts before ce
projects are undertaken (e.g., political advisors for defense projects).

When Player 2 knows of Player 1’s espionage opportunities, Player 1’s mere op
spy may in fact reduce his profit. Indeed, the option to spy can allow Player 2 to e
a first mover advantage in the game. In such cases Player 1 would prefer not to h
ability to spy, since this ability reduces his expected payoff in equilibrium. Nonethe
not utilizing his spying capabilities may make him even worse off, when it is impossib
commit himself not to spy.

In other words, espionage creates two opposing effects. A direct effect of espi
is the improvement of the spying party’s information concerning his opponent’s ac
This is, in a sense, a ‘second mover advantage.’ An indirect effect of espionage is
by the opponent’s knowledge that she is being spied upon. She therefore has the a
(probabilistically) commit herself to a certain policy and take advantage of a ‘first m
advantage.’ This latter effect hinges on a common knowledge assumption that is
for the analysis and will be assumed throughout the paper. The interplay between t
forces determines the outcome of the game.

This intuitive tradeoff comes to light in the standard chain store model. There
subgame perfect equilibrium where the Incumbent, serving as Player 2 in our frame
accommodates or fights, both with positive probability, and the Entrant, who serv
Player 1, purchases an espionage device and enters or stays out according to the s
receives from the device. Indeed, if the Incumbent randomizes her actions, the En
better off purchasing information on the Incumbent’s action realization, when the c
such information is sufficiently low. Once the Entrant employs espionage, the Incum
can (probabilistically) commit herself to fight and best responds with a randomiz
between her actions.2

In this equilibrium the payoff of the Entrant is smaller than his payoff in the subg
perfect equilibrium of the original game, but (utilitarian) welfare increases when
cost of espionage is low enough. It turns out that, contingent on the Entrant purc
information, the device that he purchases (i.e., the information acquired) does not d
on its cost. The cost of the device only influences the probability that the Incumben
fight. However, if the cost of the device is too high, the Entrant will not profit by purcha
it, and there will be no equilibrium where the option to spy is used.

In the standard chain store example, Player 2 has a first mover advantage. This
of the game ends up playing a crucial role in the general existence of equilibria
non-trivial use of espionage. Generally, any pure perfect equilibrium in the original
is also a perfect Bayesian equilibrium in the extended game, where the players
utilize their option of spying. Indeed, if the opponent’s strategy is pure, no inform

1 From the 1997 US State Department and Canadian Security and Intelligence Service Reports, c
espionage costs US businesses over $8.16 billion per year. Moreover, 43% of American corporations ha
least six incidents of corporate espionage.

2 This differs from reputational explanations (see, e.g., Kreps et al., 1982; Fudenberg and Levine, 198
both in assumptions and results. We do not assume anything about the distribution of types of Incumbents
the somewhat problematic assumption of ‘irrational Incumbents’ is not needed in this model. Moreov
results predict that a non-vanishing portion of the population of Incumbents will in fact accommodate.
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can be gained by way of costly espionage. Theorem 4.13 asserts that in genera
store models (corresponding to 2× 2 normal form games in which one of the rows h
constant payoffs), espionage is used if and only if Player 2 has the first mover adva
that is, the perfect equilibrium of the original game differs from the Stackelberg equilib
with Player 2 being the Stackelberg leader. We call this phenomenonthe principle of first
mover. Interestingly, the principle of first mover is in fact peculiar to chain store mo
and does not hold for all 2× 2 games. Intuitively, the second mover advantage of Play
is sometimes sufficiently strong to assure the existence of equilibria with non-trivial u
espionage even when Player 2 does not have a first mover advantage.

Another interesting phenomenon is that in practically all 2× 2 games (excluding
degenerate cases) the cost function of information influences the decisionwhether to
purchase information or not, but notwhich device to purchase. We call this phenomen
the principle of cost-independence.

We generalize the chain store example and characterize general chain store mo
which only one player profits from the existence of espionage and such games for
both players profit from the availability of espionage. These two classes turn out
exhaustive. We also discover that for both classes, for a sufficiently low cost of inform
espionage provides an efficiency improvement.

The game structure we propose enables players to correlate their actions. Indee
a player receives some information on his opponent’s realized action, making use
information would imply a correlation between the players’ actions. Unlike the corre
equilibria scenario, in which both players receive a signal from a third party, here
Player 2 can effectively send a signal. In Theorem 4.6 we provide a full characteri
of equilibria with espionage as a modified set of the correlated equilibria of the or
game.

Our model has some similarities to games with communication (see, e.g., Forges
Myerson, 1991, and the references therein). There are two main differences be
the models. First, in our framework the signal is a stochastic function of Playe
(irreversible) action, whereas in games with communication signals precede the p
action choices. Second, the scope of the noise characterizing the signal is a
choice of Player 1, whereas in games with communication the signals are determin
cheap (in fact, free) messages that players send according to an exogenously s
communication protocol.

Nonetheless, it is worth noting that Crawford and Sobel (1982) considered a co
nication protocol related to the current setup. They described a sender-receiver g
which a better-informed sender sends a noisy signal to a receiver, who then choose
tion that affects the utility levels of both players. The analysis presented in this paper
be used to extend the Crawford and Sobel setup. Namely, the receiver would be a
to choose the type of messages, in terms of their noisiness and corresponding cost, t
sender sends.

The literature on espionage per se appears to be very sparse. Matsui’s (1989)
point is similar to ours. He is interested in analyzing a game in which a player may re
information on her opponent’s strategy and be able to subsequently revise her own
of actions. However, Matsui approaches this general issue from a different angl
us. He considers the case of an infinitely repeated two-person game in which ther
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exogenous small probability that one or both of the players will be perfectly informed o
other’s supergame strategy at the outset of the game. The players have a chance
their strategies on the basis of this information before actual play begins. Matsui’s
result is that any subgame perfect equilibrium pair of payoffs is Pareto efficient, pro
that the probability of espionage is sufficiently small.

Matsui’s (1989) result hinges on the fact that thesame game is beingrepeated. This
enables a player who acquires his opponent’s supergame strategy to signal this info
to his opponent, whereby both players switch to a Pareto efficient strategy pair. Th
subgame perfect equilibria entail playing a Pareto efficient strategy pair right from
outset.

In our framework, since there is only one stage, no signaling is possible. To benefi
being spied upon, Player 2 must commit herself, with positive probability, to play ac
that are bad for herself (if she plays only actions that are good for herself, Player
anticipate that, and does not need to purchase information). Player 2 hopes to pr
playing actions that are bad for herself, but also bad for her opponent: once Player
out that a bad action was chosen, he will play an action which is better for Player 2
implies that a commitment to bad actions might be necessary. In particular, in cont
Matsui’s (1989) result, utilizing espionage in a one-shot game does not imply efficie

Another related paper is Perea y Monsuwe and Swinkels (1997). They studied a
of extensive form games, where at every information set, players can purchase a
from an information seller who is a participant in the game. The available devices dif
accuracy, and their cost is determined by the information seller. Thus, in their mod
cost of information is endogenous. Each player’s purchasing decision, as well as th
function he faces, are not revealed to the other participants of the game. Perea y Mo
and Swinkels are concerned with problems of evaluating information in such scena
what the value of the information is, how it can be computed, and how the flexibili
the information seller in setting the price of the information devices influences the
whether it is worthwhile to set up the price in advance, or whether it is better to neg
at every information set. Despite the underlying similarity to the model studied by Pe
Monsuwe and Swinkels (1997), our paper examines a different set of questions. W
the information seller as given and study her effects on the outcomes of the gam
concentrate on properties of equilibria from the point of view of the players and of a s
planner.

Games with espionage are related to games with endogenous timing, that hav
tackled with in the Industrial Organization literature. Timing of output choice in the ma
determines the competition structure. Sequential choice corresponds to a Stac
game, where the first firm to make a choice is termed the Stackelberg leader a
second is termed the Stackelberg follower. Simultaneous choice of output correspo
a Cournot competition. Mailath (1993) allows a firm with superior information to dela
quantity decision until the decision of the less informed firm (so that decisions are
simultaneously). The unique stable equilibrium turns out to be one in which the info
firm moves first, even though the leader may earn lower ex-ante profits than it woul
if it were choosing quantities simultaneously with the follower. Sadanand and Sad
(1996) generalized Mailath’s results and showed that when there is demand unce
and firms endogenously choose entry timing, relative firm sizes and uncertainty j
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determine the equilibrium. Van Damme and Hurkens (1996, 1997) study the endog
timing problem in the context of commitment. In their model, players can see the a
of players who moved before them. Thus, a player can turn the underlying simulta
game into a sequential game in which she is the first to move. A player will then ch
an action early in the game if she has a ‘first mover advantage.’ Our paper adds
branch of literature in that the underlying game can be sequential and the change o
is both probabilistic and costly. Thus, part of the optimization problem is the determin
of how much resources are to be allocated to switching turns and exploiting the ‘s
mover advantage,’ if it exists.

In our model the cost of information is exogenous. There is a vast literature dealin
the value of information. Several authors (e.g., Hirshleifer, 1971; Green and Stokey,
Allen, 1986) studied the value of private information to a player. Others (e.g., Ka
et al., 1990, and the references therein) considered a situation in which an agent po
information relevant to the players of a game in which he is not a participant. The
of information is then defined according to what this agent can achieve by beh
strategically. We view these theories as possible foundations for the cost function
we take as given.

We begin by providing the general framework for our analysis in Section 2. We
analyze a few motivating examples in Section 3. In Section 4 we study propert
espionage equilibria: we start with existence properties that hold for generaln×m one-
shot games in normal form in Section 4.1. We then provide a full characterization
set of equilibria with espionage in one-shot normal form games in Section 4.2. In Se
4.3 and 4.4 we concentrate on general 2× 2 one-shot games in normal form and on ch
store models. This allows us to point out some of the driving forces in the current
Section 5 summarizes the paper and suggests some possible avenues for future r
Technical proofs are relegated to Appendix A.

2. General framework

For every finite setK, |K| is the number of elements inK, and∆(K) is the set of
probability distributions overK. For everyµ ∈ ∆(K), µ[k] is the probability ofk ∈ K
underµ, andµ[K ′] = ∑

k∈K ′ µ[k], for everyK ′ ⊆ K. We identify eachk ∈ K with the
probability distribution in∆(K) that gives unit weight tok.

2.1. The model

We consider two-player non-zero sum games in normal form. Player 1 is the row p
and Player 2 is the column player. We denote byI = {1, . . . , n} andJ = {1, . . . ,m} the
actions of the two players, and byA = (aij ) andB = (bij ) the two payoff matrices. Th
game in normal form(A,B) will be referred to as thebase game. A game in normal form
with espionage, or simply theextended game, is a tupleG= (A,B,S,Q,ϕ) where

(i) (A,B) is a base game,
(ii) S is a finite set of signals,
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(iii) Q is a set of functionsq :J →∆(S),
(iv) ϕ :Q→ R represents the cost of information, that is,ϕ(q) is the cost of information

deviceΦ(q). We assumeϕ � 0.

For eachq ∈Q there corresponds an information deviceΦ(q), which, when actionj is
chosen by Player 2, gives a (probabilistic) signals with probabilityq(j)[s]. Note that an
information deviceq can be represented by anm× |S| Markov matrix, in which the entry
(j, s) is equal toq(j)[s]. In particular,Q is (equivalent to) a subset of a Euclidean spa
In the sequel we identify each functionq ∈Q with the corresponding information devic
Φ(q), and with the corresponding matrix. Finally, the description of the game is com
knowledge.

The extended game is played as follows:

Stage 1: Player 2 chooses an actionj ∈ J .
Stage 2: Player 1 purchases an espionage deviceΦ(q) from the setQ of available devices
Stage 3: Player 1 receives a signals ∈ S, where Prob(s | j)= q(j)[s].
Stage 4: Player 1 chooses an actioni ∈ I .
The players’ payoffs are (aij − ϕ(q), bij ).

A pure strategy for Player 2 is a pure actionj ∈ J , and a mixed strategy is a probabili
distributiony over J . A pure strategy for Player 1 is a pair(q, x) whereq ∈ Q is the
information device he purchases in stage 2, andx = (x(s))s∈S ∈ IS is a function that
assigns a pure action to be played in stage 4 for any given signal received in st
A mixed strategy for Player 1 is a probability distributionµ overQ× IS .

We denote byπl(y;µ), l = 1,2, the payoff to Playerl when Player 2 plays the mixe
strategyy, and Player 1 plays the mixed strategyµ. Formally,

π1(y;µ)=
∑

(i,j,s)∈I×J×S
yj

∫

(q,x)∈Q×IS

(
q(j)[s]aij − ϕ(q))I(x(s)= i)dµ, and

π2(y;µ)=
∑

(i,j,s)∈I×J×S
yj

∫

(q,x)∈Q×IS
ql(j)[s]bij I

(
x(s)= i)dµ,

whereI (x(s)= i) is equal to 1 ifx(s)= i, and is equal to 0 otherwise. The functionsπ1

andπ2 are continuous. Moreover,π1 is linear inµ, andπ2 is linear iny.

Definition 2.1. An information deviceq is trivial if it gives no information to Player 1; tha
is, q(j)[s] = q(j ′)[s] for everys ∈ S and everyj, j ′ ∈ J .

We make the following assumptions on the components of the game:

A.1 Q contains a trivial device.
A.2 The cost of any trivial device is zero.
A.3 The set of available devicesQ (which is equivalent to a subset of a Euclidean spa

is convex and compact.
A.4 The cost functionϕ is continuous and convex overQ.
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In some situations it is natural that the signals coincide with the actions of Player

Definition 2.2. The extended game iscanonical if S = J ; that is, the set of signals coincid
with the set of actions of Player 2.

If Player 2 has only two actions (say, Left and Right),|J | = 2, then a canonical devic
is characterized by two numbers: the probability that it reports Left when the actual a
chosen by Player 2 is Left, and the probability that it reports Right when the actual a
chosen by Player 2 is Right. A device in which these two probabilities are the same is
symmetric. Thus, a symmetric device is characterized by its accuracy: the probability
which it reports the correct action. Formally, the set ofsymmetric information devices in a
2× 2 canonical game is defined by

Q∗ = {
q :J →∆(J )

∣∣ q(j)[j ] = q(j ′)[j ′] ∀j, j ′ ∈ J }
.

2.2. Espionage equilibria

Definition 2.3. Espionage equilibria are perfect Bayesian equilibria (PBE) of the exten
game. An espionage equilibrium istrue if Player 1 purchases a costly information dev
with positive probability.

Note that if there is a non-trivial information device that costs nothing, then Pla
cannot lose by purchasing it. The question is, then, whether Player 1 will also purc
costly device.

As we see later (Theorem 4.1), assumptionsA.3 andA.4 are sufficient for the extende
game to admit an espionage equilibrium.

A strategy of Player 1 may involve choosing an information device from coun
many, or even a continuum, of possible devices. We will be interested in those strate
which he chooses a device from a finite set of devices.

Definition 2.4. A strategyµ of Player 1 hasfinite support if there existK ∈ N and
q1, . . . , qK ∈Q such thatµ[{q1, . . . , qK } × IS ] = 1. The strategy issimple if K = 1; that
is,µ[{q} × IS ] = 1 for someq ∈Q.

If µ has finite support, so thatµ[{q1, . . . , qK } × IS] = 1 for someq1, . . . , qK ∈ Q,
we defineαk = µ[{qk} × IS] to be the probability that the deviceqk is chosen, and
zk = (zk(s))s∈S ∈ (∆(I))S by

zk(s)[i] = µ[{qk} × {
x :S→ I | x(s)= i}]/αk

wheneverαk > 0. If αk = 0, zk may be chosen arbitrarily.zk(s)[i] is the probability that
conditional onqk being purchased, if the signals is received, the actioni is played by
Player 1. Thus, ifqk is purchased and the signals is received, Player 1 essentially pla
the mixed actionzk(s). For simplicity we writeµ= ∑K

k=1αk(qk, zk). If µ is simple, we
writeµ= (q, z).

As we prove below (Theorem 4.2), in every extended game there exists an esp
equilibrium where the strategy of Player 1 has finite support.
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Consider a canonical game and a strategyµ= ∑K
k=1αk(qk, zk) of Player 1 with finite

support. As discussed above, sinceS = J , when Player 1 purchases a non-trivial dev
qk and receives the signalj , he essentially plays the mixed actionzk(j). One can then as
whetherzk(j) is a best reply againstj in the base game. If this is the case, Player 1 p
as if he completely believes the report of the device, treating it as if it were determin

Definition 2.5. A strategy with finite supportµ = ∑K
k=1αk(qk, zk) in a canonical game

hascomplete belief if for every k = 1, . . . ,K such thatϕ(qk) > 0 and every j ∈ J , zk(j)
is a best reply of Player 1 againstj in the base game.

Since the accuracy of the signal Player 1 receives is not perfect, a best reply of P
in the extended game need not have complete belief. In what follows we show that in× 2
canonical games with symmetric information devices, every equilibrium with finite su
has complete belief (see Lemma 4.8). Example 4.10 below shows that this pheno
does not hold in general.

2.3. On the cost function

The cost functionϕ is a function from the set of Markov matrices to the real numb
One might want to impose conditions on this function. For example, swapping two col
in the matrix does not change the information of Player 1 whatsoever, but chang
device we are dealing with. One would like the cost function to give the same cost t
such matrices.

We would expect that if one information device is ‘more informative’ in some se
than another, it should also cost at least as much. To make this idea more rigorous,
the Blackwell (1950) partial ordering on information devices (known also as ‘garblin
the information theory literature).

Denote byMnm the space of alln × m Markov matrices. ThenMnm is a compact
convex subset ofRnm.

Definition 2.6. Let P1,P2 ∈ Mnm. P1 � P2 if and only if there exists a Markov matri
M ∈ Mmm such thatP2 = P1M.

Intuitively, P1 is defined to be at least as good asP2 if P2 is a noisy distortion ofP1.
Alternatively,P1 is at least as good asP2 if a player who receives information accordi
to P1 can pretend to be playing according toP2 by ignoring some of his information. I
particular, Player 1 will achieve at least as high a payoff with deviceP1 as with deviceP2,
for any game.

An example of a continuous and convex cost function that preserves the Blac
relation is the following. LetQ0 be the set of allnon-informative n×m Markov matrices;
that is,

Q0 = {q ∈Mnm | all rows ofq are identical}.
Q0 is a compact and convex subset ofRnm, and anyq ∈ Q0 corresponds to a trivia
information device.
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Define a continuous functionc :Mnm → R by:

c(q)= dist(q,Q0)= min
q ′∈Q0

‖q − q ′‖1,

where for every matrixx = (xij ), ‖x‖1 = ∑
i,j |xi,j |.

SinceQ0 is convex,c is a convex function. Moreover,c preserves the Blackwe
relation. Indeed, letq ′ ∈ Q0 such that dist(q,Q0) = ‖q − q ′‖1, and denoter = q − q ′.
Then for any Markov matrixM, q ′M ∈Q0,

∑
t∈S Mst = 1 for every fixeds ∈ S, and

c(qM)= dist(qM,Q0)� ‖qM − q ′M‖1 = ‖rM‖1 =
∑
j,t

∣∣∣∣
∑
s

rjsMst

∣∣∣∣

�
∑
j,t

∑
s

|rjs |Mst =
∑
s

(∑
j

|rjs |
)(∑

t

Mst

)
=

∑
j,s

|rjs | = ‖q − q ′‖1

= dist(q,Q0)= c(q).
Note that for every non-negative, continuous and convex functionf : [0,∞)→ [0,∞)
with f (0) = 0, the compositionf ◦ c preserves the Blackwell relation, and is conv
Indeed, any such functionf is monotonically increasing. Letα ∈ [0,1] andx, y ∈ Mnm.
Then, from the monotonicity off and the convexity ofc andf ,

(f ◦ c)(αx + (1− α)y) � f
(
αc(x)+ (1− α)c(y))

� α(f ◦ c)(x)+ (1− α)(f ◦ c)(y),
and thereforef ◦ c is convex.

3. Examples

In this section we provide several motivating examples that illustrate the main r
of the paper. All the examples are of canonical games in which each player ha
two possible actions, and the information devices are symmetric—they report the c
action with some fixed probability and the incorrect action otherwise. We therefore id
Q with the interval [1/2,1], whereq ∈ [1/2,1] is the accuracy of the deviceΦ(q).
Note thatq = 1/2 corresponds to the trivial device, and henceϕ(1/2) = 0. Moreover,
ϕ : [1/2,1] → [0,∞) is non-decreasing.

For the examples it is convenient to assume furthermore that the cost functionϕ(q) is
twice differentiable and strictly convex.

We begin with studying the “Matching Pennies” game. For this game, we find th
of simple espionage equilibria for every given cost function. In particular, we ide
when espionage is utilized. Moreover, we characterize the set of all distributions ov
entries of the payoff matrix that can be induced by an espionage equilibrium for som
function. This characterization is carried out for general games in Theorem 4.6.

We also provide an example where simple espionage equilibria do not exist.
We then study chain store models; we characterize when there is a true esp

equilibrium, and when this new equilibrium is more efficient.
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We will see that in this case the principle of cost-independence holds: the device
purchased in equilibrium is independent of its cost. The cost only influences the de
whether or not to purchase an information device.

Finally, we provide a game where both players benefit if Player 1 uses his ability t

Example 3.1 (Matching Pennies). We look at the standard Matching Pennies game.

Left Right
Top 1,0 0,1

Bottom 0,1 1,0

If Player 2 assigns probabilityy∗ to Left in equilibrium, Player 1 solves:

max
q

{
y∗q + (1− y∗)q − ϕ(q),max{y∗,1− y∗}}

= max
q

{
q − ϕ(q),max{y∗,1− y∗}}. (1)

The first term in the maximization refers to the payoff achieved by purchasing inform
and the second term corresponds to the maximal payoff achievable without purc
information.

We look for a true simple espionage equilibrium. Denote byΦ(q∗) the information
device purchased by Player 1 in such an equilibrium (if it exists).
q∗ is chosen to maximize the first term in (1). The first order condition implies th

q∗ < 1 then 1= ϕ′(q∗), andq∗ depends on the cost function. In Theorem 4.11 we will
that only rarely does the information device purchased at equilibrium depend on th
function. The ‘Matching Pennies’ game is such a degenerate game.

If q∗ < 1, for a true espionage equilibrium we needϕ′−1(1) − ϕ(ϕ′−1(1)) �
max{y∗,1 − y∗} � 1/2, so that the right-hand side of (1) will be equal toq∗ − ϕ(q∗),
and Player 1 will not benefit by not purchasing a device.

Note that for this specific game, anyy ∈ [1 − q∗ + ϕ(q∗), q∗ − ϕ(q∗)] is part of an
equilibrium. In particular, the set of distributions over the entries of the matrix that ca
induced by an espionage equilibrium is

Left Right
Top yq (1− y)(1− q)

Bottom y(1− q) (1− y)q
where 1/2< q � 1 and 1− q < y < q . In Theorem 4.6 we characterize for every on
shot game the set of distributions over the entries of the matrix that can be induc
some espionage equilibrium (without the restriction to canonical games or symm
information devices).

Example 3.2 (Non-existence of a simple espionage equilibrium). Consider the following
zero-sum game:

Left Right
Top 1,−1 0,0

Bottom 0,0 2,−2
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This is the Matching Pennies game with different payoffs for different matchings. We
that there is no simple espionage equilibrium in this game.

The mixed equilibrium in the base game is((2/3,1/3), (2/3,1/3)). Forϕ small enough
(e.g.,ϕ(3/4) < 1/3), this mixed equilibrium is no longer an equilibrium in the extend
game. Suppose Player 2 plays a mixed strategy(y,1−y). If information of qualityq > 1/2
is purchased, the payoff of Player 2 is−yq − 2(1− y)q = yq − 2q , which is maximized
at y = 1. If y = 1 no espionage is needed, but if espionage is not used, the only po
equilibrium is the mixed equilibrium of the base game. Hence, for sufficiently low
functions there is no simple espionage equilibrium.

The next examples are of chain store models.

Example 3.3 (Standard chain store model). The game is played by an Entrant and
Incumbent. The Entrant decides whether to enter the market or stay out. If the E
enters, the Incumbent has to decide whether to fight or accommodate. The payoffs
given in Fig. 1, wherea > 0,b > 0. The first element of any payoff pair corresponds to
Entrant’s payoff and the second element corresponds to the Incumbent’s payoff.

It is well known that the unique subgame perfect equilibrium is comprised of the En
entering and the Incumbent accommodating, whereby the equilibrium payoff is(b,0).

Suppose now that the Incumbent must decide on her reaction before the E
chooses whether or not to enter and that the Entrant can purchase a sym
canonical information device. As mentioned in the Introduction, the pure subgame p
equilibrium remains a subgame perfect equilibrium in the extended game. We now p
to find another espionage equilibrium where the Entrant uses his ability to spy.

Suppose that in equilibriump∗ is the probability with which the Incumbent accomm
dates andΦ(q∗) is the information device purchased by the Entrant: the Entrant rec
the correct report with probabilityq∗.

We will now find the exact values ofp∗ andq∗ that constitute a true simple espiona
equilibrium. As mentioned before, in 2× 2 canonical games with symmetric devices, a
simple equilibrium has complete belief; hence in such an equilibrium Player 1 plays
reply in the base game for the signal he receives.

Fig. 1. A standard chain store model.
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In a true simple equilibrium 0< p∗ < 1 (else no espionage is needed). Since
equilibrium the Incumbent is indifferent between fighting, which yieldsaq∗ + (−1)(1 −
q∗), and accommodating, which yieldsa(1− q∗), it follows that

q∗ = 1+ a
1+ 2a

>
1

2
. (2)

In particular, it follows that the espionage device that is purchased by the Entr
independent of its cost: the cost-independence principle holds. If the cost is very high
espionage cannot be profitable to the Entrant, but for sufficiently low costs of espio
the quality of the purchased device is determined solely by the Incumbent’s payoffs

The Entrant maximizes his expected payoff with respect top∗. Thus,q∗ is a solution
of:

max
q

{
p∗qb+ (1− p∗)× (−(1− q)) − ϕ(q), max

{
0,p∗b− (1− p∗)

}}
, (3)

where the first term is his payoff if he purchases the deviceq , and the latter if he doesn
purchase any device. Ifϕ is strictly convex then (3) has a unique solution. The first or
condition that corresponds to the first part in (3) implies that if an espionage deviceΦ(q∗)
is purchased then

(b− 1)p∗ = ϕ′(q∗)− 1. (4)

Thus, ifb �= 1, the probability that the Incumbent fights does depend on the cost func
To summarize, there exists a true simple espionage equilibrium if and only ifp∗, q∗,

andϕ satisfy (2), (4), and:

0<p∗ < 1, (5)

p∗q∗b+ (1− p∗)× (−(1− q∗)
) − ϕ(q∗)� 0, and (6)

p∗q∗b+ (1− p∗)× (−(1− q∗)
) − ϕ(q∗)� p∗b− (1− p∗). (7)

Observe that the following is a solution of (2), (4), and (5)–(7):q∗ = (1+ a)/(1+ 2a),
p∗ = 1/(b + 1), and ϕ is any continuous and strictly convex function that satis
0< ϕ(q∗) < b(2q∗ − 1)/(b+ 1) andϕ′(q∗)= 2b/(b+ 1). Eqs. (6) and (7) imply that

1− q∗ + ϕ(q∗)
1− q∗ + q∗b

� p∗ � q∗ − ϕ(q∗)
q∗ + b− q∗b

.

In particular, ifb = 1 then everyp∗ that satisfies 1− q∗ < p∗ < q∗ is part of a solution
for an appropriately chosen cost function.

In a true simple espionage equilibrium the Entrant receives a payoff which is sm
than the payoff he receives in the perfect equilibrium of the base game. Intuitive
the Incumbent were able to commit herself in the base game, there would be a
equilibrium in which the Incumbent would commit herself to fight and the Entrant w
stay out. Commitment would enable the Incumbent to increase her payoff relat
the perfect equilibrium payoff she receives in the base game. The Entrant, ho
would get a lower payoff when the Incumbent can commit herself to her actions.
espionage allows the Incumbent to commit herself to her actions (albeit probabilistic
the trends in the players’ payoffs are similar to those occurring when commitment
are introduced.
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Nonetheless, for certain cost functions, espionage provides an efficiency improv
Indeed,

Claim 3.4. There exists a cost function such that the payoffs corresponding to the
true simple espionage equilibrium constitute a more efficient outcome than the payoffs
corresponding to the perfect equilibrium in the base game if and only if one of the following
conditions hold:

• b= 1 and a > 2,
• b �= 1 and a > b.

The proof of the claim appears in Appendix A.
The payoffs corresponding to equilibria with espionage are not Pareto efficient. In

since the espionage devices give probabilistic signals, in a true espionage equil
the payoffs(−1,−1), which are Pareto inferior, are achieved with positive probab
The games considered here are not repeated (as in, e.g., Matsui, 1989); hence s
opportunities are absent, and the main force at play is that of Player 2’s ability to co
herself to her actions. Since in our model Player 2 can affect Player 1’s behavior o
she commits herself to play actions that are bad both for her and for Player 1, equil
outcomes in the extended game may be Pareto inefficient.

Example 3.5 (Both players profit when the Entrant uses his ability to spy). Consider the
extensive-form game depicted in Fig. 2 (we keep the notation of Entrant and Incum
instead of Players 1 and 2, to make the comparison with Example 3.3 more evident

Without espionage, the unique perfect equilibrium is comprised of the Entrant st
out and the Incumbent fighting upon entrance. The corresponding payoffs are(10,10).

One can repeat the analysis performed for Example 3.3 to calculate the set
espionage equilibria in this game. An alternative way to calculate this set is to use Th
4.6 below. Denote byp∗ the equilibrium probability that the incumbent accommodate
the Entrant enters, and byΦ(q∗) the equilibrium device purchased by the Entrant. Set
q∗ = 2/3, for every 1/2< p∗ < 4/5 there exists a cost function such thatp∗ andq∗ are
the parameters that are used by the players in a true espionage equilibrium.

It is clear that both players get at least 10 in such an equilibrium (the Entran
the alternative to stay out and get 10, while 10 is the lowest payoff in the gam

Fig. 2. A modified chain store model.
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the Incumbent). Hence the ability to spy leads to a Pareto improvement over the p
equilibrium result.

4. Properties of espionage equilibria

In this section we investigate the properties of espionage equilibria. We first prove,
standard arguments, that an espionage equilibrium always exists. We then show th
always exists an espionage equilibrium where the strategy of Player 1 has finite sup

Next, we characterize the set of all distributions over the entries of the matrix tha
be induced by espionage equilibria in general normal-form games. This character
allows us to derive two principles that hold in classes of normal-form games, namely× 2
games and chain store models.

In Section 4.3 we concentrate on simple espionage equilibria in 2× 2 canonical games
We provide a characterization of the true espionage equilibrium, identifying when it in
exists. In particular, we establish the principle of cost-independence: if the game i
degenerate, the device that Player 1 purchases is independent of its cost. One cons
of this characterization is that while the existence of a first mover advantage pla
important role in the current setup, it is not a sufficient proxy for the existence of a
espionage equilibrium.

In Section 4.4 we study the subclass of chain store models. For this class we ded
principle of first mover: espionage is used if and only if the subgame perfect equilibri
the base game is different from the Stackelberg equilibrium with Player 2 being the l
We then characterize when the true simple espionage equilibrium is more efficient th
pure subgame perfect equilibrium in the base game.

4.1. Mixed espionage equilibrium

It is easy to see that any pure equilibrium in the game(A,B) corresponds to a pur
equilibrium in the extended game, where the option to spy is not used.3

Theorem 4.1. Under assumptions A.3 and A.4 the extended game admits an espionage
equilibrium.

Proof. The space of mixed strategies of Player 2 is∆(J ), which is convex and compac
By A.3, the space of pure strategies of Player 1 is compact. It follows that the sp
mixed strategies of Player 1, which are probability measures over a compact set, is c
in the w∗-topology and, clearly, is convex. ByA.4 the payoff function of each playe
is continuous, and linear in his strategy. Hence the best-reply correspondence ha
empty and convex values, and its graph is closed. By Glicksberg’s (1952) generaliza
Kakutani’s fixed point theorem, an equilibrium in mixed strategies exists.✷

3 One class of games that has been recently studied in the literature and is comprised of games tha
possess a pure equilibrium is that of potential games (see Monderer and Shapley, 1996).
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Theorem 4.2. Under assumptions A.3 and A.4, there exists an espionage equilibrium
(y;µ) with µ = ∑K

k=1αk(qk, xk), where xk �= xl whenever k �= l. In particular, µ has
finite support.

Proof. By Theorem 4.1 there exists an espionage equilibrium(y;µ). Let K = |I ||S| =
n|S|, and let x1, . . . , xK be all the functions fromS to I . Let Ak = Q × {xk}, and
αk = µ[Ak] be the probability that underµ, at stage 4, Player 1 plays according toxk.
Recall thatQ is equivalent to a subset of a Euclidean space. For everyk such thatαk > 0, let
qk = ∫

Ak
q dµ/αk be the ‘average’ device purchased by Player 1, conditional on playinxk.

If αk = 0, letqk be chosen arbitrarily. Letν be the strategy of Player 1 defined by

ν =
K∑
k=1

αk(qk, xk),

that is, the deviceqk is purchased with probabilityαk in stage 2, and the action playe
in stage 4 is determined byxk. The joint distribution on pairs(j, s), wherej is an action
chosen by Player 2 ands is a signal reported to Player 1, is linear in the device purch
by Player 1. Hence bothµ andν induce the same joint distribution over the space of th
pairs. It follows thatπ2(y ′;µ)= π2(y ′, ν) for every strategyy ′ of Player 2. ByA.4,ϕ is
convex, and therefore the expected cost of the device chosen byν is at most the expecte
cost of the device chosen byµ. In particular,π1(y, ν) � π1(y;µ). Since(y;µ) is an
espionage equilibrium,π1(y; ν) = π1(y;µ), and (y; ν) is an espionage equilibrium a
well. ✷
4.2. Characterization of espionage equilibria

In this section we provide a full characterization of the set of distributions ove
entries of the matrix that can arise from espionage equilibria.

Since espionage allows Player 2 to send a probabilistic signal to Player 1, it is n
to compare espionage equilibria with correlated equilibria and communication equi
Whereas in correlated equilibria both players receive a signal from a third party, a
communication equilibria both players send costless signals to each other accordin
exogenously determined protocol, here only Player 2 can send one signal, the accu
which is determined by Player 1. These differences cause the set of distributions o
entries of the matrix that can arise from an espionage equilibrium to neither include,
included, in the set of distributions induced by correlated equilibria or by communic
equilibria in the original matrix game (see, e.g., the Matching Pennies game, Exampl

Nonetheless, the following example shows that sometimes espionage can be
form a desirable correlation.

Example 4.3. Consider the following example of a 3× 3 game (Moulin and Vial, 1978):

L M R

T 0,0 1,5 5,1
I 5,1 0,0 1,5
B 1,5 5,1 0,0
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The only Nash equilibrium without espionage is{(1/3,1/3,1/3), (1/3,1/3,1/3)}.
Assume that the signal space is {‘NotL’, ‘Not M ’, ‘Not R’}. Let q be the following

device.

q(L)[NotL] = 0, q(L)[NotM] = 1/2, q(L)[NotR] = 1/2,
q(M)[NotL] = 1/2, q(M)[NotM] = 0, q(M)[NotR] = 1/2,
q(R)[NotL] = 1/2, q(R)[NotM] = 1/2, q(R)[NotR] = 0.

This device allows Player 1 to rule out one of the actions that Player 2 did not choos
Q be the convex hull ofq and a trivial device.

As the proof of Theorem 4.6 below shows, there is a cost functionϕ such that
the following is an espionage equilibrium. Player 2 plays(1/3,1/3,1/3) and Player 1
purchases the deviceq and playsT , I , or B, depending on whether the signal was ‘N
L’, ‘Not M ’, or ‘Not R’, respectively. The diagonal entries are not reached in equilib
and the corresponding payoff pair, not including the cost of espionage, is(3,3), which
corresponds to the optimal correlated equilibrium of this game.

Unfortunately, the construction introduced in Example 4.3 cannot be unive
replicated, as the following example illustrates.

Example 4.4. It follows from Theorem 4.6 below that no matter what the cost func
is, one cannot get close to the correlated equilibrium payoff(10/3,10/3) of the following
classical example (Aumann, 1974):

Left Right
Top 5,1 0,0

Bottom 4,4 1,5

Thus, a construction such as the one provided in Example 4.3 indeed cannot be rep
in general.

Let I ′ ⊆ I be the set of all actionsi ∈ I that are not strictly dominated: that is,i ∈ I ′
if and only if there existsy ∈ ∆(J ) such that

∑
j∈J aij yj = maxi′∈I

∑
j∈J ai′j yj . In an

espionage equilibrium, Player 1 will only play actions inI ′.

Definition 4.5. A semi-correlated equilibrium distribution of a base game(A,B) is a
probability distributionp over the matrix entries such that

(1) For everyi, i ′ ∈ I , ∑
j∈J pij aij �

∑
j∈J pij ai′j .

(2) For every j, j ′ ∈ J with
∑
i∈I pij ,

∑
i∈I pij ′ > 0,

∑
i∈I pij bij /

∑
i∈I pij =∑

i∈I pij ′bij ′/
∑
i∈I pij ′ .

(3) For everyj, j ′ ∈ J with
∑
i∈I pij > 0,

∑
i∈I pij bij /

∑
i∈I pij � mini∈I ′ bij ′ .

Condition 1 is the standard condition of correlated equilibrium for Player 1—he ca
profit by acting as if he received a different recommended action. Condition 2 i
condition of distribution equilibrium given by Sorin (1998)—the expected payof
Player 2 is the same, given any action she plays with positive probability. Condit
means that if Player 2 plays an actionj with positive probability, then upon receiving
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recommendation to playj , her expected payoff from playingj is at least as high as he
most pessimistic payoff achieved by playing any other actionj ′. The most pessimisti
payoff (when perfection requirements are taken into account) corresponds to the
achieved when Player 1 plays (spitefully) the worst action for Player 2, knowing Play
action, when he is restricted to undominated actions. That is, when Player 1 uses an
that he can justify to himself as a best response to some strategy of Player 2.

Each strategy pair(y;µ) in the extended game induces a probability distribut
p = (pij ) on the entries of the matrix

pij =
∫

(q,x)∈Q×IS

∑
s∈S
yjq(j)[s]I

(
x(s)= i)dµ,

wherepij is the probability that under(y;µ) the entry(i, j) will be played.
We say that a probability distributionp = (pij ) is non-degenerate with respect to the

game(A,B) if (i) # {i | ∑j pij > 0}> 1 and (ii) for everyi ′ ∈ I there isi ∈ I such that:
∑
j∈J
pij aij >

∑
j∈J
pij ai′j .

Thus,p is degenerate if either a single action of Player 1 has positive probability undp,
or if Player 1 does not lose by playing any actioni ′ regardless of the recommendation
receives.

Theorem 4.6. If p = (pij ) is a probability distribution induced by a true espionage equi-
librium then it is a non-degenerate semi-correlated equilibrium distribution. Conversely, if
p is a non-degenerate semi-correlated equilibrium distribution then there is some signal
set S, some convex and compact set of information devicesQ⊆ {q :J →∆(S)}, and some
continuous and convex cost function ϕ :Q→ R such that p is the distribution induced by
some true simple espionage equilibrium in the extended game (A,B,S,Q,ϕ).

The result is intuitive. Player 2 chooses an action before Player 1 does, and henc
be indifferent between all actions she plays with a positive probability (condition
Definition 4.5). However, she will never play an actionj if all the payoffs in some othe
row are strictly higher than her expected payoff from playingj (condition 3 of Definition
4.5). Player 1, on the other hand, receives a signal; hence in equilibrium, he mus
optimally given his signal (condition 1 of Definition 4.5). Ifp is degenerate then Player
can do just as well without purchasing a costly information device. The proof of The
4.6 appears in Appendix A.

Remark 4.7. If one considers canonical symmetric devices in 2× 2 games, the
characterization given in Theorem 4.6 is still valid, provided one takes, instead of all
correlated equilibrium distributions, only semi-correlated equilibrium distributions o
form

yq (1− y)(1− q)
y(1− q) (1− y)q
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4.3. 2× 2 canonical games with symmetric devices

In this subsection we restrict ourselves to 2× 2 canonical games with symmetr
information devices. Thus, we identifyQ=Q∗ = [1/2,1].

The cost functionϕ = ϕ(q) depends on a single number 1/2 � q � 1; it satisfies
ϕ(1/2)= 0, and is monotonically non-decreasing.

When signals and actions are binary, a device is purchased in equilibrium only
signals are followed, in the sense that different signals lead to different actions. T
a basic observation in information economics, the idea being that if the same ac
taken (even probabilistically) no matter what the signal is, there is no need for the de
reports and purchasing it is sub-optimal. In our framework, this translates formally
following way:

Lemma 4.8. Let (y;µ) be a true espionage equilibrium in a 2 × 2 canonical game with
symmetric information devices, where µ has finite support. Then µ has complete belief.

By Theorem 4.2 there exists a simple espionage equilibrium(y;µ) where µ =∑K
k=1αk(qk, xk), andxk �= xl wheneverk �= l. By Lemma 4.8, ifϕ is strictly convex then

ϕ(qk) > 0 for at most one indexk. We therefore have the following:

Corollary 4.9. In every 2 × 2 canonical game with symmetric information devices, if the
cost function is strictly convex then there exists an espionage equilibrium (y;µ) where
µ= ∑K

k=1αk(qk, xk), and ϕ(qk) > 0 for at most one index k.

Thus, in 2× 2 canonical games with symmetric information devices, when
information cost is strictly convex, Player 1 may use one of several costless devices
most one costly device.

If both players have more than two actions, Lemma 4.8 no longer holds. Player
want to purchase information to differentiate between two of the actions of Player 2,
Player 2 plays a third action, then Player 1 essentially ignores the device. This pheno
is shown in the next example.

Example 4.10. Consider the following 3× 3 game, where only the payoffs of Player
appear.

L M R

T 3 0 0
I 0 3 0
B 0 0 1

Assume that Player 2 plays the mixed actiony = (1/3,1/3,1/3), and that Player 1
purchases the deviceq that with probability 1/2 reports the action chosen by Player
and with probability 1/4 reports each of the other two actions.

By an appropriate definition of the cost function, it is optimal for Player 1 to purc
q (see the proof of Theorem 4.6 for such an appropriate definition).
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A simple application of Bayes’ rule shows that if Player 1 receives the signalL then the
probability that Player 2 actually choseL is 1/2, and the probability that she chose each
the other two actions is 1/4. Analogous statements hold if the signal isM orR.

Therefore, if Player 1 receives the signalL, then it is optimal for him to playT : his
expected payoff is 3/2 by playingT , 3/4 by playingI , and 1/4 by playingB. Similarly, if
he receives the signalM, it is optimal for him to playI . However, if the signal isR, then
playingB is sub-optimal: it yields him an expected payoff of 1/2, whereas any conve
combination ofT andI yields 3/4.

The following general result, which is proven in Appendix A, characterizes wh
simple espionage equilibrium exists in 2× 2 canonical games with symmetric informati
devices. Moreover, it asserts the principle of cost independence.

Denoteα = a11 + a12 − a21 − a22 andβ = b11 + b12 − b21 − b22.

Theorem 4.11. Let (A,B) be a 2 × 2 base game where no player has a weakly dominant
action. Assume w.l.o.g. that a11> a21 and a22> a12.

(i) There exists a cost function ϕ for which the canonical game with symmetric
information devices (A,B,J, [1/2,1], ϕ) has a true simple espionage equilibrium if
and only if one of the following holds:
(a) β = 0 and b12 = b21;
(b) β �= 0 and 1/2< (b12 − b21)/β � 1.

(ii) If Φ(q) is the information device purchased by Player 1 in equilibrium, and if
ϕ(q) > 0, then βq = b12 − b21 [Principle of cost-independence].

One can show that ifα �= 0 andϕ is twice differentiable, theny = (ϕ′(q)+a12−a22)/α

is the mixed action chosen by Player 2 in equilibrium. Since this calculation is tech
and rather dull, it is omitted. Note that the Matching Pennies game (Example 3.1) sa
α = β = 0.

Remark 4.12. Theorem 4.11 proves the principle of cost-independence: if the game
degenerate, the cost function only influenceswhether a true simple espionage equilibriu
exists, but notwhich information device is purchased. The exact information devic
determinedsolely by the payoff function of Player 2.

The intuition behind the principle of cost independence, as captured by the seco
of Theorem 4.11, is the following. In an equilibrium, Player 2 should be indifferent betw
her actions. The payoff of Player 2 when she plays some pure strategy depends on
payoff function, (ii) the information device purchased by Player 1, and (iii) the actions
are chosen by Player 1 given the signal he receives. However, by the principle of co
belief, Player 1’s action completely depends on the signal he receives. Thus, Pl
essentially does not control the action he plays at stage 4, and the information
is chosen to induce a proper distribution over the entries of the matrix, so that Pla
is indifferent between her actions. Such distributions depend only on the payoffs
base game and not on the cost functionϕ that is internalized by Player 1. In particula
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conditional on an information device being purchased, its specifications do not depe
the cost function.

4.4. Chain store models

In this subsection we further restrict ourselves tochain store models; that is, 2× 2
canonical games with symmetric information devices, where Player 1 has an actio
yields the players the same payoff, regardless of the action of Player 2. The genera
without espionage is as follows.

Left Right
Top a1, a2 a1, a2

Bottom b1, b2 c1, c2

We first characterize the conditions under which there exists a true espi
equilibrium. The theorem shows an equivalence between the existence of a first
advantage for Player 2 and the existence of true espionage equilibria. We then char
the conditions under which this equilibrium is more efficient than the perfect equilib
of the base game.

The proof of Theorem 4.13, which is rather tedious, is relegated to Appendix A.

Theorem 4.13 (Principle of first mover).Consider a chain store model in which c2> b2.
The following three statements are equivalent.

(a) There exists a cost function ϕ such that the game has a true simple espionage
equilibrium.

(b) The perfect equilibrium of the base game is different from the Stackelberg equilibrium
with Player 2 being the Stackelberg leader.

(c) Either (i) b1< a1< c1 and a2> c2, or (ii) c1< a1< b1 and b2> a2.

Theorem 4.13 asserts theprinciple of first mover: in chain store models, unless Playe
has the first mover advantage, espionage cannot be useful.

The theorem is rather intuitive. Divergence of the Stackelberg payoff from the pe
equilibrium payoff implies that Player 2 would prefer to use a reaction which is sub-op
for her in order to get Player 1 to choose an action that differs from that prescrib
the perfect equilibrium. That is, Player 2 faces a trade-off between choosing a re
policy that is optimal if realized (direct effect) and choosing a reaction policy that is
optimal, but causes Player 1 to choose a beneficial action (indirect effect). In the bas
commitment is not possible and thus, according to the definition of perfect equilibriu
player chooses an action that is sub-optimal against any tremble (in the extensiv
setting this translates to sub-optimality in some decision node). However, the existe
espionage allows Player 2 to (probabilistically) commit herself to a sub-optimal rea
Thus, as long as the costs of espionage are not extreme (low or high), espionage
the trade-off between the direct effect and the indirect effect on Player 2’s payoffs
non-trivial.
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Remark 4.14. It is important to note that the principle of first mover is specific to ch
store models and does not hold in general. Indeed, one consequence of Theorem
that, in general, first mover advantage is not the sole determinant of whether or
equilibrium with non-trivial espionage exists. Indeed, consider the following two chi
games:

Chicken 1Left Right
Top 2,5 3,3

Bottom 1,1 5,2

Chicken 2Left Right
Top 3,5 4,4

Bottom 1,1 5,3

Both games have the same first mover advantage characteristics (if Player 2 mov
she will get the payoff corresponding to the Nash equilibrium (Top,Left)). However,

Chicken 1:
bTR − bBL

β
= 3− 1

3+ 5− 2− 1
= 2

5
<

1

2
,

Chicken 2:
bTR − bBL

β
= 4− 1

4+ 5− 3− 1
= 3

5
>

1

2
.

Hence, only the game Chicken 2 satisfies the conditions for the existence of a true
espionage equilibrium as specified in Theorem 4.11. Conditional on Player 2 playing
the interests of both players are in conflict. Therefore Player 2 would be willing to p
mixed strategy only if the information structure is such that the entry (Bottom, Left) w
not be reached too often. When the gap between payoffs is large, as in Chicken 1, a
trivial device would make mixing sub-optimal for Player 2. This example illustrates
message of Theorem 4.11: Generally, the existence of espionage equilibria depen
on Player 2’s first mover advantage and on Player 1’s motives when the Stackelberg
is not taken.

Characterization of efficiency improvement. We now give a characterization of when t
existence of espionage provides an efficiency improvement, as captured by the sum
players’ payoffs. We assume thatc2> b2.

If b1< a1< c1 anda2> c2, then the game is equivalent to the game studied in Exam
3.3. In particular, Claim 3.4 characterizes when there is a more efficient equilibrium
uses espionage.

If c1 < a1 < b1 and b2 > a2, then the game is equivalent to the one studied
Example 3.5. In particular, disregarding the cost of information, espionage provides
improvement.

5. Concluding comments

In this paper we have demonstrated the effects of players’ option to pur
information on their opponents’ decisions (i.e., the option to spy on their oppon
This alteration of the agents’ optimization problem changes the set of predictions
game. While pure equilibria of the base game remain equilibria in the extended
with espionage, the set of mixed equilibria may change for sufficiently small cos
information. Moreover, there may be additional mixed (perfect Bayesian) equilibria
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espionage is available. In general, the set of true espionage equilibria coincides w
set of non-degenerate semi-correlated equilibrium distributions.

We identified two principles that hold in various domains of 2× 2 games. Theprinciple
of first mover asserts that in chain store models non-trivial espionage is used if and
if the perfect equilibrium of the original game does not coincide with the Stacke
equilibrium with Player 2 being the Stackelberg leader; that is, espionage may be em
non-trivially in equilibrium if and only if Player 2 has a first mover advantage.
principle of cost independence claims that while the cost function of information mig
influence the decision whether to purchase information, it has no effect on which de
purchased in equilibrium.

Our analysis concentrated mostly on one-shot normal form games. The natural ne
is to extend this study to multi-stage games with a sequence of players’ decisions
extension has economic relevance to the timing of decisions. Given that spying is po
only on policies that have already been determined, there might be a trade-off be
committing oneself to policies early on in the game and waiting to a stage wher
opponent’s actions can be spied upon. A resolution of this trade-off can serve to det
the endogenous timing of policy decisions.

It is also worthwhile noting that espionage can potentially be considered in the co
of private information that is not related to the players’ actions; that is, allowing playe
purchase information on others’ private signals or types could extend the standard
of games with incomplete information.

Another direction for future investigation concerns the possibility of using espio
equilibria as a refinement tool. Indeed, when the cost of information is high, it is
profitable to purchase information, hence the set of equilibria of the base game coi
with the set of espionage equilibria of the extended game. When the cost of informa
zero, the only equilibria of the base game that remain espionage equilibria of the ex
game are the pure ones. Thus, espionage can serve as a refinement, by considering
equilibria that are the least vulnerable to espionage. It is interesting to know how thi
of refinement relates to existing ones (e.g. trembling hand equilibria).

Finally, our model could be extended to allow for protection against espio
(folk wisdom suggests that this phenomenon occurs in army-related enterprises,
as in industrial/economic ones). Since espionage sometimes leads to a strict
improvement, it is not clear that even if protection is very cheap, the game is equi
to the base game. We do predict, though, that if protection is extremely costly, the
resembles the extension considered in this paper. The authors do not know how the
predictions change when protection costs are comparable to the costs of informatio
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Appendix A

Proof of Claim 3.4. The Entrant’s payoff isp∗q∗b − (1 − p∗)(1 − q∗)− ϕ(q∗) and the
Incumbent’s payoff isa − q∗a. Using (4), the sum of payoffs is

W = q∗ϕ′(q∗)− 1+ p∗ − ϕ(q∗)+ a − q∗a.

We look for conditions under whichW > b.
If b = 1 then, by (4),ϕ′(q∗) = 1, and by (6) and (7), 1− q∗ + ϕ(q∗) � p∗ �

q∗ − ϕ(q∗). Thus,W > b = 1 if and only if q∗(2 − a) − 2ϕ(q∗) − ε > 2 − a, where
ε = q∗ − ϕ(q∗)− p∗ � 0. This last inequality holds for somep∗ and some cost functio
ϕ if and only if a > 2.

Assume now thatb �= 1 and a > b. Chooseε ∈ (0, b) sufficiently small so tha
a − b > (1+ a)(a − b + ε)/(1+ 2a) + ε(1 + 1/b). Choosep∗ > 1 − ε/b, and a cos
functionϕ that satisfies: (i)ϕ(q∗) < ε, and (ii)ϕ′(q∗)= 1− p∗ + p∗b > b− ε. Then

W = a + (p∗ − 1)+ q∗(ϕ′(q∗)− a)− ϕ(q∗) > a − ε
(

1+ 1

b

)
+ q∗(b− a − ε)

= a − ε
(

1+ 1

b

)
+ 1+ a

1+ 2a
(b− a − ε) > b,

where the last inequality follows from the choice ofε.
Assume now thatb > 1 anda � b. By (4) and (5),ϕ′(q∗) < b. In particular,W =

a + (p∗ − 1)+ q∗ϕ′(q∗)− q∗a − ϕ(q∗)� b.
Finally, assume thatb < 1 anda � b. By (4) and (5),ϕ(q∗) > b. By (4) and (2)

W = a − q∗a + q∗ϕ′(q∗)+ p∗ − 1− ϕ(q∗)
= a − q∗a + q∗ϕ′(q∗)+ (

1− ϕ′(q∗)
)
/(1− b)− 1− ϕ(q∗)

= a2

1+ 2a
+ ϕ′(q∗)

(
1+ a
1+ 2a

− 1

1− b
)

+ b

1− b − ϕ(q∗)

= b+ b2

1− b + a2

1+ 2a
+ ϕ′(q∗) −a − b− ab

(1+ 2a)(1− b) − ϕ(q∗)

< b+ b2

1− b + a2

1+ 2a
− b a + b+ ab

(1+ 2a)(1− b)
= b+ a a − b

1+ 2a
� b. ✷

Proof of Theorem 4.6. Let p = (pij ) be a probability distribution induced by a tru
espionage equilibrium in the extended game. Since in equilibrium Player 1 plays
response given the signal he receives, condition 1 of Definition 4.5 holds. More
since in a true espionage equilibrium Player 1 purchases a costly information d
the distribution is non-degenerate. Letj and j ′ be such that

∑
i∈I pij ,

∑
i∈I pij ′ > 0.

If
∑
i∈I pij bij /

∑
i∈I pij >

∑
i∈I pij ′bij ′/

∑
i∈I pij ′ then Player 2 would not play th

action j ′ with positive probability, and so
∑
i∈I pij ′ = 0. In particular, condition 2 o

Definition 4.5 holds for suchj andj ′. Now let j ′′ be such that
∑
i∈I pij bij /

∑
i∈I pij <
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mini∈I ′ bij ′′ . Player 2 cannot playj with positive probability in an equilibrium, since sh
gains more by playingj ′′, provided Player 1 plays an action inI ′. However, equilibrium
perfection requires that Player 1 always plays a best reply against his belief. In par
Player 1 can only use actions inI ′.

Conversely, letp be a semi-correlated equilibrium distribution. Definey ∈ ∆(J ) by
yj = ∑

i∈I pij , and let the signal space beS = I ∪ {ω}. The signalω will be used to force
Player 1 to purchase a certain information device. For eachj ∈ J choose somei(j) in
argmini∈I ′bij ; that is,i(j) is a ‘punishing action’ that minimizes the payoff of Player 2
she chooses to playj . Sincei(j) ∈ I ′, there exists a distribution̂y(j) ∈∆(J ) such thati(j)
is a best response againstŷ(j ). For eachj ∈ J with yj > 0 define a probability distribution
xj ∈∆(I) by

xj [i] = pij /yj = pij
/∑
i∈I
pij ;

that is, the probability induced byp on thej th column. Define the following functio
q∗ :J →∆(S).

q∗(j)=
{
i(j) yj = 0,
xj yj > 0.

The information deviceq∗ recommends an action to Player 1: if Player 2 chooses an a
j she should not play, it recommends a punishment for Player 2. Otherwise it recom
playing according to the conditional distribution givenj .

Player 1’s beliefs concerning his opponent’s strategy are specified by the Ba
posterior whenever defined. If the Bayesian posterior is not defined (which happens
Player 2 plays an actionj with yj = 0, such thati(j) is not in the support of an
(xj ′)j ′: yj ′>0), the belief isŷj ′ , for somej ′ with i(j ′)= i(j).

Define now a functionx : I → I by

x(i)= i;
that is, Player 1 follows the recommendation of the device. We will now see that sinp
is a semi-correlated equilibrium distribution, if the players play(y;q∗, x) then Player 2
cannot gain by deviating fromy, and Player 1 cannot gain by deviating fromx. We will
then constructQ andϕ that ‘force’ Player 1 to purchase the information deviceΦ(q∗).

Assume that the players play the simple espionage strategy(y;q∗, x). The probability
distribution induced on the pairs of actions is exactlyp. By condition 2 of Definition 4.5
Player 2 is indifferent between all actionsj with yj > 0, and by condition 3 she cann
profit from any deviation. By condition 1, Player 1 cannot profit by not following
recommendation ofq∗.

We shall now constructQ andϕ that ‘force’ Player 1 to purchase the deviceΦ(q∗).
Denote byq0 the non-informative device that sends the signalω regardless of the actio

Player 2 takes. LetQ be the convex hull ofq∗ andq0 (a one-dimensional space). We ta
the cost function to be an affine function so that for allα ∈ [0,1],ϕ(αq∗ +(1−α)q0)= αρ,
for someρ > 0.

We now show that it would be optimal for Player 1 to purchaseq∗ and to follow its
recommendation, providedρ is sufficiently small.
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Assume that Player 1 purchases the deviceq = αq∗ + (1 − α)q0, and plays the actio
z(s) upon receiving the signals ∈ I ∪ {ω}.

Player 1’s payoff is:

π1(y;α, z)= α
∑
i,j

pij az(i)j + (1− α)
∑
i,j

pij az(ω)j − ρα.

Sincep is a semi-correlated equilibrium distribution,z(i) = i maximizes the first term
We now show that sincep is non-degenerate, this quantity is maximized atα = 1, which
concludes the proof.

The functionπ1(y;α, z) is linear inα; it is equal to
∑
i,j pij aij − ρ at α = 1, and to∑

i,j pij az(ω)j atα = 0. From the non-degeneracy condition, there exists a sufficiently
ρ for which

∑
i,j pij aij − ρ >∑

i,j pij az(ω)j . ✷
Proof of Theorem 4.11. We apply Theorem 4.6 in the case of canonical symme
devices in 2× 2 games. In particular, we consider probability distributions of the form

p11 = yq, p12 = (1− y)(1− q),
p21 = y(1− q), and p22 = (1− y)q. (8)

By Theorem 4.6 we have thatqb11+(1−q)b21 = (1−q)b12+qb22, which is equivalen
to βq = b12 − b21. In particular, (ii) holds.

Sinceq ∈ (1/2,1], it follows that if a simple espionage equilibrium exists then one
the claims (i).a or (i).b holds.

For the converse, ifβ = 0 then (i).a implies thatb11 = b22 and the probability
distribution (8) with q = 1 and anyy ∈ (0,1) is a non-degenerate semi-correla
probability distribution. Ifβ �= 0, defineq0 = (b12 − b21)/β . By (i).b, q0 ∈ (1/2,1]. Since
a11> a21 anda12< a22, there exists a uniquey0 ∈ (0,1) that solves the equation

yq0a11 + (1− y)(1− q0)a12

yq0 + (1− y)(1− q0)
= y(1− q0)a21 + (1− y)q0a22

y(1− q0)+ (1− y)q0
.

Then the probability distribution (8) withq = q0 andy = y0 is a non-degenerate sem
correlated equilibrium distribution.✷
Proof of Theorem 4.13. We first prove that (b) and (c) are equivalent. Sincec2> b2 action
Right of Player 2 is part of any perfect equilibrium. Ifa1< c1 then the perfect equilibrium
is (Bottom,Right) and the Stackelberg payoff is different if and only ifa2> c2 andb1< a1.
If a1> c1 then the perfect equilibrium is (Top,Right) and the Stackelberg payoff is diffe
if and only if b2> a2 anda1< b1. To summarize, the second statement holds if and
if one of the following conditions holds:

(1) b1< a1< c1 anda2> c2; or
(2) c1< a1< b1 andb2> a2.

Note that (c) implies (a). Indeed, case (c.i) (respectively case (c.ii)) is equivalent
chain store model studied in Example 3.3 (respectively Example 3.5).

It remains to show that (a) implies (c). We will use Theorem 4.6.



198 E. Solan, L. Yariv / Games and Economic Behavior 47 (2004) 172–199

g non-

player.

v. Econ.

Nash

paper

Econ.

Econ.

oner’s

cannot

mitment
Assume there is a true espionage equilibrium, and denote the correspondin
degenerate semi-correlated equilibrium distributionp over action combinations by

pTL = yq, pTR = (1− y)(1− q),
pBL = y(1− q), and pBR = (1− y)q,

where, sincep is non-degenerate,y, q ∈ (0,1). Assume w.l.o.g. thata2 = 0.
Sincep is non-degenerate, and by condition 1 of Definition 4.5, min{b1, c1} < a1 <

max{b1, c1}. In particular,b1 �= c1 andI = I ′. By Lemma 4.8,b1< a1< c1 if and only if
q < 1/2, andc1< a1< b1 if and only if q > 1/2.

Condition 2 of Definition 4.5 guarantees that

(1− q)b2 = qc2, (9)

and condition 3 of Definition 4.5 indicates that

(1− q)b2 � min{0, c2} and qc2 � min{0, b2}. (10)

Eqs. (9) and (10), together with the assumption thatc2> b2, imply that either (i)a2 = 0>
c2> b2 andq > 1/2, or (ii) c2> b2> a2 = 0 andq < 1/2. Thus, (c) holds. ✷
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