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Abstract. A general communication device is a device that at every stage of
the game receives a private message from each player, and in return sends a
private signal to each player; the signals the device sends depend on past play,
past signals it sent, and past messages it received.

An autonomous correlation device is a general communication device
where signals depend only on past signals the device sent, but not on past play
or past messages it received.

We show that the set of all equilibrium payo¤s in extended games that in-
clude a general communication device coincides with the set of all equilibrium
payo¤s in extended games that include an autonomous correlation device. A
stronger result is obtained when the punishment level is independent of the
history.
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correlated equilibrium, correlation.

1. Introduction

In the present paper we consider stochastic games that are extended by in-
troducing a general communication device. Each stage in the extended game is
composed of four sub-stages. First, the players send private messages to the
device. Second, the device, as a function of past play, past messages it received
and past signals it sent, sends a private signal to each player. Third, each
player chooses an action, independently of his opponents. Finally, a new state
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is chosen according to a probability distribution that depends on the current
state and on the action combination chosen at that stage. The payo¤ of each
player is some function of the infinite play (e.g. the discounted or the undis-
counted evaluation of daily payo¤s).

We assume that players observe past play, but no player observes messages
sent by other players to the device, or signals sent from the device to other
players. Moreover, we assume players have perfect recall.

Special cases of general communication devices are communication de-
vices (where new signals depend on past messages and past signals but not on
past play), autonomous correlation devices (where new signals depend on past
signals, but not on past play, and players do not send messages to the device),
correlation devices (where the device sends only one signal before start of
play), pre-play communication between players (where players can exchange
messages before start of play), direct communication between players along
the play (where players can exchange messages along the play), and a medi-
ator (who can send private signals to the players along the play as a function
of past play and past signals it sent).

Each of the above mentioned cases allows for a di¤erent level of correla-
tion between the players, and therefore the sets of equilibrium payo¤s in these
extensions may di¤er.

Denote by E1 the set of all equilibrium payo¤s in extended games that in-
clude a general communication device, by E2 the set of all equilibrium payo¤s
in extended games that include an autonomous correlation device, and by E3
the set of all equilibrium payo¤s in extended games that include a correlation
device. It is clear that E1KE2KE3.

The main result of the present paper is that E1 ¼ E2 – by introducing
communication between the players and the correlation device, or a mediator
who can observe past play (or both), one cannot enlarge the set of equilibrium
payo¤s.

When the punishment level of the players is independent of the history, a
stronger result can be obtained: E1 ¼ E3. Thus, in this class of games intro-
ducing correlation after the first stage cannot enlarge the set of equilibrium
payo¤s.

The two equivalence results hold in a very general setup. The state space is
an arbitrary measurable separable space, the action spaces of the players are
arbitrary complete separable metric spaces, and the payo¤ function may be
any measurable function from histories to payo¤s.

Since we deal with a general setup, we represent strategy profiles using a
countable sequence of i.i.d. r.v.s. This representation has its own merit, and
may be useful elsewhere.

To prove the main result we define a set E0 of all rational payo¤s, and we
prove that E1JE0JE2. Since E2JE1, it follows that E1 ¼ E2 ¼ E0. The
definition of rational payo¤s is related to Aumann’s (1992) measure of irra-
tionality. We discuss the relation between the two concepts below. Thus, our
results can be viewed as a generalization of Aumann’s (1987) characterization
of correlated equilibrium payo¤s in one-shot games to stochastic games, as
well as a generalization of the ‘‘Folk Theorem’’.

The paper does not address the question of whether the set E2 ð¼ E1 ¼ E0Þ
is empty or not. Moreover, non-emptiness of this set is known only in special
cases, and in all but one, non-emptiness is proved by showing the existence of
an equilibrium payo¤ or of a correlated equilibrium payo¤ (see, e.g., Mertens,
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Sorin and Zamir (1994) for the existence of equilibria in finite-stage games and
discounted games, and Nowak (1991) for the existence of correlated equilibria
in discounted games). The only exception is stochastic games with finitely
many states and actions, and the lim sup evaluation, where non-emptines of
E0 is proved directly (see Solan and Vieille, 1998). Therefore, our result im-
plies that in this class of games the set E2 is not empty as well. The existence of
an equilibrium payo¤ or of a correlated equilibrium payo¤ in this class of
games has not been proved yet.

The main assumption that the results hinges on is that, except of the mes-
sages sent to/by the device, players have symmetric information. When infor-
mation is not symmetric, players may profit by communicating and exchang-
ing their information, and therefore E2 can be a strict subset of E1 (see, e.g.,
Forges (1986, Remark 3)). A related result is Forges (1985, Theorem 2) which
implies that in repeated games with incomplete information, where the actions
of the informed player do not a¤ect the payo¤, and the only role of this player
is to transmit information, the set E3 of (normal form) correlated equilibrium
payo¤s coincides with the set E2 of extensive form correlated equilibrium
payo¤s.

The paper is arranged as follows. The model is presented in section 2. In
section 3 we introduce general communication devices, and we state the main
results. In section 4 we define the notion of the ‘‘measure of irrationality’’, and
we discuss its relation to Aumann’s (1992) definition of a similar concept. In
section 5 we sketch the main ideas of the proofs, and in section 6 we study an
example. The proofs of the main results appear in section 7.

2. The model

For every measurable space Y we denote by PðY Þ the space of probability
measures over Y. If m A PðYÞ and CJY is a measurable set, then m½C � is the
measure of C under m. A function f : X ! PðY Þ is measurable if for every
measurable subset CJY the function g : X ! ½0; 1� defined by gðxÞ ¼ fx½C �
is X-measurable. A product (resp. union) of measurable spaces is always en-
dowed with the product (resp. union) s-algebra. Finally, a correspondence is a
set-valued function, and a correspondence f from a measurable space X to a
topological space Y is measurable if the set fx A X j fðxÞXC0qg is X-
measurable for every closed subset CJY .

A stochastic game G is given by:

1. A finite set of players I.
2. A measurable space of states S.
3. An initial state s1 A S.
4. For every player i A I , a complete separable metric space of pure actions
Ai0. We denote A0 ¼Di A I A

i
0.

5. For every player i A I , a measurable correspondence Ai : S ! Ai0. A
iðsÞ

is the set of actions available for player i in state s. We denote AðsÞ ¼
Di A I A

iðsÞ. The space of infinite histories is denoted by Hy:

Hy ¼ fðs1; a1; s2; a2; . . .Þ A fs1g � ðA� SÞN j an A AðsnÞ En A Ng:

We endow Hy with the s-algebra generated by all the finite cylinders.
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6. A measurable transition rule q that assigns for each ðs; aÞ A GrðAÞ a prob-
ability measure in PðSÞ.

7. For every player i A I , a measurable bounded utility function ui : Hy !
½�R;R�, where R A R.

The game is played in stages. At stage n each player is informed of past
play hn ¼ ðs1; a1; . . . ; snÞ, and chooses an action ain A AiðsnÞ, independently of
his opponents. The action combination an ¼ ðainÞ that was chosen and the
current state sn determine a new state snþ1, according to the probability mea-
sure qðsn; anÞ.

The payo¤ for each player i A I is determined by the infinite play that has
occurred, and is equal to uiðs1; a1; s2; a2; . . .Þ. Note that our definition of a
utility function, which follows Maitra and Sudderth (1998), is more general
than the standard approach of using daily payo¤s.

2.1. Strategies

We denote the space of histories of length n by Hn ¼ fs1g � ðA� SÞn�1. The
last state of a history hn of length n is denoted by sn. The history ðs1Þ is de-
noted by s1. The space of all finite histories is H ¼ 6

n ANHn. Whenever we
say that hn A H, we implicitly mean that hn has length n.

Definition 2.1. A strategy of player i is a measurable function s i : H ! PðAi0Þ
such that s iðhnÞ½AiðsnÞ� ¼ 1 for every hn A H. A profile is a vector of strategies
s ¼ ðs iÞi A I . A correlated profile is a measurable function s : H ! PðA0Þ such
that sðhnÞ½AðsnÞ� ¼ 1 for every hn A H.

Note that every profile is a correlated profile. We denote by S i the space of
profiles of player i, by S? the space of correlated profiles, and by S

�i
? the space

of correlated profiles of players Nnfig; that is, the space of measurable func-
tions s�i : H ! PðA�i

0 Þ such that s�iðhnÞ½A�iðsnÞ� ¼ 1 for every hn A H, where
A�iðsnÞ ¼Dj0i A

jðsnÞ.
By Ionescu-Tulcea Theorem (see, e.g., Neveu (1965), Proposition V.1.1),

every finite history hn A H and every correlated profile s induce a probability
measure Phn;s over Hy; that is, the probability measure induced by s in the
subgame beginning with hn. We denote expectation w.r.t. this probability
measure by Ehn;s.

2.2. Payo¤s

For every correlated profile s, every player i A I and every finite history
hn A H we denote

g iðhn; sÞ ¼ Ehn;su
iðs1; a1; . . .Þ;

the payo¤ for player i under s in the subgame beginning with hn. The payo¤
for player i under s in the subgame beginning with ðhn; anÞ, g iððhn; anÞ; sÞ,
is defined analogously. The payo¤ of a correlated profile s is defined by
gðsÞ ¼ ðg iðs1; sÞÞi A I .
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For every player i A I and every finite history hn A H we define the punish-
ment level of player i by:

vihn ¼ inf
s�i AS�i

?

sup
s i AS i

g iðhn; sÞ:

vihn is the punishment level that players Nnfig can inflict on player i when they
act as a single player. A correlated strategy profile s�i that approximates this
infimum up to e is called an e-punishment strategy profile. The quantity vihn;an is
defined analogously.

We assume that for every n A N, every e > 0 and every player i A I there
exists a correlated profile ~ss�ie A S�i

? such that

sup
s i AS i

g iðhn; ð~ss�ie ; s iÞÞ < vihn þ e Ehn A Hn;

and for every correlated profile s�i A S�i
? there is a strategy s i A S i such that

g iðhn; ðs�i; s iÞÞ > vihn � e Ehn A Hn:

We do not know under which conditions such strategy profiles exist. However,
in various special cases such a correlated profile is known to exist: (i) if the
state and action spaces are countable, there are no measurability issues, and
(ii) if the utility function is the discounted sum or the lim sup of daily payo¤s,
then existence was proved in general set-ups (see, e.g., Mertens, Sorin and
Zamir (1994) for the discounted sum, and Maitra and Sudderth (1993) for the
lim sup).

3. General communication devices

In the present section we define general communication devices, and the game
extended by a general communication device.

Definition 3.1. A general communication device C is given by:

. For every player i A I and every n A N, a measurable space Rin of messages
player i can send the device at stage n. Let Rn ¼Di A I R

i
n.

. For every player i A I and every n A N, a measurable space M i
n of signals the

device can send player i at stage n. Let Mn ¼Di A I M
i
n.

. For every n A N, a measurable function mn : ðDn
j¼1RjÞ � ðDn�1

j¼1 MjÞ �Hn !
PðMnÞ.

Given a stochastic game G and a general communication device C, we
define an extended game GðCÞ as follows. At each stage n, (i) each player i A I
sends the device a private message rin A R

i
n. Denote rn ¼ ðrinÞi A I . (ii) The device

chooses a message mn ¼ ðminÞi A I AMn according to mnðr1; . . . ; rn;m1; . . . ;
mn�1; hnÞ, where hn is the realized history up to stage n. Each player i is then
informed of min. (iii) Each player chooses an action a

i
n A A

iðsnÞ, and (iv) a new
state snþ1 A S is chosen according to qðsn; anÞ, where an ¼ ðainÞi A I . Both the
action combination an that was played and the new state snþ1 are publicly
announced.
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We assume that players have infinite recall, so each player i can base his
choice of an action at stage n on past play ðs1; a1; . . . ; snÞ and on past signals
ðri1;mi1; . . . ; rin;minÞ he has sent and received.

Two special classes of general communication devices will play special role
in the paper: autonomous correlation devices and correlation devices.

Definition 3.2. A general communication device C ¼ ððRin;Mi
nÞi A I ; mnÞn AN is

an autonomous correlation device if mn depends only on previous signals
ðm1; . . . ;mn�1Þ, and not on past messages ðr1; . . . ; rnÞ sent to the device or on
past play hn. An autonomous correlation device is a correlation device if M

i
n is a

singleton for every i A I and every nb 2.

In other words, a general communication device is an autonomous corre-
lation device if it is independent of the play: it does not observe past play, and
players cannot influence its choices by sending it messages. In particular, the
messages have no strategic e¤ect, and there is no loss of generality in assuming
that the sequence ðm1;m2; . . .Þ of signals is chosen before start of play. The
device is a correlation device if it sends a signal to the players only once before
play starts, and no correlation is done along the play.

Let HiðCÞ be the space of all finite histories that player i can observe in
GðCÞ. Formally, HiðCÞ ¼ Hi

MðCÞWHi
AðCÞ, where

Hi
MðCÞ ¼ fðs1; ri1;mi1; a1; . . . ; sn�1; rin�1;min�1; an�1; snÞ j

ak A AðskÞ; rik A Rik;mik AMi
kg; and

Hi
AðCÞ ¼ fðs1; ri1;mi1; a1; . . . ; sn�1; rin�1;min�1; an�1; sn; rin;minÞ j

ak A AðskÞ; rik A Rik;mik AMi
kg:

Hi
MðCÞ is the collection of all finite histories player i can observe before he

chooses a message, and Hi
AðCÞ is the collection of all finite histories he can

observe before he chooses an action. Note that, since the signals are private,
each player observes a (possibly) di¤erent history. Let HðCÞ be the space of
all finite histories that an outside observer, who observes both the actions of
the players and the signals received from and sent to all the players, can ob-
serve. Let HyðCÞ be the space of all infinite histories that this outside observer
can observe. We endow HyðCÞ with the s-algebra generated by all the finite
cylinders. Note that the spaces ðHiðCÞÞi A I , HðCÞ and HyðCÞ are independent
of ðmnÞn AN.

A strategy of player i in GðCÞ is measurable function t i :HiðCÞ !PðAi0ÞW
ð6

n ANPðRinÞÞ such that t iðhnÞ A PðRinÞ if hn A Hi
MðCÞ, and t iðhnÞ A PðAi0Þ

satisfies t iðhnÞ½AiðsnÞ� ¼ 1 if hn A Hi
AðCÞ.

A profile t ¼ ðt iÞi A I is a vector of strategies, one for each player.
In the sequel, s always refers to correlated profiles in the game G, and t

refers to non-correlated profiles in the extended game GðCÞ.
By Ionescu-Tulcea Theorem, every general communication device C, every

profile t in GðCÞ and every finite history hn A HðCÞ induce a probability mea-
sure Phn;C; t over HyðCÞ. We denote expectation w.r.t. this measure by Ehn;C; t.
Define for every finite history hn A HðCÞ, the expected payo¤ w.r.t. t by

g iCðhn; tÞ ¼ Ehn;C; tu
iðs1; a1; . . .Þ:
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Definition 3.3. A payo¤ vector g A RI is a general correlated e-equilibrium
payo¤ (resp. extensive form correlated e-equilibrium payo¤, correlated e-
equilibrium payo¤) if there exists a general communication device C (resp. an
autonomous correlation device, a correlation device) and a strategy profile t in
GðCÞ such that for every player i A I and every strategy t 0i of player i in GðCÞ,

g iCðs1; tÞ þ eb gib g iCðs1; t�i; t 0iÞ � e:

Definition 3.4. A payo¤ vector g A RI is a general correlated equilibrium pay-
o¤ (resp. extensive form correlated equilibrium payo¤, correlated equilibrium
payo¤) if it is the limit of general correlated e-equilibrium payo¤s (resp. ex-
tensive form correlated e-equilibrium payo¤s, correlated e-equilibrium payo¤s)
as e goes to 0.

We denote by E1 the set of all general correlated equilibrium payo¤s, by
E2 the set of all extensive form correlated equilibrium payo¤s, and by E3 the
set of all correlated equilibrium payo¤. Note that these sets depend on s1. It is
clear that we have

E1KE2KE3: ð1Þ

The main results of the paper are:

Theorem 3.5. E1 ¼ E2.

Theorem 3.6. If for every player i A I , vihn is independent of hn A H, then
E1 ¼ E3.

As an example for a case where Theorem 3.6 applies, take a game where
(i) the utility of each player is some Banach limit of daily payo¤s, and (ii) in
every state each player has a terminating action that punishes everybody (at a
level of punishment which is independent of the state). Alternatively, instead
of (ii) one can impose certain ergodicity conditions on the transitions (see, e.g.,
Nowak (1999a,b) and the references therein).

Remark: Though uniform equilibrium payo¤s (see, e.g., Mertens, Sorin and
Zamir (1994)) are not in the scope of our model (since the uniform equilib-
rium payo¤ cannot be defined as a limit of e-equilibrium payo¤s using some
utility function) similar results can be obtained, with analogous proofs. For
more details, see Solan and Vieille (1998).

4. Expected irrationality

In this section we define a set E0 of payo¤ vectors, which we call the set of
rational payo¤s.

To be more specific, we assign to each correlated profile s and every player
i A I a non-negative number U iðsÞ, which we call the expected irrationality of
s for player i. U iðsÞ measures how much player i can profit by deviating from
s i, provided his deviation is followed by an indefinite punishment. We call a
payo¤ vector g A RI e-rational if it is the payo¤ that corresponds to some
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profile s such that U iðsÞ < e for every player i. A payo¤ vector is rational if it
is the limit of e-rational payo¤s, as e goes to 0.

We then see how our definition of expected irrationality relates to a similar
notion defined by Aumann (1992) for one-shot games.

In section 7 we prove that E1JE0, while E0JE2, thereby, using (1), we
prove Theorem 3.5. We also show there that when the punishment level is in-
dependent of the history, E0JE3, thereby proving Theorem 3.6.

For every correlated profile s, every finite history hn A H and every action
ai A Ai, define sðhnÞ j ai to be the conditional probability over A�i given ai.1 If
player i receives the signal ai, sðhnÞ j ai is his conditional probability on the
joint action played by his opponents.

Let hn A H be a finite history, ai A Ai an action, and s a correlated profile.
Define

U iðhn; s; aiÞ ¼ sup
b i0a i

EsðhnÞ j a iðvihn;b i ;a�i � g iððhn; ai; a�iÞ; sÞÞ: ð2Þ

This is the maximal amount that player i can profit by deviating after the
history hn, given the action he should have played was a

i, and his deviation is
followed by an indefinite punishment. Therefore, U iðhn; s; aiÞ is non-positive
if player i cannot profit, while it is positive and equal to his maximal profit, if
such a profit is available.

Define the expected irrationality of s for player i by

U iðsÞ ¼ sup
t
Es1;sðU iðht; s; atÞ1t<þyÞ; ð3Þ

where the supremum is over all measurable stopping times. In other words,
given that the players should follow s, player i may stop following s i when-
ever he chooses. However, one stage afterwards, he is being punished at his
punishment level. U iðsÞ measures the maximal amount that player i can profit
by such a process, where the profit is measured relative to following s indef-
initely (by choosing t ¼ þy).

Definition 4.1. Let e > 0. A payo¤ vector g A RI is e-rational if there exists a
correlated strategy profile s such that (i) gðs1; sÞ ¼ g, and (ii) U iðsÞ < e for
every i A I .
A payo¤ vector g A RI is rational if it is the limit of e-rational payo¤s as e

goes to 0.

We denote the set of rational payo¤s by E0.
A payo¤ vector g is rational if there exists a sequence of correlated profiles

such that the corresponding payo¤s converge to g (feasibility) and their ex-
pected irrationality converge to 0 (individual rationality).

Thus, we rule out as irrational payo¤ vectors only those vectors that either
(i) cannot be supported by correlated profiles, or (ii) can be supported by
correlated profiles, but those profiles are irrational for at least one player: if
these profiles are played, at least one player can substantially profit by devi-
ating, whatever threats his opponents make.

1 Formally, this is the disintegration of sðhnÞ w.r.t. the function f : A! Ai that is defined by
f ðaÞ ¼ ai, projected on A�i (see Dellacherie and Meyer, 1978). Since we require that ðsðhnÞ j aiÞ
½A�iðsnÞ� ¼ 1, regular conditional probabilities do not su‰ce.
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4.1. Properties of E0

In finite stage games with finite state and action sets, the set of rational payo¤s
is a compact and closed polyhedron. This fact can be proved directly, or de-
duced from Corollary 2 in Forges (1986) and Theorem 3.5.

It is easy to verify that in a general setup, the set E0 is closed and convex
by definition. However, in general it needs not be a polyhedron.

We provide two examples where E0 is not a polyhedron. The first is of a
two-player one shot game, where the action spaces of the two players are the
unit intervals, and the second is of an infinite stage game where the action
spaces of the players are finite. Moreover, in the second example the punish-
ment level is independent of the history. It follows from Theorem 3.6 that in
both examples, the set of correlated equilibrium payo¤s, that coincides with
the set E0, is not a polyhedron.

As the example in section 6 shows, the set of correlated equilibrium payo¤s
may be a strict subset of E0.

Example 1. Consider a two-player one shot game, where the action space of
each player is the closed unit interval, and the payo¤ function is

uða1; a2Þ ¼ ð0; 0Þ a10 a2

ðcosða1Þ; sinða1ÞÞ a1 ¼ a2

�

For every x A ½0; 1�, ðx; xÞ is an equilibrium, hence ðcosðxÞ; sinðxÞÞ is an equi-
librium payo¤, and in particular in E0. The set fðcosðxÞ; sinðxÞÞ j x A ½0; 1�g is
the Pareto frontier of E0, hence E0 is not a polyhedron.

Example 2. Consider a two-player game, where A1 ¼ f0; 1; Stopg and A2 ¼
fContinue; Stopg. The game terminates once at least one player stops. If a
player stops at any stage, he receives �2. If a player does not stop while his
opponent stops, he receives �1. If the play continues forever, then player 2
continued at all stages. In this case, the moves of player 1 are a sequence of
zeroes and ones, and define naturally a number x in the unit interval. The
payo¤ is, then, ðcosðxÞ; sinðxÞÞ. As in Example 1, the set fðcosðxÞ; sinðxÞÞ j x A
½0; 1�g is the Pareto frontier of E0, hence E0 is not a polyhedron.

4.2. Comparison with Aumann’s notion of irrationality

Aumann (1974) studies one-shot games with incomplete information in a fi-
nite setup. Such games are given by (i) a set of players I, (ii) for each player i, a
finite set of actions Ai, (iii) for each player i, a utility function ui : A! R,
where A ¼Di A I A

i, (iv) a measure space ðW;F;PÞ of states of the world, and
(v) for each player i, a sub-s-algebra Fi of F, which represents the infor-
mation available to player i.

The game proceeds as follows. A state o A W is chosen according to P.
Each player i is informed of the sets in Fi that contain o.2 Then each player
chooses an action ai A Ai, independently of his opponents, and receives the
payo¤ uiðaÞ, where a ¼ ðaiÞi A I .

2 That is, for every Fi A Fi player i is told whether o A Fi or whether o B Fi .
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Thus, Aumann extends a game G ¼ ðI ; ðAi; uiÞÞ with complete informa-
tion to a game G 0 ¼ ðG;W;F;P; ðFiÞÞ with incomplete information.

In this setup, a strategy for player i is a Fi-measurable function, and one
defines equilibria in the usual way.

Aumann (1974) shows that (i) if each Fi is rich enough,3 any equilibrium
in the game G 0 induces a correlated equilibrium in the corresponding game G
with complete information, and (ii) for any correlated equilibrium in a game
G ¼ ðI ; ðAi; uiÞÞ with complete information there is an information structure
ðW;F;P; ðFiÞÞ such that the distribution over A induced by one of the equi-
libria of the corresponding game G 0 ¼ ðG;W;F;P; ðFiÞÞ with incomplete in-
formation coincides with the original correlated equilibrium.

Aumann (1992) defines for every strategy profile s ¼ ðs iÞi A I and every
player i A I a number which he calls the measure of irrationality. It is given by
the highest profit of player i by deviating from s i.4

In a sequential game, as the one studied in the present paper, players may
acquire new information along the play. Hence the information structure
should involve a measure space ðW;F;PÞ, and, for each player i, an increas-
ing sequence of sub-s-algebras ðFn

i Þn AN. Fn
i is the information available to

player i at stage n. To allow players to randomize, we should require that Fn
i

is su‰ciently rich relative to 4
j0 i

Fn
j for every n A N and every player i.

Note that we assumed that ðFn
i Þ are independent of the play, though the

model can be altered to allow this flexibility.
Let now G be a stochastic game with complete information, as defined in

section 2, and G 0 ¼ ðG;W;F;P; ðFn
i ÞÞ be the corresponding game with in-

complete information.
For every player i and every profile t in G 0, let ÛU iðtÞ be the maximal profit

of player i by deviating from t i.
Every profile t in G 0 induces a probability distribution over infinite plays,

and therefore a correlated profile s in G.
Define now ÛU iðsÞ as the infimum of ÛU iðtÞ, over all information structures

ðW;F;P; ðFn
i ÞÞ and over all profiles t in G 0 ¼ ðG;W;F;P; ðFn

i ÞÞ that induce
the correlated profile s in G.

Our results show that ÛU iðsÞ coincides with the measure of irrationality
defined by Eq. (3). Thus, if a payo¤ vector is irrational in the sense of Defi-
nition 4.1 (for some game G with complete information), it cannot be an
equilibrium payo¤ in any extension G 0 of G. Theorem 3.5 proves the converse
– if a payo¤ vector is rational for G, then it is an equilibrium payo¤ in some
extension G 0 of G.

5. The main ideas of the proofs

Since the main ideas that underlie the proofs of the main results are intuitive,
while, as we work in a general setup, many technical di‰culties appear, this
section is devoted to an exposition of the main ideas of the proofs.

3 That is, it allows player i to randomize without giving any information on the outcome to his
opponents.
4 The model studied in Aumann (1992) is slightly di¤erent than that of Aumann (1974), but it is
more natural here to apply Aumann’s definition of the measure of irrationality to the model de-
scribed above.
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Recall that E1KE2. Our first result is:

Theorem 3.5. E1 ¼ E2.

This theorem follows from the following two propositions, that are proved
in section 7. Proposition 5.1 implies that E0KE1, while Proposition 5.2 im-
plies that E2KE0.

Proposition 5.1. Let e > 0. For every general communication device C and every
e-equilibrium profile t in GðCÞ there exists a correlated profile s such that (i)
gCðs1; tÞ ¼ gðs1; sÞ, and (ii) U iðsÞa e for every i A I .

The intuition of Proposition 5.1 is as follows. The general communication
device C and the profile t induce a probability distribution over plays, and
therefore a correlated profile s. If U iðsÞ > e then there exists a stopping time t
such that if player i deviates at stage t, and defends his punishment level
afterwards, he gains more than e. But then, in GðCÞ, player i could have de-
viated from t at stage t, and could have gained more than e, which contradicts
the assumption that t is an e-equilibrium.

Proposition 5.2. For every correlated profile s and every e > 0 there exists an
autonomous correlation device C and a profile t in GðCÞ such that (i) gCðs1;tÞ ¼
gðs1; sÞ, and (ii) g iCðs1; t�i; t 0iÞa g iCðs1; tÞ þU iðsÞ þ e for every player i A I
and every strategy t 0i of player i in GðCÞ.

The idea here is to construct an autonomous correlation device that mimics
the profile s: at every stage it chooses an action combination according to the
probability distribution given by s, and it sends each player the action that he
should play.

Since we have to construct an autonomous correlation device that does not
observe the play, the device chooses at stage n a vector of recommendations,
one recommendation for each possible history of length n. The players, who
observe past play, know which recommendation to take into account, and
which to disregard.

To deter deviations, the device reveals, at each stage, the actions it rec-
ommended to all players in the previous stage. This way any deviation is de-
tected immediately, and can be punished by the other players.

The only di‰culty here is a measure theoretic one: how can one mimic a
profile s when the state and action spaces are general.

Our second result is:

Theorem 3.6. If for every player i A I , vihn is independent of hn A H, then
E1 ¼ E3.

The intuition here is as follows. Denote by vi the punishment level of
player i, and let s be a correlated profile in GðCÞ.

Assume for simplicity that there are finitely many actions, and that
U iðsÞ ¼ 0 for every player i. Then U iðhn; s; aiÞa 0 for every player i, every
history hn that occurs with positive probability under s, and every action a

i

such that sðhnÞ½faig�A�iðsnÞ�> 0. In particular, EsðhnÞj a ig
iððhn; ai; a�in Þ; sÞbvi

for every such action ai. By integrating over ai and over sn, we get that
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g iððhn�1; an�1Þ; sÞb vi for every player i, every history hn�1, and every action
combination an�1 such that sðhn�1Þ½an�1� > 0. But this means that even when
the players know which action combination is going to be played, their ex-
pected payo¤ is at least vi. Since the punishment level is vi, independent of the
history, no player can profit by deviating, provided his deviation is followed
by punishment. Thus, the device can choose a pure profile before start of play,
and send it to everyone. The players are requested to follow this profile, and to
punish a deviator. Since no player can profit by deviating at any stage, this is
an equilibrium.

6. An example

In this subsection we present an example of a two-player two-stage game.
We find that this game has a unique correlated equilibrium payo¤, and that
it has an extensive form correlated equilibrium payo¤ that Pareto dominates
the unique correlated equilibrium payo¤. The autonomous correlation device
that we use illustrates the structure of the devices that are used in the proof of
Proposition 5.2.

Consider the following two-player two-stage game:

At stage 1, player 1 chooses a row, and player 2 independently chooses a col-
umn. If the players chose ðB;LÞ then the game continues to stage 2, where
player 2 chooses an entry. If the players chose another pair of actions at the
first stage, or after the choice of player 2 at the second stage, the players re-
ceive a payo¤ as indicated in Figure 1.

One can verify that the unique Nash equilibrium of the game is:

. At stage 1, player 1 plays ð1=2; 1=2Þ and player 2 plays ð1=3; 2=3; 0Þ.

. If the game reaches stage 2, player 2 plays L.

The corresponding equilibrium payo¤ is ð1; 0Þ. Moreover, the unique corre-
lated equilibrium coincides with the probability distribution over the entries of
the matrices induced by this Nash equilibrium.

Consider now an extended game that includes an autonomous correlation
device. The extended game is played as follows:

Stage 1A: the device chooses two signals, and sends one signal to each
player.

Stage 1B: the players choose simultaneously actions for stage 1 of the
original game.

If the players chose ðB;LÞ, then:

stage 1

L C R

T 1; 1 1; 0 0; 2

B 2 0; 0 1;�4

stage 2

L R

3;�1 0;�2

Fig. 1.
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Stage 2A: the device chooses a signal, which may depend on the previous
signals that it chose, and sends it to player 2.

Stage 2B: player 2 chooses an action for stage 2 of the original game.
We claim that any point in the interval ð3=2; 1=2Þ-ð2; 0Þ is an equilibrium

payo¤ in the extended game, for a properly defined autonomous correlation
device. In particular, both players can profit by using such a device.

Indeed, let x A ½0; 1�, and consider the following device:

1. At stage 1A, the device chooses ðT ;LÞ with probability x and ðB;LÞ with
probability 1� x, and sends to each player his element in the chosen pair.

2. At stage 2A, the device sends its choice of stage 1A to player 2 (that is, it
reveals its previous recommendation to player 2).

It is easy to verify that if 1=2a xa 3=4 then the following pair of strategies
form a Nash equilibrium in the extended game, that yields the players an ex-
pected payo¤ ð3� 2x; 2x� 1Þ:

. At stage 1B, the players follow the signal they received at stage 1A.

. At stage 2B, player 2 plays L if player 1 followed the recommendation of the
device at stage 1A, and plays R otherwise.

This device has the features that we will see in the proof of Proposition 5.2.

1. The device chooses at every stage a recommended action to each player,
according to some known joint distribution, and sends to each player the
action he is supposed to play.

2. In addition, the device reveals his recommendations at the previous stage
to all the players.

3. The players are required to follow the recommendation of the device.
4. Since the recommendation becomes public after one stage, a deviation is
detected immediately and is punished at the punishment level.

7. Proofs of the equivalence theorems

7.1. Representing correlated profiles as autonomous devices

In this subsection we develop some measure theoretic results that are needed
to prove Proposition 5.2.

Given a correlated profile s, we have to define an autonomous correlation
device that mimics it. That is, a device that will recommend, at every stage, an
action combination according to the probability distribution given by s. Since
the device is autonomous, it cannot base its choice on the actual play. How-
ever, for every realized play, s may indicate a di¤erent probability distribution
over action combinations. Thus, one needs to choose at stage n a recom-
mended action combination for every possible history of length n. The players,
who observe the realized history, can choose the recommended action that
corresponds to that history, and disregard all other recommendations.

Since the setup is general, the space Hn of histories of length n may be
uncountable, hence one cannot choose each recommendation independently.
But there is no need to choose the recommendations independently. As long
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as the recommendations at stage n are independent from the recommenda-
tions of previous stages, the distribution on plays will be equal to the one in-
duced by s.

The goal of this subsection is to prove the following result.

Proposition 7.1. Let s : H ! PðA0Þ be a correlated profile, and ðYnÞn AN a se-
quence of i.i.d r.v.s uniformly distributed over ½0; 1�. There exists a sequence
ðdnÞn AN of measurable functions, dn :Hn� ½0; 1� ! A0, such that for every n A N,
every hn A Hn, and every measurable subset CJA0,

sðhnÞ½C � ¼ Pðdnðhn;YnÞ A CÞ:

In words, the Proposition asserts that for every correlated profile s and
every n A N, there exists a measurable function dn : Hn � ½0; 1� ! A that rep-
resent sðhnÞ. That is, the probability that dnðhn; yÞ is in some set CJA0,
where y is uniformly distributed in ½0; 1�, is equal to sðhnÞ½C �.

Proposition 7.1 readily follows from the following lemma.

Lemma 7.2. Let H be a measurable space, let X be a complete separable metric
space, and let X be the s-algebra of Borel subsets of X. Let m : H ! PðXÞ be
measurable. Let Y be a r.v. uniformly distributed over ½0; 1�. Then there exists a
measurable function d : H � ½0; 1� ! X, such that

Pðdðh;YÞ A CÞ ¼ mðhÞ½C � Eh A H;C A X: ð4Þ

Proof: Let Y be a r.v. uniformly distributed over ½0; 1�. We first deal with the
case that X is at most countable. Denote X ¼ ðxnÞNn¼1, where N ¼ jX j can be
equal to þy. Define the function d : H � ½0; 1� ! ½0; 1� by

dðh; yÞ ¼ xk0 ; where k0 ¼ min k j
Xk
n¼1

mðhÞ½xn�b y

( )
;

where the minimum over an empty set is infinity. Note that d is measurable.
Eq. (4) holds, since for every n, Pðdðh;Y Þ ¼ xnÞ ¼ mðhÞ½xn�.

Assume now that X is uncountable. Since X is complete, separable and
metric, it is isomorphic to ð½0; 1�;BÞ, where B is the collection of Borel subsets
of ½0; 1� (see, e.g., Parthasarathy, 1967, Theorems 2.8 and 2.12). Hence, it is
su‰cient to prove the Lemma for the case ðX ;XÞ ¼ ð½0; 1�;BÞ.

We shall now define the function d : H � ½0; 1� ! ½0; 1�:

dðh; yÞ ¼ supfx A ½0; 1� j mðhÞ½0; x�a yg:

Note that d is measurable. Indeed, for every fixed x A ½0; 1�,

fðh; yÞ j dðh; yÞ > xg ¼ fðh; yÞ j mðhÞ½0; x� < yg

¼ 6
q AQX½0;1�fh j mðhÞ½0; x� < qg � ½q; 1�;

where Q is the set of rational numbers. Since a countable union of measurable
sets is measurable, and since m is measurable, d is measurable.
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For every h A H and every x A ½0; 1�, Pðdðh;Y Þa xÞ ¼ mðhÞ½0; x�. Since the
intervals f½0; x�; x A ½0; 1�g generate the Borel s-algebra, it follows that for
every C A B, Pðdðh;YÞ A CÞ ¼ mðhÞ½C �, as desired. 9

7.2. Standard revealing devices

We will be interested in a class of autonomous correlation devices, which we
call standard revealing devices. Those devices have three special features: (i)
they choose an element in ½0; 1� according to the uniform distribution, (ii) at
every stage each player receives a private signal as well as a public signal, (iii)
the private signal space at stage n of each player i A I is the space of univer-
sally measurable functions from Hn to A

i, and (iv) at stage n the device pub-
licly announces the private signals that were sent at stage n� 1.

Definition 7.3. A standard revealing autonomous correlation device C is given
by a sequence ðdnÞn AN of measurable functions, dn : Hn � ½0; 1� ! A0, such that
for every y A ½0; 1�, and every hn A Hn, dnðhn; yÞ A AðsnÞ.

A standard revealing device chooses, at every stage n A N, an element
Yn A ½0; 1� according to the uniform distribution, and then sends to each player
i A I a pair min ¼ ðdn�1ð�;Yn�1Þ; d inð�;YnÞÞ. d

i
kðhk;YkÞ can be interpreted as a

recommended action for player i if the realized history up to stage k is hk.
Since dn is measurable, it follows by Theorem III.23 in Castaing and

Valadier (1977) that d in is universally measurable, for every player i A I .
Note that a standard revealing device is in particular an autonomous cor-

relation device. Indeed, fix n A N. Every y A ½0; 1� defines a function dnð�; yÞ :
Hn ! Ai0. Let M

0i
n be the space of all these functions. The Borel measurable

structure of ½0; 1� induces a measurable structure on M 0i
n , and the uniform

distribution over ½0; 1� induces a probability distribution nn over M
0i
n . Finally,

the signal space of player i at stage n is Mi
n ¼M 0

n�1 �M 0i
n , where M

0
n�1 ¼

Di A I M
0i
n�1, and the distribution over M

i
n is 1m 0

n�1
n nn, where m

0
n�1 is the rec-

ommendation at stage n� 1.

7.3. The proofs

Proof of Proposition 5.1:
Let e > 0, let C be an autonomous correlation device, and let t be an e-
equilibrium profile in GðCÞ.

Recall that Ps1;C; t is the probability distribution over the space Hy of
infinite histories induced by C and t. Let s be a correlated profile such that
Ps1;s ¼ Ps1;C; t; that is, sðhnÞ½C � ¼ Phn;C; tðan A CÞ for every measurable subset
CJA0, and every hn A H. By definition, gCðs1; tÞ ¼ gðs1; sÞ.

We shall now prove that U iðsÞa e for every i A I . Otherwise, there exists a
player i A I , and a stopping time t such that Es1;sU

iðht; s; atÞ > eþ r, for some
r > 0. Define a strategy t 0i for player i in GðCÞ as follows. Follow t i until t.
Afterwards, play a strategy that maximizes (up to r) your payo¤ against t�i

given ht.
It is easy to verify that
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g iCðs1; t�i; t 0iÞb g iðs1; sÞ þ Es1;sU
iðht; s; atÞ � rb g iCðs1; tÞ þ e;

a contradiction, since t is an e-equilibrium. 9

Proof of Proposition 5.2:
Let s be a correlated profile, let e > 0, and let ðYnÞn AN be a sequence of i.i.d.
r.v.s, uniformly distributed over ½0; 1�. By Proposition 7.1, there exists a se-
quence of measurable function dn : Hn � ½0; 1� ! A, n A N, such that for every
n A N, every hn A Hn, and every measurable subset C of A0,

sðhnÞ½C � ¼ Pðdnðhn;YnÞ A CÞ: ð5Þ

Let C be the standard revealing autonomous correlation device defined by
ðdnÞn AN.

Define a profile t in GðCÞ as follows. At every stage n, the realized action
of each player at stage n� 1 is compared with d in�1ðhn�1;Yn�1Þ, the recom-
mendation of the device, which is revealed at stage n. If at least one player
deviated, then the deviator who has a minimal index is punished, from that
stage on, with an e-punishment correlated profile forever. Otherwise, each
player i plays at stage n the action d inðhn;YnÞ, where hn is the realized history
until stage n.

Note that we have not specified how, once a deviator is detected, his op-
ponents correlate their actions. This can be done by the following procedure.
Before start of play, the device chooses, for every player i A I , a realization of
a sequence of i.i.d. r.v.s uniformly distributed in ½0; 1�. The device then sends
the realization to all players except player i. If the necessity arises, players
Nnfig use the realization to correlate their moves and follow an e-punishment
correlated strategy ~ss�ie against player i. The realization can be translated into
a punishing strategy by applying Proposition 7.1 to s ¼ ~ss�ie .

One can verify that Ps1;C; t ¼ Ps1;s, and therefore gCðs1; tÞ ¼ gðs1; sÞ.
Let t 0i be a strategy of player i in GðCÞ. We shall now show that

g iCðs1; t�i; t 0iÞa g iCðs1; tÞ þU iðsÞ þ e. Indeed, let t be the stopping time de-
fined by

t ¼ minfn A N j ain0 d inðhn;YnÞg þ 1:

Then, under ðt�i; t 0iÞ, at stage t players Nnfig switch to an e-punishment
profile against player i. By the definition of U iðsÞ,

g iCðs1; t�i; t 0iÞa g iðsÞ þ Es1;C; t�i ; t 0 iðU iðht; s; aitÞ1t<þyÞ þ e

a g iðsÞ þU iðsÞ þ e;

as desired. 9

Proof of Theorem 3.6:
Assume now that for every fixed player i A N, vihn is independent of hn A H,
and denote this common value by vi.

In view of Theorem 3.5, it su‰ces to prove that E0JE3: every rational
payo¤ is a correlated equilibrium payo¤.
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Fix e > 0. We denote by Pi the space of pure strategies of player i, and
P ¼Di AN P

i. Every correlated profile s induces a probability measure over P.
This probability measure is also denoted by s.

Let s be a correlated profile such that U iðsÞ < e for each player i A N.
For every d > 0, denote by H d

i the set of all histories hy A Hy such that
EsðhnÞ j a ing

iððhn; ain; a�iÞ; sÞ < vi � d for some beginning ðhn; ain; a�in Þ of hy.
We now show that since U iðsÞ < e, and since vihn is independent of hn for

every i A I , Ps1;sðH
ffiffi
e

p

i Þ <
ffiffi
e

p
. Define a stopping time t by

tðhyÞ ¼ minfn A N jEsðhnÞ j a ing
iððhn; ain; a�iÞ; sÞ < vi �

ffiffi
e

p
g:

Since vihn is independent of the history,

U iðhn; s; ainÞ ¼ vi � EsðhnÞ j a ing
iððhn; ain; a�iÞ; sÞ:

By the definition of the measure of irrationality,

e > U iðsÞbEs1;sðU iðht; s; aitÞ1t<þyÞ > Ps1;sðH
ffiffi
e

p

i Þ �
ffiffi
e

p
;

and therefore Ps1;sðH
ffiffi
e

p

i Þ <
ffiffi
e

p
.

We now restrict ourselves to histories hy B H
ffiffi
e

p

i . Since hy B H
ffiffi
e

p

i ,
EsðhnÞ j a ing

iððhn; ain; a�iÞ; sÞb vi �
ffiffi
e

p
. By integrating over ain we get that for

every n A N, g iðhn; sÞb vi �
ffiffi
e

p
. By integrating over sn we get that for every

n > 1,

g iððhn�1; an�1Þ; sÞb vi �
ffiffi
e

p
:

But this means that for hy B H
ffiffi
e

p

i , even if player i knows the pure action
combination that is going to be played, he cannot profit more than

ffiffi
e

p
by de-

viating.
Define a correlation device C with a signal spaceMi ¼ P for each player i.

The device chooses a pure profile according to s, and reveals to all the players
the profile that was chosen. The players are then requested to follow the pure
profile that was chosen by the device. A deviator, who is noticed upon devia-
tion, will be punished at his punishment level vi.

To allow players to punish a deviator, we use the same idea as in the proof
of Proposition 5.2. The device chooses for each player i, before start of play, a
realization of a sequence of i.i.d. r.v.s uniformly distributed in the unit inter-
val, and sends it to all players except player i. If player i ever deviates, players
Nnfig use this realization to punish him. The realization can be translated
into a punishing strategy by applying Proposition 7.1 s ¼ ~ss�ie .

Let H
ffiffi
e

p
¼ 6

i A I H
ffiffi
e

p

i . Then Ps1;sðH
ffiffi
e

p
Þ < I

ffiffi
e

p
. Thus, with probability

greater than 1� I
ffiffi
e

p
, the realized history is not in H

ffiffi
e

p
. Conditional on

hy B H
ffiffi
e

p
, for every n A N and every player i A I , g iððhn; anÞ; sÞb vi �

ffiffi
e

p
. In

particular, no player i can profit more than eþ
ffiffi
e

p
by deviating. Thus, gðs1; sÞ

is a ðð1� I
ffiffi
e

p
Þðeþ

ffiffi
e

p
Þ þ I

ffiffi
e

p
RÞ-equilibrium payo¤ (recall that R is a bound

of u).
There is one technical di‰culty we have ignored so far: how to choose a
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pure profile in P? To do this one needs to impose a measurable structure on
the space of pure profiles. Note that each realization of the sequence ðYnÞ that
was defined in the proof of Proposition 5.2 defines a pure strategy profile.
Thus, the measurable structure is the one induced by the mapping that maps

½0; 1�N to the space of pure profiles. The measure on P is the one induced by
the uniform distribution over ½0; 1�N (that is, the infinite product of indepen-
dent copies of the uniform distributions over ½0; 1�). This measure induces the
same expected payo¤ for the players as s, for every finite history hn. Formally,
denote by p the correlated profile that corresponds to the uniform distribution
over ½0; 1�N. Then for every hn A H and every player i A I ,

g iðhn; pÞ ¼ g iðhn; sÞ: 9

Remark: Forges (1988) defined the notion of canonical devices in repeated
games with incomplete information. In our context, a correlation device is
canonical if the signal it sends to each player before start of play is a pure
strategy for the whole game, and an autonomous correlation device is canon-
ical if the signal it sends to each player at every stage is a vector of recom-
mended actions, one for each possible history.

The correlation devices that we construct in the proofs of Theorems 3.5
and 3.6 are not canonical. However, as Francoise Forges commented, in both
cases there are equivalent canonical devices. Indeed, since in both cases the
device knows its recommendations, it can calculate, for every history of length
n, whether it is compatible with past recommendations or not. Moreover, if it
is not compatible, it can calculate who must have deviated. Thus, for every
finite history which is not compatible with the last recommendation (and is
compatible with all previous recommendations), future recommendations are
derived from an e-punishment profile against one of the deviators.
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