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TWO-PLAYER NONZERO-SUM STOPPING GAMES
IN DISCRETE TIME

BY ERAN SHMAYA AND EILON SorLan?
Tel Aviv University

We prove that every two-player nonzero—sum stopping game in discrete
time admits are-equilibrium in randomized strategies for every- 0. We
use a stochastic variation of Ramsey’s theorem, which enables us to reduce
the problem to that of studying propertieseeéquilibria in a simple class of
stochastic games with finite state space.

1. Introduction. The following optimization problem was presented by
Dynkin (1969). Two players observe a realization of two real-valued processes
(x) and(Ry). Player 1 castop whenever, > 0, and player 2 castop whenever
x, < 0. At the first stag® in which one of the players stops, player 2 pays player 1
the amountRy and the process terminates. If no player ever stops, player 2 does
not pay anything.

A strategy of player 1 is a stopping timg that satisfie§u = n} C {x, > 0} for
everyn > 0. A strategy of player 2 is defined analogously. The termination stage
is simply6 = min{u, v}. For a given paiu, v) of strategies, denote by

y(u,v)= E[1{9<OO}R9]
the expected payoff to player 1.
Dynkin (1969) proved that if sypq | R,| € L1, this problem has a valug that
is,
v =supinfy(u, v) =infsupy (u, v).
w v L

He moreover characterizedoptimal strategies; that is, strategjegresp.v) that
achieve the supremum (resp. the infimum) up.to

Neveu (1975) generalized this problem by allowing both players to stop at
every stage, and by introducing three real-valued proces®gs,), (R2}.)
and(R1,2),,)- The expected payoff to player 1 is defined by

y (1. v) = E[Lju <) Ry + Ly Rizpw + Lu=v<oo) Ri1.2).]-
Neveu (1975) then proved that this problem has a value, provided
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(@) supsomax|Ry.ul, IR2).nls [R{1.23.01} € L1 and
(0) R1y,n=R@w.23.n < R2}.n-

Recently Rosenberg, Solan and Vieille (2001) studied games in Neveu’s
setup, but allowed the players to usssndomized stopping times: a strategy is a
[0, 1]-valued process that dictates the probability by which the player stops at every
stage. They proved that the problem has a value, assuming only condition (a).

Extensive literature provides suffarit conditions for the existence of the
value in continuous time [see, e.g., Bismut (1977), Alario-Nazaret, Lepeltier and
Marchal (1982), Lepeltier and Maingueneau (1984), Touzi and Vieille (2002) and
Laraki and Solan (2002)]. Some authors have studied the diffusion case, see, for
example, Cvitarti and Karatzas (1996).

The nonzero—sum problem in discrete time when the payoffs have a special
structure was studied, among others, by Mamer (1987), Morimoto (1986), Ohtsubo
(1987, 1991), Nowak and Szajowski (1999) and Neumann, Ramsey and Szajowski
(2002) and the references therein. In the nonzero—sum case, the praégsses
(R{2},n) and(Ry1,2),n) areR?-valued, and the expected payoff to player=1, 2,
is

)/i(M, V) = Eu,v[l{u<v}R€1},ﬂ + 1{M>U}RE2},U + 1{,U«=U<OO}R€1,2},,M]'

The goal of each player is to maximize his or her own expected payoff. Given
¢ > 0, a pair of stopping timesu, v) is an e-equilibrium if for every pair of
stopping timegu/, v'),

yru,v) =yt v)—e and y%(u,v) = y3(u,v) —e.

The above-mentioned authors provided various sufficient conditions under which
g-equilibria exist.

In the present paper, we study two-player nonzero—sum games in discrete time
with randomized stopping times, and we prove the existence efequilibrium
for everye > 0, under merely an integrability condition. Our technique is based on
a stochastic variation of Ramsey’s theorem. Ramsey (1930) proved that for every
coloring of a complete infinite graph by finitely many colors there is a complete
infinite monochromatic subgraph. Our variation allows us to reduce the problem
of the existence of agrequilibrium in a general stopping game to that of studying
properties ofs-equilibria in a simple class of stochastic games with finite state
space.

The paper is arranged as follows. In Section 2 we provide the model and the
main result. A sketch of the proof appears in Section 3. In Section 4 we present
a stochastic variation of Ramsey’s theorem. In Section 5 we define the notion of
games played on a finite tree and we study some of their properties. The proof of
the main result in this section is relegated to Section 8. In Section 6 we show how
to approximate a general filtration between two stopping times by a sequence of
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finite algebras. In Section 7 we construct sxequilibria. We end by discussing
extensions to more than two players in Section 9.

Our proof uses tools both from the theory of stochastic processes (Sections
4 and 6) and from the theory of games (Sections 5 and 8). However, no prior
knowledge of these fields is assumed.

2. The model and the main result. A two-player nonzero—sum stopping
gameis a 5-tuplel’ = (2, 4, p, £, R) where:

o (22,4, p)is a probaility space;

o F = (F,)n>o0is afiltration oven 2, 4, p);

e R= (Rn)nzo_is an }‘—adapted?s—valued process. The coordinatesR)f are
denoted byR’Q’n, i=12,¢#0C{12}.

A (behavior)strategy for player 1 (resp. player 2) is[@, 1]-valued# -adapted
processy = (x,)n>0 [resp.y = (yn)n>0]. The interpretation is that, (resp.y,)
is the probability by which player 1 (resp. player 2) stops at stafpgovided the
game is not stopped before that stage).

Let 6 be the first stage, possibly infinite, in which at least one of the players
stops and letp # Q C {1, 2} be the set of players that stop at sta&g@rovided
0 < 00). The expected payoff undeét, y) is given by

(1) Vi(x’ y) = Ex,y[RiQ,91{9<oo}]7

where the expectatioR, , is with respect to (w.r.t.) the distributioR, , over
plays induced byx, y), andl is the indicator function.

DEFINITION 2.1. Letl' = (R, 4, p, ¥, R) be a two-player nonzero—sum
stopping game and let> 0. A pair of strategiegx™, y*) is ane-equilibrium if
yIx®, y*) = ylx, y*) — e andy?(x*, y*) > y2(x*, y) — ¢ for everyx andy.

The main result of the paper is the following:

THEOREM 2.2. Let T’ = (2,4, p, ¥, R) be a two-player nonzero—sum
stopping game such that sup,~o | R lloo € L1(p). Then for every ¢ > 0, the game
admits an e-equilibrium.

The definitions imply that for every two payoff processesnd R such that
E[sup,cn | Ry — Rulloo] < &, everys-equilibrium in(2, 4, p, F, R) is a &-equi-
librium in (2, 4, p, ¥, R). Hence we can assume without loss of generality
(w.l.o.g.) that the payoff proces® is uniformly bounded and that its range is
finite. Actually, we assume that for sonie e N, R, € {0, £+, +2, ..., ££)6
for everyn € N.
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3. Sketch of the proof. In the present section we provide the main ideas of
the proof. Letl" be a stopping game. To simplify the presentation, assume that
¥, is trivial for everyn, so that the payoff process is deterministic. Recall that
w.l.0.g. payoffs are uniformly bounded by 1.

Givene > 0, fix a finite coveringM of the space of payoffs—1, 1]2 by sets
with diameter smaller thas. For every two nonnegative integédrs< [, define the
periodic gameG (k, 1) to be the game that starts at stdgand, if not stopped
earlier, restarts at stage Formally, G(k,[) is a stopping game in which the
terminal payoff at stage is equal to the terminal payoff at stage- (» mod! — k)
inT.

This periodic game is a simple stochastic game [see, e.g., Shapley (1953) or
Flesch, Thvijsman and Vrieze (1996)] and is known to admi¢-g&guilibrium in
periodic strategies. Assign to each pair of nonnegative intéger$ an element
m(k,l) € M that contains the expected payoff that corresponds to a peredic
equilibria of the gamé& (k, [).

Thus, we assigned to eadh< [ a colorm(k,l) € M. A consequence of
Ramsey’s theorem is that there is an increasing sequence of integeks &
ko < --- such thatn(kq, ko) = m(k,, k,11) for everyn.

Assume first that1 = 0. A naive candidate for as3equilibrium suggests that
between stagek, andk,, 1, the players follow a periodie-equilibrium in the
gameG (ky, k,+1) With corresponding payoff in the sei(k1, k2).

For this strategy pair to indeed be a-8quilibrium, the properties of the
g-equilibria in periodic games must be studied. The complete solution of this
case appears in Shmaya, Solan and Vieille (2003), who observed that in each
periodic gameG (k, [) there exists a periodie-equilibrium that satisfies at least
one of the following conditions: (i) Neither player ever stops. (ii) Both players
receive nonnegative payoffs and termination occurs in each period with probability
at leasts2. (iii) If a player receives a negat payoff, then his or her opponent
stops in each period with probability at least The fact that at least one of these
conditions holds is sufficient to prove that the concatenation described above is a
3e-equilibrium, with corresponding payoff in the convex hullmtky, k»).

If k1 > 0, choose an arbitrary: € m(k1, k2). Between stages 0 and, the
players follow an equilibrium in thés-stage game with terminal payoff; that
is, if no player ever stops before stalge the payoff ism. From stage; and on,
the players follow the strategy described above. It is easy to verify that this strategy
pair forms a 4-equilibrium.

When the payoff process is general, few difficulties appear. First, a periodic
game is defined now by two stopping times < u2: u1 indicates the initial stage
andu» indicates when the game restarts. To analyze this periodic game, we have
to reduce the problem to the case wheredhalgebras?,,,, ,,+1, ..., ., are
finite. This is done in Section 7.

Second, we have to study propertiesedquilibria in these periodic games, so
that a proper concatenationssequilibria in the different periodic games generates
a 4e-equilibrium in the original gme. This is done in Section 5.



NONZERO-SUM STOPPING GAMES 2737

Third, we have to generalize Ramsey’s theorem to this stochastic setup. This is
done in Section 4.

4. A stochastic variation of Ramsey’s theorem. In the present section we
provide a stochastic variation of Ramsey’s theorem (Ket4, p) be a probability
space and leF = (%,),>0 be afiltration. For every set € Q, A°=Q\ A is the
complement ofA. For everyA, B € 4, A holdson B ifand only if p(A°N B) =0.

Ramsey (1930) proved that for every function that attaches a e@lor) € C,
where C is a finite set, to every two nonnegative integérs: /, there is an
increasing sequence of integdgs< k1 < --- such thatc(ko, k1) = c(k;, k;) for
everyi < j.

We are going to attach for every nonnegative integeand every stopping
time t, an ¥,-measurable functiom, . that is defined over the st > n},
whose range is some finite s€t We also impose a consistency requirement: if
71 = T2 > n 0N an ¥,-measurable sef, thenc, ;; = ¢, , On F. Under these
conditions, we derive a weaker conclusion than that of Ramsey’s theorem: for
everye > 0 there exists an increasing sequence of stopping tigeso; < -- -
such thaP(CQO’Ql = C‘9i»9i+1Vi) >1—¢.

We now formally present the result.

DErFINITION 4.1. AnNT function is a function that assigns to every integer
n > 0 and every bounded stopping timen #,-measurable random variable (r.v.)
that is defined over the sét > n}. We say that an NT functioyf is C-valued for
some seC if ther.v. f,, . is C-valued for every: > 0 and every.

DEFINITION 4.2. An NT functionf is # -consistent if for everyn > 0, every
F,-measurable st and every two bounded stopping timas 2, we have

T1=172>n0ONF implies foon= [, ONF.

When f is an NT function and < t are two bounded stopping times, we denote
fo,0: (@) = fo),r (). Thus f; ; is anF,-measurable r.v.

The main result of this section is the following.

THEOREM4.3. For everyfinite set C of colors, every C-valued % -consistent
NT function ¢ and every ¢ > 0, there exists a sequence of bounded stopping times
0<6p <01 <6y <---suchthat P(090’91 = Coy,0) =Chp03 =" J>1-—e¢.

COMMENT. The natural stochastic generalization of Ramsey’s theorem re-
quires the stronger conditiop(cg,,g, = cgo; VO<i<j)>=1—e. We do not
know whether this generalization is correct.
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The following example shows that a sequence of stopping tifges 61 <
62 < --- such thatp(cg, s, = cs,,6, = ---) = 1 need not exist, even without the
boundedness condition.

ExaMPLE 4.4. Let X,, be a biased random walk on the integers, let
Xo=0and letp(X,4y1 =X, +1) =1— pXp+1=X, — 1) =3/4. Let ¥, =
o(Xo, X1,..., Xn). LetRo = Q and, forevery: > 0, letR, = J1<j <, { Xk = —1}.

For every finite (but not necessarily bounded) stopping tintefinec, ; = Red
onR,N{t > n}andc, . =Blue onR N {r > n}. Sincep(J,-q R») <1, whereas
for every finite stopping timé and everyB € ¥y, one ha(U,~o R.|B) > 0, it
follows that for every sequend® < 61 < --- of finite stopping timeg (cg,.0, =
Blue) > 0, whereap (cqy,0, = co,.6, = - - - = Blu€|cg, 9, = Blue) < 1.

We start by proving a slightly stronger version of Theorem 4.3¢4r= 2

LEMMA 4.5. Let C = {Blue Red} and let ¢ be a C-valued F-consistent
NT function. For every ¢ > Othereexist N € N, two sets R, B € ¥y and a sequence
N <19 < 11 < 72 < - - - Of bounded stopping times, such that:

(@) R = B¢, )
(0) plergey=cCrpr, = —Rele)>1—g;
(©) pley,q = BIuer l|B) >1—e¢.

PrROOF We claim first that for everyt € N we can find two set®,,, B, € %,
and a bounded stopping tinag such that:

1. We havep(R, UB,) >1—1/2".
2. We havgo, > n} on R, andc, ,, = Red onR,.
3. For every bounded stopping timec, ; = Blue onB,, N {t > n}.

To see this, fixa € N. Call a setF € F, red if there exists a bounded stopping
time o such that onF bothor > n andc, ,, = Red. Sincer is ¥ -consistent,
if F,G e ¥, are red, thenso ig§ UG. Leta = supF{p(F) F € #, isred. For
everyk > 1, let F, € %, be ared set such thal(Fy) > a — L LetF, = U1 Fr-
Observe thatF, € F, and p(F,) = «. Moreover, no subset af ¢ with positive
probability is red. LetR, = F>, let o, be a bounded stopping time such that
onR,, o, > n andc, ,, = Red, and leB,, = F¢. This concludes the proof of the
claim.

Let B = {B, i.0.}, and setR = B€. SinceR, B € \/, ¥,, N € N and there are
two setsB, R € Fy such that ()R = B¢, (ii) p(B|B) > 1— ¢ and (iii) p(R|R) >
1 — ¢. On R, and therefore also o® N R, both B, and (B, U R,)¢ occur
only finitely many times. By sufficiently increasiny, we assume w.l.0.g. that
P(Ny=n RaIRNR) > 1—&. In particular,

(2 ( ) >1—2e.
n>N
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LetN =no <n1 <nz < ---be asequence of integers such that, for exer0,
p(Tx|B N B) > 1 —¢/2F, where Ty = U, <4-n;., Ba- TheN p(Miso Tk|B N

B) > 1— ¢ and, therefore,

3) p<ﬂ Tk][;>>1—ze.
k>0

We now define the sequendey)i>o inductively, working separately on
R and B. Consider first the seR. Define 1o = N. Given t;, define 41 =
> neNOn L —mnr,nk ON R N U,({zx = n} N R,). Sincer; and (0,),>0 are
bounded,r;,1 can be extended to a bounded stopping timeRomBy definition
Crory = Cryr, = -+~ = Red onR N (N,>y Rx), and it follows from (2) that

P(Crgry =Crprp =~ =ReAR) > 1 — 2e.

Consider now the seB. Define g = N. Define tx41(w) = min{ng < n <
Nis1, w € B, on BN Ty andty 1 = ngy1—1 on B \ Tx. By the definition ofz,
for everyk,l € N, ¢y, = Blue on B N (=0 Tk) and it follows from (3) that
p(cy.q =Bluevk,l|B)>1—2e. O

PROOF OFTHEOREM 4.3. We prove the theorem by induction g@|. The
case|C| = 2 follows from Lemma 4.5. Assume we have already proven the
theorem forlC| = r and assum@C| =r + 1. Let Red be a color iq.

By considering all colors other than Red as a single fictitious color and by
applying Lemma 4.5, there exi8t € N, two setsk, B € £y and a sequence of
stopplng timesN < 19 < 11 < --- such that ()R = B¢, (ii) P(Crpry = Crpyrp =

=RedR) > 1— ¢/2 and (iii) p(cq,y # RedVk, [|B) > 1—¢/2. We define
separately ork andB. On R, we let§; = 1;.

We now restrict ourselves to the spade, A g, pg) With the filtration g, =
Fr, N B. Let & be theC-valued NT function oveg, defined byc, g = ¢y, 1, for
every stopping timeg of §, whererg =", 7,1g—p) iS a stopping time ofF . Let
¢’ be the coloring that is obtained frothby swapping the color Red with another
colorinC, say Green:

oo En’ﬁ, if En,,g;éRed
"F | Green if ¢, 5 =Red
Since ¢’ is a C \ {Red-valued g-consistent NT function, we can apply the

induction hypothesis and obtain a sequence of stopping timesse < 1 <
B2 < --- of G such that

(4) p(c/%o,ﬁlzcgl,ﬁz:'”lé)>1_8/2~

By (4) and (iii) it follows that p(¢g, s, = ¢g,.p, = -+ |B) > 1 — ¢. We define
0; =15, on B. Thus

(5) P(090,91=C91,92=“'|B) >1—c¢.

Combining (ii) and (5) we gep(cg,6, = coy,0, =) > 1 — ¢, as desired. O
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5. Stopping games on finite trees. An important building block in our
analysis is stopping games that are played on a finite tree. In the present section
we define these games and study some of their properties.

5.1. Themodel.

DEFINITION 5.1. A stopping game on a finite tree (or simply agame on a
tree) is atupleT = (S, S1,r, (Cy, ps, Ry)ses\s;), Where

o (8,811, (Cy)ses\sy) Is atree,S is a nonempty finite set afodes, S C S is a
nonempty set ofeaves, r € S is the root and, for eache S\ S1, C; € S\ {r}
is the nonempty set ahildren of s [we denote bySo = S \ S1 the set of nodes
which are not leaves; for evesye S, depth(s) is the depth of—the length of
the path that connects the rootsto

and for every € Sp,

e p; is a probability distribution ove€s;
o Ry € R is the payoff at s [the coordinates of R, are denoted
(R $)i=12, ¢p£0<(1,2)]-

A stopping game on a finite tree starts at the root and is played in stages. Given
the current node € Sp, and the sequence of nodes already visited, both players
decide, simultaneously and independently, whether to stop or to continué Let
be the set of players that decide to stopQIf£ ¢, the play terminates and the
terminal payoff to each playeéris RiQ’S. If O =¢,anewnoda’in Cy is chosen
according top,. The process now repeats itself, withbeing the current node. If
s" € 81, the new current node is the raatThus, players cannot stop at leaves.

The game on the tree is essentially played in rounds. The round starts at the root
and ends once it reaches a leaf.

Consider the first round of the game. Letbe the stopping stage. If no
termination occurs in the first round= co. If # < oo, lets be the node (of depth)
in which termination occurred and I¢l be the set of players that stop at stage
The r.v.r’ = R}, 1; <o) is the payoff to player in the first round.

A stationary strategy of player 1 (resp. player 2) is a functiorn So — [0, 1]
(resp.y:So — [0, 1]); x(s) is the probability that player 1 stops at Denote
by P, , the distribution over plays induced hy, y), and denote by, , the
corresponding expectation operator.

For every pair of stationary strategigs,y) we denote bym(x,y) =
P,,y(t < o0) the probability that undetx, y) the game terminates in the first round
of the game; that is, the probability that the root is visited only once along the play.
We denote by’ (x, y) = Ex y[r'], i = 1,2, the expected payoff of playérin a
single round. Finally, we set’ (x, y) = p' (x, y)/7 (x, y) (by conventiond = 0).

This is the expected payoff under, y). In particular,

(6) m(x,y) x Y (x,y) = p'(x, y).
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When we want to emphasize the dependency of these variables on thd'game
we write 7w (x, y; T), o' (x, y; T) andy'(x, y; T).
Observe that for every pair of stationary strategiesy),

(7) 7(x,0 +7(0,y) > 7w (x,y),
where 0 is the strategy that never stops; that(s) & 0 for everys.

DEFINITION 5.2. A pair of stationary strategiés, y) is ane-equilibrium of
the game on a treE if, for each pair of strategie&’, '), y1(x’, y) < y1(x, y) +e¢
andy?(x,y") < y%(x,y) +e.

COMMENT. A stopping game on a finite tre€ is equivalent to a recursive
absorbing game, where each round of the gdhmorresponds to a single stage
of the recursive absorbing game. A recursive absorbing game is a stochastic game
with a single nonabsorbing state in which the payoff in nonabsorbing states is 0.
Flesch, Thuijsman and Vrieze (1996) proved that every recursive absorbing game
admits ans-equilibrium in stationary strategies. This result also follows from the
analysis of Vrieze and Thuijsman (1989). However, there is ho bound on the per-
round probability of ternmation under this-equilibrium and we need to bound
this quantity.

5.2. Main results concerning games on trees.  Throughout this section we fix
RY, R? € R, such that at least one of them is positive, and play a game on a tree
whose payoffg R;),cs, Satisfy the following conditions for eveny= 1, 2, every
@ C Q C{1,2} and every node € So:

B1. For someX € N, RiQ’S {0, £+,..., %}
B2. We haveRrj;, , < R'.

1 1 p2 2
B3. Whenevery;, =R, Rj3, ; < R".

1 _ p2 pl 1
B4. WheneveRry,, , = R?, Ry , < R".

We have already seen that condition B1 can be assumed w.l.0.g. We will later
setR' to be an upper bound c(fRE'l.},n), so that condition B2 can be assumed.
The results we prove in this section are not trivial only whg, | = R* and
R{ZZ}’S, = R? for somes, s’ € So. As we see later, when condition B3 or B4 does
not hold, a simple-equilibrium exists.

Assuming no player ever stops, the collectign),cs, of probability distri-
butions at the nodes induces a probability distribution over theSsef leaves
or, equivalently, over the set of branches that connect the root to the leaves. For
each setD C Sp, we denote bypp the probability that the chosen branch passes
throughD. For each € S, we denote by the event that the chosen branch passes
throughs.

We first bound the probability of termination in a single round when the
g-equilibrium payoff is low for at least one player.
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LEMMA 5.3. Let ¢ > 0 and let (x,y) be a stationary 5-equilibrium in 7
such that y1(x,y) < R* —&. Then m(0,y) > £ - w1, where pug = pu1(T) =
p(U{F;, Ry, = RY)) is the probability that if both players never stop, the game
visitsanode s with Ry, (= R* in thefirst round.

An analogous statement holds for player 2.

PROOF OFLEMMA 5.3. Consider the following strategyof player 1:

i pl  _ pl
o 1, if R{l},s = R*,
’ 0, otherwise

Denote byr; andr, the stopping stages of the two players in the first round. By the
definition ofz, and since payoffs are bounded by 1,

pl(z.y) =P,y (ty < minfoo, 12}) x R* + E_ y[11,<, 1]
(8) > P, (11 < 00) x R} — 2P, (12 < o0)
= MlRl —27(0, y).

Since(x, y) is ang-equilibrium and since, by (7)7(z,y) <7 (0, y) + 7(z,0) =
7(0,y) + p1,

oz, ) =yt y) x 1z, y)

©) < (Vl(x, y) + g) x (7 (0, y) + p1)

=< (Rl - %) x (m(0, y) + pa).
Equations (8) and (9) imply that(0, y) > & x u1. O

DEFINITION 5.4. Let T = (S, 81,7, (Cs, ps, Ry)sesy) and T' = (8, 81,
r', (Cg, py. RY)ses;) be two games on trees. We sdy is a subgame of 7' if

(i) ' < S, (ii) ¥ =r and (iii) for everys € S, C; = Cy, p; = p; andR; = R;.

In words, 7’ is a subgame of" if we remove all the descendants (in the
strict sense) of several nodes from the t(8eS1, r, (Cy)ses,) and keep all other
parameters fixed. Observe that this notion is different from the standard definition
of a subgame in game theory.

LetT = (S, S1,1, (Cs, ps, Ry)ses,) be agame on atree. For each suliset S,
we denote byl'p the subgame of generated by trimming@ from D downward.
Thus, all strict descendants of nodedirare removed.

For every subgam@&’ of T and every subgamg” of 7', let pr» = psi\s;

be the probability that the chosen branclimpasses through a leaf @f’ strictly
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before it passes through a leaf Bf (here,S; and S} are the sets of leaves @
and7T”, resp.).

The next propdsion analyzese-equilibria that yield a high payoff to both
players. Since its proof is involved and independent of the rest of the paper, it
is deferred to Section 8.

PROPOSITION5.5. Lete € (0,1/(36K2)) and, for i € {1,2},leta; > R’ —e¢.
Thereexistaset D C Sp of nodes and a strategy pair (x, y) in T such that:

1. Nosubgameof Tp hasan e-equilibriumwith corresponding payoffsin [a1, a1+
el x [az, a2 + ¢].

2. Either (&) D = ¢ (so that Tp = T) or (b) (x,y) is a 9e-equilibrium in T,
ai—e <y'(x,y)andm(x,y) > & x pp.

CoMMENT. Actually we prove that in case 2(b), for every pair, y’) of
strategiesy 1(x’, y) < a1 + 8¢ andy?(x, y') < a» + 8e.

5.3. Coloring afinitetree. In the present section we provide an algorithm that
for every finite treel” attaches a colar(7') and several numbers. ;(7)); in the
unit interval.

A rectanglefar, a1 + €] x [a2, az + €] isbad if Rl — & <a1 andR? — ¢ < a.
Itisgoodif ai+&<R'—eorar+e<R%—¢.

Let M be a finite covering of—1, 1]2 with (not necessarily disjoint) rectangles
[a1, a1 + €] x [a2, a2 + €], all of which are either good or bad. Thus, for every
u € [—1,1]? there is a rectangle: € M such thatu € m. We denote byH =
{h1, ho, ..., hj}the set of bad rectangles M and denote by = {g1, g2, ..., gv}
the set of good rectangles M.

SetC = G U {@}. This setis composed of the g&tof good rectangles together
with another symbolz. For every game on a treg consider the following
procedure which attaches an elemertC to T':

o Set7T©®=T. ,

e For 1< j < J apply Proposition 5.5 t&U~Y and the bad rectangle; =
l[aj1,a;1+ el x [aj2,a;2 + ¢] to obtain a subgam@ ) of TU-D and
strategiesx\”’, y/’) in TU) such that:

1. No subgame of ) has are-equilibrium with corresponding payoffs ;.
2. EitherT) = TU=D or the following three conditions hold:
(@) Forie{l,2},a;;, —c < yi(x(Tj), y%’))
(b) For every pair(x’, '), yl(x/,y(Tj)) <aj1+ 8 and yz(x(Tj),y/) <
aj2 + 8¢.
(C) We haven(x(Tj),y;j)) > 82 x P, TG-D>s where P, 7G-D is the
probability that a randomly chosen branch passes through a |g&f bf
which is not a leaf off U—1 (see Section 5.1).
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o If T) is trivial (i.e., the only node is the root), set7) = @; otherwise
choose a stationary-equilibrium (x@, y@) of 7). SinceT ) is a subgame
of eachT), j =1,...,J, since no subgame df /) has ans-equilibrium
with corresponding payoffs ik; and since every;-equilibrium is also an
e-equilibrium, the corresponding-equilibrium payoff lies in some good
rectangleg € G. Setc(T) = g.

The strategiesx'’’, y%/)), as given by Proposition 5.5, are strategie® fi™2).
We consider them as strategiesinby letting them continue from the leaves
of TU~-D downward.

We also define, for everye J,
Ai(T) = pri) 7G-D,

so thatr (xy, y&) > €2 x 4 (T).

6. Representative approximations. Theorem 4.3 enables us to reduce the
analysis to finite-stage games: games that start at some stagd terminate
at stager, wheret is some bounded stopping time. Since the state spate
arbitrary, while our game-theoretic tools allow us to analyze only games that are
defined over a finite state space, we need to approximate £adiy a finite
o-algebra.

Roughly, our goal here is to define a consistent NT funcffos (7, ;) that
assigns for every > 0, every bounded stopping timeand everyw € 2, a game
on a treeT,, ; (w) that approximates the finite-stage game that is played between
stages: andt in a desirable way.

This is done in two stages. First, we define, for everyn, a finite partitiong.
of © such that$x)x>» contains all the information relevant to the players between
stages andt. Second, given the sequence of finite partitions, we define the games
on atreg(Ty,: (w))wea-

Throughout this section we fix a stopping gameand e > 0. Denotes, =
g2/2"+2 for eachn > 0. SetA, = Y=, & = £2/2"+1, so thaty,-g A, = €.

6.1. Partial games. In the present section we consider the partial game that is
played between stages and 2, wherer; < 1 are two bounded stopping times,
and we define and study the notion of approximating games on a tree.

DEFINITION 6.1. Letr; < 12 be two bounded stopping times. AR/, t1, 72)-
strategy is a sequence = (x;) of random variables such that for every> 0,
(i) xg: {1 <k < 12} = [0, 1] and (i) x; is Fx-measurable.

Thus, an(F, t1, t2)-strategy prescribes to the player what to play between
stagesr; and > (excluded). If 0= 19 < 11 < --- iS an increasing sequence of
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bounded stopping times and if, for each 0, xlis an(F, 1, 77+1)-Strategy, we
can naturally define a strategyin the stopping game simply by concatenating
the strategiegx’);>o. Similarly, any strategyt = (xz )0 in the stopping game
naturally defines aQ¥ , 1, t2)-strategy for every pair of bounded stopping times
71 < 12 by considering the proper restriction of

Whenx andy are two(¥, 71, t2)-Strategies, we define by(x, y; F, 11, 72) =
Py, y[1{ry<6<1)| F7,]1 the conditional probability undetr, y) that the game that
starts at stage; ends before stage, and define by

plx,y; F,11,72) = Ex,y[1{11§9<1'2}RQ,9|~7:"[1]

the corresponding expected payoff. We define

px,y; F,11,712)
T(x,y; F,11,72)

y(x,y; F,11,12) =

These aref;,-measurable r.v.’s.

DEFINITION 6.2. Letr; < 12 be two bounded stopping times. Aapproxi-
mation of I betweenr; andz; is a pair(($«), (¢G.x)) such that for every > 0:

1.
2.
3.

ok

Gk is anFr-measurable finite partition 4ty < k < 12};

Ry is Gx-measurable;

71 andrp are measurable w.rg; thatis, for everyt > 0, {r1 = k} and{r2 = k}
are unions of atoms i;

any atomG of g, such thak < 72 on G is a union of some atoms ., 1;

for every atomG of G, g .« IS a probability distribution over the atoms of
Gx+1 that are contained itv;

> GG IP(G'|Fi) () — g6k (G")| < 8 for every atomG of G, and almost
everyw € G.

We identify g, with the finite o-algebra generated bg; and we denote
4 = ($1)k=0-

With every § approximation($, (¢gg.x)) of I' betweenr; and r2 and every
atomG of §,, we can attach a game on a tree.

e The rootisG.

e The nodes are all nonempty atorfisof (4;) such that (a)F € G and (b) if
F € Gk, thent >k onF.

e The leaves are all atonts € | J,~,, $« Where there is equality in (b).

e The payoffis given by Ry)r, <k <r,-

e The children of each atorf in §; are all atomsF”’ in ;11 Which are subsets
of F.

e The transition from any nodg in 4 is given bygr .
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We denote this game on a tree Byr1, t2; ¢, (¢96.k), G).

Suppose that for every atony of §., xg is a strategy in the game
T(t1,72; %, (gG.x), G). The collection of those strategies naturally defines a
(¥, 11, T2)-Strategy.

Similarly, if x = (xz) is an (¥, t1, 2)-strategy such that for every, x; is
gr-measurable, them naturally defines a strategy ifi(z1, t2; $, (96.x), G) for
every atomG of §,.

Let (x, y) be a pair of(¥, 71, t2)-strategies such that for eveky x; and y;
are gx-measurable. We denote by(x, y; 11, 72, $, (¢G.k)) the probability of
termination in one round of the game on a t®e1, t2; $, (¢6.x), G) under the
strategiesx, y), by p(x, y; 71, 72, §, (¢:.x)) the expected payoff in one round, and
by

Y (X, v 11,12, 4, (g6.0)) = plx. yi 1, 72, §. (46.1)
o e 7 (x,y; 1,72, %, (qG k)

the expected payoff in the game. These three functiong greneasurable.

The following lemma provides estimates for the difference between the
expected payoff and the expected probability of termination, when the filtration
is changed. Its proof is omitted.

LEMMA 6.3. Let 71 < 12 be two bounded stopping times and let (4, (¢G.x))
bea § approximation of I" between t; and . Let x and y be a pair of (4, t1, 72)-
strategies. Then:

1. p'(x, y; F o1, 12) — ' (x, ¥ 71, 72, §, (qG.k))| < A, for eachi =1, 2.
2. |mw(x,y; F,11,12) —w(x, y; 11, 12, $, (GG 0))| < Aqy.

The following lemma states that g, (¢9.x)) IS a § approximation ofI’
betweenr; and 7, and if the opponent plays &, t1, t2)-Strategy, then the
player does not lose much by considering offy 1, t2)-strategies [rather than
(F, 11, 0)-Strategies].

LEMMA 6.4. Let t1 < 12 be two bounded stopping times and let (4, (¢G.x))
be a § approximation of I between 71 and 7. Let x be a (4, t1, t2)-strategy for
player 1 and set y = ess sugxz(x, v; &, 11, T2), yisa (4, 11, to)-strategy}. Then,
for every (¥, 11, T2)-Strategy vy,

P2,y For, 1) <y xw(x, y; F, 11, 12) + Ag a.e.

PROOF For# =¥,4,let
a(H) = esssupp?(x, y; H, 11, 72)
+y x (1—7m(x,y; H, 11, 72), y is a(H, 11, t2)-strategy.
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When player 2 is restricted to use¥, 1, t2)-Strategies,a(F) is his or her
best possible payoff in the game that starts at stagend, if no player stops
before stage», terminates with payoff. From the definition of/ it follows that
a(4) < y. Define recursively

y’ k 2 .L-Z
(10) a(k, ) = max{x x Rfyy , + (1 —xp) x E(a(k + L, #0)|H),
Xk X R{Zl’z}’k + (1 —xx) X R{Z} 1,

k < 12.

The first term of the maximization in the second line corresponds to player 2 not
stopping at stagk, while the second term corresponds to player 2 stopping at that
stage. Plainly (#) = a(t1, #).

Sincex; and R,f areg,-measurable and sin¢§, (¢¢.x)) is ad approximation
of T' betweent; and tp, it follows by induction thata(k, ) < a(k,$) +
Z;’OkS for everyk > 0. In particular,a(¥) = a(11, F) < a(ry, g) + Ay <
Yy + Aq. It follows that for every(F, r1, 12)- strategyy 02(x, y, ,T1, T2) +
y x (1— n(x y; F,11,12) <y + Ay, Which impliesp?(x, y; F, 11, 12) <y X
m(x,y; F, 11,72 + Ay, U

6.2. Approximating the filtration . Our main result in this section is the
following:

THEOREM6.5. LetT" be a two-player nonzero—sum stopping game. Thereis
a consistent NT function that assigns to every n > 0 and every bounded stopping
time t a § approximation of I' betweenn and .

The proof of this result, though quite technical, is intuitive. We start at stage
and we proceed backward until we reach stagEor every stage <k < 7, we
define a finite partition of2. Roughly, the partitior§, at stage is defined in such
a way that (i) payoffs at stageare measurable w.r.§; and (ii) the conditional
probability to reach any ator& € G;.1 does not vary by much over each atom
of . The construction is slightly complicated since it should be consistent.

PrROOF OFTHEOREM6.5. Forevery > 0 and every: € N, choose once and
for all a partitionB;" of the (2 — 1)-dimensional simplexr e R": 37 _;r; = 1,
rj > 0V j} such that the diameter of each elementdfi is less thanS in the
norm| - ||1. For eachB € 8" choose an elemepf € B.

Fix a total order on the collection of subsetsSof This enables us to identify,
for every partitiong of Q to n atoms, the spade” with the spacd¥, simply by
identifying theith coordinate oR" with the ith atom ofg according to the total
order.
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Fix a nonnegative integer > 0 and a bounded stopping time Let M be
a bound onr. We first define a sequence of finite partitiotg) recursively
from M down ton. We say thatw ~); o' if and only if (i) 7(w) = t(0') =M
and (i) Ry (w) = Ry (o). We let§,, be the partition o2 induced by thex,
relation. Thergy € Fu.

Suppose we have already defined a finite partifgni € %,,+1. We say that
o ~, o if and only if one of the following two compound conditions is satisfied:

e (i) We haver (w) = (') = m and (ii) R, (w) = R, (o).

e () We have 1(w) = 1(0) < m, (i) Ru(w) = Ry(«') and (iii) the two
probability distributiongP(G|F) (@) geg, ., ANA(P(G|Fn) (@) g, ., have
the same support, and their restrictions to their support lie in the same element
of B¢, wherec = [{G € Gm+1:P(G|Fn)(w) > 0}] is the number of atoms

of 9m+1 in the common support.

We letg,, be the partition of2 derived by thev,, relation.

Define for everyn and every atonG of §,, a probability distributiorjg ,,, over
the atoms 0§, 11 that are contained i simply by g, = g%, whereB is the
atom of B;, that contains all probability distributior(sP(G|me)(a)))G€9~m+l for
w € G, andc is defined as above.

The sequencés,,) satisfies the following properties:

o We have§,, C F,.
e We have thar,, is §,,-measurable.

o Forevery atonG of §,u, X gicq o IP(G'|Fm) (@) — GG,m (G| < 8.

e9’1/11-&—1

The pair((ém), (gG.m)) 1s not as approximation ofl" betweem and<t, since
(G,») is not increasing (see condition 4 in Definition 6.2). We remedy this flaw by
taking upward intersections. For every> n let §,, =\, <<, $x be the finite
o-algebra spanned kg, ..., §,,. LetG be an atom o,,,. ThenG C G for some
atomG of ém. We define a probability distributioggs ,, over the atoms o1
by

G (G, if F =G NG’ for some atonG’ of §,,41,

QG,m(F) = .
0, otherwise

It can be verified that($.,), (¢G.m)) is aé approximation of” betweem andr,
and that each step in the construction is consistdnt.

Theorem 6.5, together with the discussion in Section 6.1 that rélapproxi-
mation to games on trees and Lemmas 6.3 and 6.4, yields the following corollary:

COROLLARY 6.6. LetT beatwo-player nonzero—sum stopping game. There
isaconsistent NT function T = (T, ) that assigns for every n > 0, every bounded
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stopping time r and every w € 2, agameon atree 7, . (w) such that the following
hold for everyn and every t:

1. For everypair of strategies (x, y) inT,,.; andeachi =1, 2, |p' (x, y; F,n, 1) —
P (x,y; Ty o) < Ay.
2. For every pair of strategies (x,y) in T,., |n(x,y; F,n,t) — w(x,y;
Tho)| < Ay.
3. If (x, y) isan e-equilibriumin 7, ; (w) with expected payoff in [a1, a1 + €] x
[az, az + €], then:
(i) For every strategy y' of player 2, p2(x,y; F.,n,1) < (a2 + 2&)7(x, y';
F.on,t)+ A,
(i) For every strategy x’ of player 1, p(x’, y; F,n, 1) < (a1 + 2&)w(x’, y;
F.on,t)+ A,

[In the preceding list of inequalities, we identify strategiesTjn, with the
corresponding¥ , n, t)-strategies i".]

7. Constructing ane-equilibrium.  In the present section we use all the tools
we have developed so far to constructaaquilibrium.

7.1. A sufficient condition for existence of an equilibrium. Here we provide a
sufficient condition for the existence of an equilibrium for games that satisfy the
following conditions:

Al. There existk e N such that for every > 0, R, € (0, £ %, £2, ..., £X)6.
A2. Foreveryn > 0, Rt :=limsup,_,, Rfy, , is constantandy, , < R™.
A3. Foreveryn > 0, R?:=limsup,_, ,, R%, , is constant an®?, , < R?.
1 1 p2 2
A4. WheneverRy, , = R*, Riy, , < R*.
AB5. Wheneveﬂe{zz},n = R?, R{lz}’n < RL

LEMMA 7.1. Let ¢ > 0 be given. Let I" be a stopping game that satisfies
conditions A1-A5. Suppose that there is a payoff vector (a1, a2), an increasing
sequence of stopping times 0 =19 < 71 < --- and, for every k > 0, a pair of
(F, 11, T2)-Strategies (x, y) such that the following hold for every k > O:

D1. Fori =1,2, p' (xp, y; F, T, Tht1) = (@i — &) (ks Vi3 F, Ths Th1) — Doy

D2. For every (¥, t, k41)-strategy x}, p1(x}, yi; F, th, Tkr1) < (a1 + &) (x),
Vi F o T, Tew1) + Aqg.

D3. For every (¥, o, txt+1)-strategy vy, p2(xk, yi; F, T, k1) < (a2 + &) (xx,
Vis F T Tegd) + Agg.

D4. Almost surely, Zkzon(x/ﬂ Vi; F, Ty Tkg1) = OC.

D5. If a; < R — ¢, then 2 >0 (0, yi; F, Tk, Te1) = 00 AS.

D6. If ap < R? — ¢, then 2 k=07 (Xk, 05 F, T, Teg1) = 00 @S,
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Then the game admits an 8s-equilibrium.

In words, conditions D1-D3 roughly say that eagh, y;) is ans-equilibrium
with payoffs close tdas, a2). Condition D4 says that the concatenation of all the
(xx, yx)'s stops with probability 1, while conditions D5 and D6 say that if one
player receives a low payoff, thenshor her opponent stopsith probability 1
under the concatenation. The proof of Lemma 7.1 is standard.

PROOF OFLEMMA 7.1. Denote by (resp.y) the strategy il that is the
concatenation of the strategies )x>o [resp.(yi)k>o]-

ByD4,P, (0 <o00)=1.ByD5,ifa; < Rl—¢, thenPg,, (0 < c0) = 1. By D6,
if ap < R%2 — ¢, thenP, o(0 < co) = 1. Therefore, there i& € N such that

(12) Poy(@ <t)>1—¢,
ifag<R'—e,  thenPg,(@ <t1)>1—c¢,
(12)
if ap < R? — ¢, thenPy o(0 <t7) >1—¢.

We now define a pair of strategi€s*, y*), which is a slight augmentation
of (x,y): If a1 < R — ¢, let y* coincide withy. If a; > R! — ¢, let y* be the
strategy that coincides with up to stager;, and from that stage onward, stops
with probability ¢ wheneverRy, , = R? (and with probability 0 otherwise). The
strategyx™ is defined analogously.

We argue thatx*, y*) is an &-equilibrium. We only prove that player 1 cannot
profit more than 8 by deviating.

By summing D1 fori = 1 overk > 0, and sinceP, ,(# < oo) =1 and
Y re1 Ag < €, We oObtain

(13) yo,y) > ag — 2e.
Since(x*, y*) coincides with(x, y) up to stager; and by (11),
ity = yix, y) — 26 > a1 — de.

Let x" be any strategy of player 1 and, for evety> O, let x; be the
(F, ., Tr1)-Strategy induced by’.
By summing D2 ovek > 0 and sincé_ 7>, A, < ¢, we obtain

(14) yr(', y) < (a1 4 €)Py (6 < +00) +e.

If a1 < R — &, then by D5P,/ (6 < +00) > Pg (0 < +00) = 1. Therefore,
yr,y) <ai+ 2.

Sincey* coincides withy up to stager; and by (12),

pr, vy <y, y) + 28 <ag +4e <yt y¥) + 8.
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We now consider the cagg > R —¢. By summing D2 ovek =0,...,L —1
and since) ;24 A, < ¢, we obtain

(15) Evy[Rp.oLo<e)] < @1+ 6Py y(0 <71) +e.
By the definition ofy* after stager; , it follows that
y ) < Ev )[R pLp<ey] + (R + &Py (0 = 7).
By (15) and sincer! < aj + ¢,
yr, y*) <ar+2e < ytt, y*) + 6e,

as desired.

As the following example shows, adding a threat of punishment might be
necessary.

EXAMPLE 7.2. Consider a game with deterministic payofgiy , = (-1, 2),
Ry n = (=2,1) and Ry1,2;,, = (0, =3). We first argue that alk-equilibrium
payoffs are close t¢—1, 2).

Given a strategy of player 1, player 2 can always wait until the probability of
stopping underx is exhausted and then stop. Therefore, in amgguilibrium, the
probability of stopping is at least2 ¢, and the corresponding payoff is close to
the convex hull of(—1, 2) and(—2, 1). Since player 1 can always guaranteg
by stopping at the first stage, the claim follows.

However, in everys-equilibrium (x, y), we must havePq (6 < oo) > 1/2,
otherwise player 1 receives more that by never stopping.

Thus, are-equilibrium has the following structure, for some integerPlayer 1
stops with probability at least2 ¢ before stagev and with probability at most
after that stage; player 2 stops with probability at mobefore stagev and with
probability at least 12 after that stage. The strategy of player 2 serves as a threat
of punishment: if player 1 does not stop before staigiee or she will be punished
in subsequent stages.

7.2. Proof of Theorem 2.2 Define R! = limsup,_, . R {1}n and R? =

limsup,_, o R{Z2 Ve These are the maximal payoffs each player can guarantee by
stopping when the opponent always continues. Recall that we assumed that the
rangeR of the payoff process is finite, so thata.s. there exist infinitely manys
such thatRl;, , = R and infinitely many:’s such thatR?, , = R?.

We fix throughouts > 0 sufficiently small.

By Corollary 6.6 there is a consistent NT functi¢h, ,) that assigns for every
n > 0, every bounded stopping time and everyw € 2, a game on a tree that
satisfies several desirable properties.
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Define several subsets ©fas
A_={R'<0andr?<0}

and, for every- € R,

Ar1={(RY, R =r}Nn{ limsup R{Zl}’n > R?
[

R[l},n:R

Ar2={(R* R®)=r}n{ limsup R , > R*

n—oo
REy) 1 =R?

Arz={(RLR) =r}N(A_UA1UAp".

Recall that for every two payoff processﬁsand R _such thatE[sup,cy | Ry —
Ryllso] < €, every e-equilibrium in (2, 4, p, ¥, R) is a Z-equilibrium in
(§2,A,p, F,R).

We are now going to further partition the set$, 3),cx. In Section 5.3 we
attached to each game on a grdpta colorc(T) (from a finite set of possible
colors) and/ numbers in the unit intervab\j(T))jf.zl.

By Theorem 4.3 there is an increasing sequence of stopping timesy0<
71 < --- such that

P(c(Tro,1) = (T 501) VEEN) > 1 — 6.

Define the subsets of, 3, foreveryj =1, ..., J,

Arzj=Ar3N Z}‘ Tka+l) o0
k>0

and, for each good rectangfes G,
B3y = Ar3N{c(T 5) = g Y}

Let * be the collection of setd_, (A,1), (A,2), (A.3./), (B.3,¢). By properly
modifying the payoff process on a set with measure smaller thaand by
possibly dropping the first few stopping times in the sequéngeand renaming
the remaining stopping times, we can assume w.l.o.g. that (i) all the sets in
P* are F,-measurable, (iR, , < R* and Ry, , < R? for everyk > 10, and

(iii) ijl 2202 (T 1) <€ ONUgeg Brag-

As the sets in?* are not necessarily disjoint, we &t be a finite partition of2
into #7,-measurable sets such that for every a®mf /> and every seB* in *,
eitherBC B*orBN B*= .

For every ¥;,-measurable seB define the stopping game that is restricted
to B and starts at stag®: I'p , = (B, A, p|B, (Fry+k)k=0, (Reg+i)k>0), Where
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Ap IS theo -algebra oveB induced by4 andp, is the probability distributiorp
conditioned onB.
The following lemma is standard.

LEMMA 7.3. If for every atom B of # with P(B) > 0, thegame I" 3 ,, admits
an g-equilibrium, then the game I admits a 3s-equilibrium.

PROOF It is well known that any finite-stage game admits a O-equilibrium
[one can, e.g., adapt the proof for the zero—sum case given in Rosenberg,
Solan and Vieille(2001), Propositin 3.1]. Sincerg is bounded, and since we
changed payoffs on a set of measure at moshe following strategy pair is a
3e-equilibrium;

e If the game has not terminated by stagg play from that stage on an
e-equilibrium inT" g ,, whereB is the atom off that containg». Denote byy
the #7,-measurable payoff that corresponds to this strategy.

e Until staterg, play a 0-equilibrium in the game that terminates at stagé no
player stops before that stage, with terminal payoff [

Thus, it remains to show that for every atanof /2, the gamel"z -, admits
a Ce-equilibrium for someC > 0. We verify this in the next sections. For
convenience, we assume w.l.0.g. that 0.

7.2.1. B < A_. The gamel'p, admits a 0-equilibrium: The strategy pair
where no player ever stops is a 0-equilibrium. Indeed, under this strategy the
expected payoff for both players is 0, while any plajerho stops at some stage
recelvesR’ i = R <0.

7.22. () BC A,1andrl>0or (i) BC A,pandr?>>0. We deal only with
case (i). The following strategy pair is a-2quilibrium: Player 2 never stops while
player 1 stops with probability at every stagé such thatR = = R'=r!and
R{ e R2. The expected payoff to player 148, while the expected payoff to
player 2 is at least?. Sincer! > 0, player 1 cannot profit by deviating, while
if player 2 stops at some stage his or her expected payoff is bounded by
1- 8)R{22}’k +e<(l—er?+e<r?42s.

7.23. )BC A1 andrl <0or (i) B<C A,.» and r?> < 0. We deal only
with case (i). Ifr2 <0, thenB C A_, so that by Section 7.2.Tp, admits

a 0-equilibrium. Assume then that > 0. If lim SUp, ., . R%, ,=R? R{lz} -~ R1,
thenB C A, i, so that by Section 7.2.2 the garfig , admits a 2-equilibrium.

Assume then that limsyp, . K%, ,=R? R{Z} , < RY.Under these assumptions, the
following strategy pair is a Sequilibrium: Player 1 stops at every stagsuch
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that Ry, , = r* and Rf, , > r? with probability ¢, while player 2 stops at every
stagek > N such thatR{z} , < rlwith probabilitye, whereN is sufficiently large
so that under this strategy, player 1 stops with probability at least Jrior to
stageN.

In the last two cases we use the coloring procedure presented in Section 5.3 and
the sufficient condition that appears in Lemma 7.1.

7.24.BC A, 3;. Recallthatom, s ;,

(16) Z 1j(To,0,4) = 00.
k>0

Denote by T (z;, th11) the tree that was generated in rouridof the
coloring procedure in Section 5.3 and denote(®Y” (tx, tx+1), ¥V (tk, Tkg-1))
thee-equilibrium with payoff in a bad rectangles, ai + €] x [a2, a2 + €]. By the
definition of ;,

A7) (P ) Y (T T ) Trerrnn) = €2 % A (Tog ) -

We apply Lemma 7.1 with@ {;} and{(x" (tx, 1), Y (11, Tk 41))}. Since
the rectangle is bady > R! — ¢ anday > R? — ¢, so that conditions D5 and D6
trivially hold.

Condition D4holds by (16), (17) ath Corollary 6.6.2. Condition D1 follows
from the choice of(x ) (7, tx41), ¥ (k, k1)) and by Corollary 6.6. Condi-
tion D2 follows from Corollary 6.6.3. The proof that condition D3 holds is analo-
gous. The desired result follows by Lemma 7.1.

7.2.5. B C B, 3. Recall that onB, 3., c(T (tk, x+1)) = g for everyk and
ij.zl Y i=0rj (T z.,) < €. Sinceg = [a1, a1 + €] x [az,az + €] is a good
rectangleg; < R1—2¢ oras < R%2—2¢. We assume w.l.0.g. thag < R1—2¢. Let
(@ (i, e41), YO (i, 1)) be ang-equilibrium in 7 (7, 741) with payoff
in g. Sincea < R —2¢, Lemmabs.3 implies that

(0, y O (th, Tt 1); Ty ivn) = éul(T(J) (Tk» Tk1))
(18)

=

™

J
Ml(T(Tk, Tk+1)) - Z Aj (Tfk’fk+1)'
j=1

We apply Lemma 7.1, with2 {z;} and{(x @ (z¢, tx4+1), v (x, %41))}. Condi-
tion D1 holds by the choice @k © (7, tx41), y© (7, Tv+1)) and by Corollary 6.6.
Conditions D2 and D3 hold as in the previous case.

We now prove that condition D5 holds. By (18) and Corollary 6.6.2,

&
N(O,y(o)(fk,fk+1);ff',rk,fk+1)2éul(T(fk,ka) Zk tet) — A
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SinceRy, , = R i.0. and sinc&"7_; 34204, (Ty 7.y) < & ON B, 3,4, it follows
that condition D5 holds.

Condition D6 follows by an analog argument. Condition D4 follows from
conditions D5 and D6, and sineg < R — 2¢ oray < R? — 2¢.

8. Proof of Proposition 5.5. This section is devoted to the proof of Proposi-
tion 5.5. We start by defining some new concepts for games on finite trees and by
studying some of their properties. The proof itself appears in Section 8.5.

Throughout the section we fix a stopping game on a tree that satisfies
conditions B1-B4.

8.1. Union of strategies. Given n stationary strategiess, xo, ..., x,, we
define theirunion x by x(s) =1 — [[1<x<, (1 — xx(s)). The probability that the
union strategy continues at each node is the probabilityahaf its components
continue. We denote = x; +x,+ - -- +x,. Givenn pairs of stationary strategies
ar = (xk, ), 1 <k < n, we denote by + - -- +a, the stationary strategy pair
(x,y) thatis defined byt = x1+ - -+ +x, andy = y1+ --- +y,.

Considern copies of the game that are played simultaneously, such that the
choice of a new node is the same across the copies; that is, all copies that have not
terminated at stageare at the same node. Nevertheless, the lotteries made by the
players concerning the decision whether to stop are independent. £etxy, yi),

1 < k < n, be the stationary strategy pair used in cé@nd lete = a1+ - -+ + .

We consider the first round of the game. kebe the stopping stage in copy
let sx be the node in which termination occurred, &t be the set of players that
stop at stage, and letr} = R"Qk,Sk 14, <00} be the payoff in the first round. Set

e =7t (xk, yk) = P(ty <00) and pf = p' (xx, i) = Elrf].

Lets, r, p andz be the analog quantities w.rd.: Denotingk™ the index of
a copy that stops first (so that = ming=1,_, %), we haver = fx, s = sg*,
0 = Ury=r Ok andr’ = Ry ;Li<+oo- Moreover, p' = p'(x,y) = E[r'] and
T=n(x,y) =P < o0).

Let v = y(xx, yr) be the expected payoff undef = (xx, yx) and lety =
y (x, y) be the corresponding quantity under

The following lemma follows from the independence of the plays given the
branch. Recall thaiF; is the event that the randomly chosen branch passes
throughs.

LEMMA 8.1. Lets € Sp be a node of depth j. Then, for every 1 < k,l <n,
l # k, the event {r, < j} and the random variable 7 1, < ;; are independent of
given Fy.
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LEMMA 8.2. Let N =3} 11, <00y bethe number of copies that terminate
in the first round. Then:

1. Wehave ZZ:]_T[/( —E[NLn=pl <7 < Zzzlnk-

2. Wehave} ) _1 o, —E[(N +D1n>2] < p' <Y j_q1 0, FE[(N+D)Ln=2] for
each player i € {1, 2}.
PrRoOOFR Observe that

n
N —Nlns2y=1n=1y <Lin>y <N = Z L <o0)-

k=1
The first result follows by taking expectations.
For the second result, note that
(19) D= (N+Dlyszy <r' <> r+ (N +Dly=z).
k=1 k=1

Indeed, on{N < 1}, (19) holds with equality and ofiv > 2}, the left-hand side is
at most—1, whereas the right-hand side is at lea&t The result follows by taking
expectations. [

8.2. Heavy and light nodes.

DEFINITION 8.3. Leto = (x,y) be a pair of stationary strategies and let
8 > 0. Anodes € Sy is 6-heavy with respect tar if P, (¢ < oco|F;) > §; that is, the
probability of termination in the first round given that the chosen branch passes

throughs is at leas$. The nodes is s-light w.r.t. o if P, (¢t < 00| Fy) < §.

For a fixeds, we denote byH; (o) the set of-heavy nodes w.r.tr. Two simple
implications of this definition follow:

FACT 1. We haveH;(a1) € Hs(ay+a2).
FACT 2. We haveHs, (o) C Hs,(0) wheneveb; > 6;.

The following lemma asserts that for evesyequilibrium (x, y) with high
payoffs,H. (x, y) is nonempty, regardless of the size of the tree.

LEMMA 8.4. Let ¢ e (0,1/(36K)?) and let (x,y) be a stationary s-equi-
librium such that RY — & < y'(x,y), i =1,2. Then H,(x, y) # ¢. In particular,
by Fact 2, H,2(x, y) # ¢.
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COMMENT. The proof hinges on the assumption tlﬁﬁ}vs < R? whenever
R{ll}’s = RL. As a counterexample when this condition does not hold, take a game
in which (a) R, , = 1 for everyi, 0 ands, and (b) R* = R? = 1. Then any
stationary strategy pair which stops with positive probability is a 0-equilibrium.

PROOF OFLEMMA 8.4. We prove that there is a nodlesuch thatx,y, > ¢,
so thats € H.(x, y). The idea is that ifH.(x, y) is empty, then the probability
that both players stop simultaneously undeyy) is small, but if (x, y) is an
g-equilibrium, this probability must be high.

Denoterr; = Py y(t < 00, Q0 ={1}), ma =Py y(t <00, 0 ={2}) andm1 o =
Pey(t < 00, Q0 = {1,2}). These are the probaltiés that in asingle round,
player 1 stops alone, player 2 stops alone and both players stop simultaneously,
respectively.

Since for some playar, R’ is strictly positive, and hence strictly larger than
we haveyi(x, y) > R’ —¢ > 0. Thereforegr; +m2+ 12 > 0. Assume w.l.0.g. that
T, = 2.

Suppose to the contrary thaty, < e for every node € Sp. The probability that

both players stop simultaneouslysaiconditional on the game terminatingsatis

XsYs
x5 (L—y5) + (1 — x5)ys + X5 )5 .
The maximum of the functiorf (x,, ys) over the sefx;y; <¢e,0 < x;, y, < 1}is
attained at the point; = y; = /. Thereforef (xy, y) < f(J/¢,/€) < /¢. This
implies thatry 2 < . /e.
Since(x, y) is ang-equilibrium and since payoffs are bounded by 1,

S xs, ys) =

R°—¢< yz(x, y)

mMa% e s, RE) ( + m2MaXesy Ry  + 71,2 Ma%esy R o)
T+ 2+ w2

_m(R?—1/K) + mR? + 11

B w1+ w2+ 72

Sincery > mp and ¢ < 1/4K, this implies thatr;» > 1/6K. In particular,
V& > m1 2 >1/6K, which is a contradiction whesn< 1/36K2. [

8.3. Orthogonal strategies.

DEFINITION 8.5. Lets > 0. A sequence(as, ap,...,a,) Of stationary
strategy pairs i$-orthogonal if axy1(s) = (0,0) for every 1<k <n —1 and
every nodes € Hs(ay+ --- +ay); that is,a; 1 continues ons-heavy nodes of
a1 + - 4.-061{.
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LEMMA 8.6. Let § > 0, let (a1,...,a,) be a §-orthogonal sequence of
stationary strategy pairs, let k € {1,...,n} and let s € S be a node of depth ;.
Then

(20) P({j <t <oo}N (U{;, < oo})

I<k

FS) <& x P(j <ty <o0|Fy).

PROOF Fix k € {1,...,n}. We prove the lemma by induction on the nodes
of T, starting from the leaves and climbing up to the root.
Let s € S1 be a leaf ofT. Sinces is a leaf,P(j < # < c0) =0 and (20) is
trivially satisfied.
Assume now that € Sp. Then
FS)
Fs)

P<{j <t <oo}N (U{tz < oo})
+ 3 polsI % P({j +1<g <oo)n (U{n < oo})

1<k
s'eCy 1<k

(21) =P({fk=j}ﬂ (U{fz <OO})

I<k

FS/>.

Fs/> <SXP(+1<t <oo|Fy).

By the induction hypothesis, for every chitle C;,

(22) P({j-l-lftk <oo}ﬂ<U{tl <oo})

I<k
By Lemma 8.1{# = j} andJ,_;{; < oo} are independent giveF;. Therefore

P({rk =jIn (U{n < oo}) Fs> = P(tx = jIFy) x P(U{n < 00} Fs>.
I<k

I<k
If s iss-light w.r.t.ag + -+ +ag_1, thenP(U, {1 < 00}| Fy) < 8. If s is §-heavy,
then, according to the definition of orthogonal®(s; = j|Fy;) = 0. Therefore,

(23) P<{lk =jin (U{ll < OO})

<k

Fs)féxp(tk:les)-

Equations (21)—(23) yield

P({j <1 <oo}N (U{tl < oo}))

<k
<8 x P =jIF)+8x Y psls'I x P(j +1< <oo|Fy)
s'eCy

=38 x P(j =t <o0|Fy),
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as desired. [J
Applying Lemma 8.6 to the root we get:

COROLLARY 8.7. Let§>Oandlet (ay,...,a,) beas-orthogonal sequence
of stationary strategy pairs. For every k € {1, ..., n},

P({tk < oo} N (U{’l < oo})) <8 x P({ty < 00}) = 8y

I<k

LEmMmA 8.8. Let § > 0, let (a1,...,a,) be a §-orthogonal sequence of
stationary strategy pairs and let N = >"7_; 1, <oc). Then E[(N + D1n=2] <
by +ma+--+my).

PROOF Observe thatv +1<3(N — 1) on{N > 2} and(N — D)1y>2 =
>t 1 Ly <oo)n(Uy {1 <oo)) - Therefore,

E[(N +D1y=2] < 3E[(N — D1n=2)]
=3)" P({tk <oo}N (U{z, < oo})).
k=1 I<k
The result follows by Corollary 8.7.00

From Lemmas 8.2 and 8.8 we get the following:

COROLLARY 8.9. Let§>Oandlet (a1, ...,a,) bea s-orthogonal sequence
of strategy pairs. Denote« = a3 + - - + ;. Thenfor i =1, 2:

1. Wehave (1 -38) Y j_qmx <7 < j_q k.
2. Wehave )}y 10, —36> 1k <p' <D 1P+ 38D )1 k.

LEMMA 8.10. Lets > 0andlet (a,...,a,) bea s-orthogonal sequence of
stationary strategy pairs. Denote« = a1 + - - - +«,. Thenfor i =1, 2,

n n n n n
Do —68) mi<y' x> m <Y p+68) m.
k=1 k=1 k=1 k=1 k=1
PrROOF By Corollary 8.9 and (6),

n
; \ Yl x an, if i >0,
Yop=38Yy m<p =y xm=< =t
k=1 k=1 y'1-389)> m, if —1<y'<0.
k=1
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In both cases, the right-hand side is bounded/byx >7_; 7 + 38 Y7 _; 7, SO
that

n n n
Zp,i—662nk < yi X an.
k=1 k=1 k=1
The proof of the right-hand inequality is similar(]
From Lemma 8.10 and (6) we get:

CoOROLLARY 8.11. Let 6 > 0 and let (@1,...,a,) be a §-orthogonal
sequence of stationary strategy pairs. Denote o = a1+ -+ +a,. Let —1 <
u,v<1.

1. Ifu <y foreachk € {1,...,n}, thenu — 68 < y'.
2. Ify} <vforeachke{l,...,n}, theny’ <v+ 66.

8.4. Srong orthogonality. In the present section we define a stronger notion
of orthogonality and study its properties.

DEFINITION 8.12. Lets > 0. A sequenceas,a,...,a,) Of stationary
strategy pairs iss-strongly orthogonal if, for every k € {1,...,n — 1} and
every nodes € Hs(ag+ -+ +ax), ars1(s’) = (0,0) for s’ = s and for every
descendent of s; that is,ax+1 continues froms onward.

The following lemma provides a way to construebrthogonal sequences of
strategy pairs from a singk#-strongly orthogonal sequence.

LEMMA 8.13. Let ¢ > 0 and let y1, y2,..., y, be stationary strategies of
player 2 such that the sequence ((0, y1), ..., (0, y,)) is e2-strongly orthogonal.
Let ¥ be any pure stationary strategy of player 1 that does not stop twice on
the same branch; that is, if x(s) = 1, then x(s") = 0 for every descendant s’
of 5. Define strategies (xx);_, of player 1 in the following way: For each s € §
such that x(s) = 1, let xx(s) = 1, where k < n is the greatest index for which
s & H.((0, y1) + .- 4(0, vk—1)). Define xi (s) = 0 otherwise. Let a; = (g, yi).
Then the sequence (a1, .. ., &) is e-orthogonal.

PROOF By the definition of(xx)1<x<, and Fact 1, we get, for everye
{1,....,n—1}:

(24) If x;(s) =1 thens € H.((0, y») + --- + (0, y));

If X42(s)=1  thens ¢ H.((0, y1) + --- + (0, y)).
Let/ e {1,...,n —1} and lets € S bee-heavy with respect t6; = a1 + - - - +a;.
We prove thak;,1(s) = y;+1(s) = 0.
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We first prove thatr;,1(s) = 0. Sinces is e-heavy w.rt.o; = ay+ --- +aj,
Ps,(t < oo|Fy) > ¢. Assume to the contrary that,1(s) = 1. By (24),s is e-light
w.rt. (0,y1)+ --- 4+ (0, y) and, thereforeP ,,) i ... 1 (0.y)(f < 00|Fy) < &. It
follows thatP;, o)1 ...+ (5.0 < 00| Fy) > 0, a contradiction to the assumption
thatx does not stop twice on the same branch.

We proceed to prove thag;.1(s) = 0. Assume first that there exists an
ancestors’ of s such thatxi(s’) + --- + x;(s’) = 1. By (24) and Fact 15’ €
H((0, y1) + --- 4+ (0, y)). Since((0, y1), ..., (0, y,)) is e-strongly orthogonal,
yi+1(s) =0.

We assume now that;(s’) + --- + x;(s’) = 0 for every ancestos’ of s.
Let D be the (possibly empty) set of's descendants/ that aree-heavy
w.r.t. (0,y1)+ --- 4+ (0, y;) and let D be the set that is obtained by removing
from D all nodes that have strict ancestors in By the definition of D,
Po,y1) 44yt <0|Fg) > ¢ for everyd € D. LetY = U, ep Fa. Since this
is a mutually disjoint union, it follows that i £ ¢, then

P(O,)’1)+"'+(O,}’l)(t < OO|Y) >eg>=eX Pa—l(t < OO|Y)
By (24) and the definition ofxx)1<x<n, it follows that
P(0.yp) 4 4 (0. (t < 00|YC N Fy) = Pg, (t < 00| Y N Fy)
> & x Ps, (1 < 00|Y° N Fy).

Combining the last two inequalities and observing that F,, we get

P0,y1) 4+ 0,y (t < 00| Fy) > & x Pg (t < 00| Fy) > &2,
Thuss is e2-heavy with respect t@0, y1) + --- + (0, y;) and, as the sequence
((0,y1), ..., (0, yp)) is e?-orthogonaly;+1(s) =0. O

LEMMA 8.14. Lete e (0, 3) andletay,ap € [—1, 1]. Lét (a1, ..., &) bean
e2-strongly orthogonal sequence of stationary strategy pairs such that «y is an
e-equilibriumfor each k =1, ..., n. Assume that for each k, y; € [a1, a1 + ¢] X
[ap, ap+ €], where yy isthe payoff that correspondsto . Leta = + -+ +a, =
(x,y). Then:

(@) Wehavea; —e < yi(x, V).
(b) For each pair (x',y’) of stationary strategies, y1(x’, y) < a1 + 8¢ and
y2(x,y) <az+ 8.

PROOF Denotex; = (xi, yx). We prove the result only for player 1. We first
prove (a). Sinceay < ykl(xk, yi) for each 1< k < n, it follows from Corollary 8.11
and since: < 1/6, thata; — ¢ <ay — 62 < y1(x, y).

We now prove (b). Letk be a stationary strategy that maximizes player 1's
payoff againsty: y1(x, y) = maxs y1(x’, y). Fixing y, the game reduces to a
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Markov decision process and hence such axists. Moreover, there exists such a
strategyk thatis pure [i.e.x (s) € {0, 1} for everys] and stops at most once in every
branch. Observe that since the sequeige. . ., «,,) is 2-strongly orthogonal, so
is the sequencé(O, y1), ..., (0, y,)). Let x1, ..., X be the strategies defined in
Lemma 8.13 w.r.tx andys, ..., y,. Thenk = %1+ --- +%, and(aq, ..., a,) is
g-orthogonal, wheré = (x, yi).

For eactk, (xk, y) is ane-equilibrium and, therefore; 1 (xy, y) < a1+ 2¢. By
Corollary 8.11 and the definition af, for everyx’ we havey1(x’, y) < y1(x, y) <
a1+2¢+6s=a1+8. O

8.5. Proof of Proposition 5.5, We now prove Proposition 5.5. Consider the
following recursive procedure:

1. Initialization: Start with the gamé& = T, the strategy paito = (0, 0) (always

continue) and = 0.

2. If there exists a stationarg-equilibrium in a subgamel” of T with
corresponding payoff ifuy, a1 + €] x [az2, a2 + €]:

(a) Setk =k + 1 and letay = (xt, yr) be any suche-equilibrium. Extend
x; andy to strategies oif" by settingx; (s) = yx(s) = O for every node
seSo\T'.

(b) Setoy =op_1+ .

(c) Let Hy = H,2(o%) be the set ot2-heavy nodes of; (by Fact 1,Hy_1 C
Hk). Setf’ = THk-

(d) Start stage 2 all over.

3. If, for all subgame§” of T, there are ne-equilibria in 7’ with correspondlng
payoff in [a1,a1 + €] x [ag,ap + €], setn =k, x = x1+ - +x,, y =

yl+ +yn andD = H,.

The idea is to keep adding strongly orthogosgtaquilibria as long as we can.
The procedure continues until there issequilibrium in any subgame df with
payoffs in[a1, a1 + €] x [a2, a2 + €]. The termination of the procedure follows
from Lemma 8.4.

The first part of Proposition 5.5 is an immediate consequence of the termination
of the procedure. We now prove that = (x, y) satisfies the requirements of the
second part. Sinc® = H, is the set ofez—heavy nodes ofx, y), w(x,y) >
€2 x pp. For every 1< k < n, y'(xx, ) > R' — ¢, so that (xx, yx) is an
e-equilibrium in 7. Thus ((x1, y1), ..., (xn, y»)) is an e2-strongly orthogonal
sequence of stationary-equilibria. The remaining claims of Proposition 5.5
follow from Lemma 8.14.

9. More than two players. When there are more than two players, it is no
longer true that games on a tree admit stationasquilibria. An example of
a three-player game where this phenomenon happens was first found by Flesch,
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Thuijsman and Vrieze (1997). Nevertheless, a consequence of Solan (1999) is that
every three-player game on a tree admits a periediquilibrium, but the period

may be long [see Solan (2001)]. We do not know whether this result can be used
to generalize Proposition 5.5 for three-player games.

When there are at least four players, the existence-@duilibria in stopping
games on finite trees is still an open problem, even in the deterministic case; that
is, when every node in the tree has at most a single child. For more details, the
reader is referred to Solan and Vieille (2001).
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