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TWO-PLAYER NONZERO–SUM STOPPING GAMES
IN DISCRETE TIME

BY ERAN SHMAYA AND EILON SOLAN1

Tel Aviv University

We prove that every two-player nonzero–sum stopping game in discrete
time admits anε-equilibrium in randomized strategies for everyε > 0. We
use a stochastic variation of Ramsey’s theorem, which enables us to reduce
the problem to that of studying properties ofε-equilibria in a simple class of
stochastic games with finite state space.

1. Introduction. The following optimization problem was presented by
Dynkin (1969). Two players observe a realization of two real-valued processes
(xn) and(Rn). Player 1 canstop wheneverxn ≥ 0, and player 2 canstop whenever
xn < 0. At the first stageθ in which one of the players stops, player 2 pays player 1
the amountRθ and the process terminates. If no player ever stops, player 2 does
not pay anything.

A strategy of player 1 is a stopping timeµ that satisfies{µ = n} ⊆ {xn ≥ 0} for
everyn ≥ 0. A strategyν of player 2 is defined analogously. The termination stage
is simplyθ = min{µ,ν}. For a given pair(µ, ν) of strategies, denote by

γ (µ, ν) = E
[
1{θ<∞}Rθ

]
the expected payoff to player 1.

Dynkin (1969) proved that if supn≥0 |Rn| ∈ L1, this problem has a valuev; that
is,

v = sup
µ

inf
ν

γ (µ, ν) = inf
ν

sup
µ

γ (µ, ν).

He moreover characterizedε-optimal strategies; that is, strategiesµ (resp.ν) that
achieve the supremum (resp. the infimum) up toε.

Neveu (1975) generalized this problem by allowing both players to stop at
every stage, and by introducing three real-valued processes(R{1},n), (R{2},n)
and(R{1,2},n). The expected payoff to player 1 is defined by

γ (µ, ν) = E
[
1{µ<ν}R{1},µ + 1{µ>ν}R{2},ν + 1{µ=ν<∞}R{1,2},µ

]
.

Neveu (1975) then proved that this problem has a value, provided
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(a) supn≥0 max{|R{1},n|, |R{2},n|, |R{1,2},n|} ∈ L1 and
(b) R{1},n = R{1,2},n ≤ R{2},n.

Recently Rosenberg, Solan and Vieille (2001) studied games in Neveu’s
setup, but allowed the players to userandomized stopping times: a strategy is a
[0,1]-valued process that dictates the probability by which the player stops at every
stage. They proved that the problem has a value, assuming only condition (a).

Extensive literature provides sufficient conditions for the existence of the
value in continuous time [see, e.g., Bismut (1977), Alario-Nazaret, Lepeltier and
Marchal (1982), Lepeltier and Maingueneau (1984), Touzi and Vieille (2002) and
Laraki and Solan (2002)]. Some authors have studied the diffusion case, see, for
example, Cvitaníc and Karatzas (1996).

The nonzero–sum problem in discrete time when the payoffs have a special
structure was studied, among others, by Mamer (1987), Morimoto (1986), Ohtsubo
(1987, 1991), Nowak and Szajowski (1999) and Neumann, Ramsey and Szajowski
(2002) and the references therein. In the nonzero–sum case, the processes(R{1},n),
(R{2},n) and(R{1,2},n) areR2-valued, and the expected payoff to playeri, i = 1,2,
is

γ i(µ, ν) = Eµ,ν

[
1{µ<ν}Ri{1},µ + 1{µ>ν}Ri{2},ν + 1{µ=ν<∞}Ri{1,2},µ

]
.

The goal of each player is to maximize his or her own expected payoff. Given
ε > 0, a pair of stopping times(µ, ν) is an ε-equilibrium if for every pair of
stopping times(µ′, ν′),

γ 1(µ, ν) ≥ γ 1(µ′, ν) − ε and γ 2(µ, ν) ≥ γ 2(µ, ν′) − ε.

The above-mentioned authors provided various sufficient conditions under which
ε-equilibria exist.

In the present paper, we study two-player nonzero–sum games in discrete time
with randomized stopping times, and we prove the existence of anε-equilibrium
for everyε > 0, under merely an integrability condition. Our technique is based on
a stochastic variation of Ramsey’s theorem. Ramsey (1930) proved that for every
coloring of a complete infinite graph by finitely many colors there is a complete
infinite monochromatic subgraph. Our variation allows us to reduce the problem
of the existence of anε-equilibrium in a general stopping game to that of studying
properties ofε-equilibria in a simple class of stochastic games with finite state
space.

The paper is arranged as follows. In Section 2 we provide the model and the
main result. A sketch of the proof appears in Section 3. In Section 4 we present
a stochastic variation of Ramsey’s theorem. In Section 5 we define the notion of
games played on a finite tree and we study some of their properties. The proof of
the main result in this section is relegated to Section 8. In Section 6 we show how
to approximate a general filtration between two stopping times by a sequence of
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finite algebras. In Section 7 we construct anε-equilibria. We end by discussing
extensions to more than two players in Section 9.

Our proof uses tools both from the theory of stochastic processes (Sections
4 and 6) and from the theory of games (Sections 5 and 8). However, no prior
knowledge of these fields is assumed.

2. The model and the main result. A two-player nonzero–sum stopping
game is a 5-tuple� = (�,A,p,F ,R) where:

• (�,A,p) is a probability space;
• F = (Fn)n≥0 is a filtration over(�,A,p);
• R = (Rn)n≥0 is anF -adaptedR6-valued process. The coordinates ofRn are

denoted byRi
Q,n, i = 1,2, φ �= Q ⊆ {1,2}.

A (behavior)strategy for player 1 (resp. player 2) is a[0,1]-valuedF -adapted
processx = (xn)n≥0 [resp.y = (yn)n≥0]. The interpretation is thatxn (resp.yn)
is the probability by which player 1 (resp. player 2) stops at stagen (provided the
game is not stopped before that stage).

Let θ be the first stage, possibly infinite, in which at least one of the players
stops and letφ �= Q ⊆ {1,2} be the set of players that stop at stageθ (provided
θ < ∞). The expected payoff under(x, y) is given by

γ i(x, y) = Ex,y

[
Ri

Q,θ1{θ<∞}
]
,(1)

where the expectationEx,y is with respect to (w.r.t.) the distributionPx,y over
plays induced by(x, y), and1 is the indicator function.

DEFINITION 2.1. Let � = (�,A,p,F ,R) be a two-player nonzero–sum
stopping game and letε > 0. A pair of strategies(x∗, y∗) is anε-equilibrium if
γ 1(x∗, y∗) ≥ γ 1(x, y∗) − ε andγ 2(x∗, y∗) ≥ γ 2(x∗, y) − ε for everyx andy.

The main result of the paper is the following:

THEOREM 2.2. Let � = (�,A,p,F ,R) be a two-player nonzero–sum
stopping game such that supn≥0 ‖Rn‖∞ ∈ L1(p). Then for every ε > 0, the game
admits an ε-equilibrium.

The definitions imply that for every two payoff processesR and R̃ such that
E[supn∈N ‖Rn − R̃n‖∞] < ε, everyε-equilibrium in(�,A,p,F , R̃) is a 3ε-equi-
librium in (�,A,p,F ,R). Hence we can assume without loss of generality
(w.l.o.g.) that the payoff processR is uniformly bounded and that its range is
finite. Actually, we assume that for someK ∈ N, Rn ∈ {0,± 1

K
,± 2

K
, . . . ,±K

K
}6

for everyn ∈ N.
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3. Sketch of the proof. In the present section we provide the main ideas of
the proof. Let� be a stopping game. To simplify the presentation, assume that
Fn is trivial for everyn, so that the payoff process is deterministic. Recall that
w.l.o.g. payoffs are uniformly bounded by 1.

Given ε > 0, fix a finite coveringM of the space of payoffs[−1,1]2 by sets
with diameter smaller thanε. For every two nonnegative integersk < l, define the
periodic gameG(k, l) to be the game that starts at stagek and, if not stopped
earlier, restarts at stagel. Formally, G(k, l) is a stopping game in which the
terminal payoff at stagen is equal to the terminal payoff at stagek + (nmodl − k)

in �.
This periodic game is a simple stochastic game [see, e.g., Shapley (1953) or

Flesch, Thvijsman and Vrieze (1996)] and is known to admit anε-equilibrium in
periodic strategies. Assign to each pair of nonnegative integersk < l an element
m(k, l) ∈ M that contains the expected payoff that corresponds to a periodicε-
equilibria of the gameG(k, l).

Thus, we assigned to eachk < l a color m(k, l) ∈ M . A consequence of
Ramsey’s theorem is that there is an increasing sequence of integers 0≤ k1 <

k2 < · · · such thatm(k1, k2) = m(kn, kn+1) for everyn.
Assume first thatk1 = 0. A naive candidate for a 3ε-equilibrium suggests that

between stageskn and kn+1, the players follow a periodicε-equilibrium in the
gameG(kn, kn+1) with corresponding payoff in the setm(k1, k2).

For this strategy pair to indeed be a 3ε-equilibrium, the properties of the
ε-equilibria in periodic games must be studied. The complete solution of this
case appears in Shmaya, Solan and Vieille (2003), who observed that in each
periodic gameG(k, l) there exists a periodicε-equilibrium that satisfies at least
one of the following conditions: (i) Neither player ever stops. (ii) Both players
receive nonnegative payoffs and termination occurs in each period with probability
at leastε2. (iii) If a player receives a negative payoff, then his or her opponent
stops in each period with probability at leastε2. The fact that at least one of these
conditions holds is sufficient to prove that the concatenation described above is a
3ε-equilibrium, with corresponding payoff in the convex hull ofm(k1, k2).

If k1 > 0, choose an arbitrarym ∈ m(k1, k2). Between stages 0 andk1, the
players follow an equilibrium in thek1-stage game with terminal payoffm; that
is, if no player ever stops before stagek1, the payoff ism. From stagek1 and on,
the players follow the strategy described above. It is easy to verify that this strategy
pair forms a 4ε-equilibrium.

When the payoff process is general, few difficulties appear. First, a periodic
game is defined now by two stopping timesµ1 < µ2 :µ1 indicates the initial stage
andµ2 indicates when the game restarts. To analyze this periodic game, we have
to reduce the problem to the case where theσ -algebrasFµ1,Fµ1+1, . . . ,Fµ2 are
finite. This is done in Section 7.

Second, we have to study properties ofε-equilibria in these periodic games, so
that a proper concatenation ofε-equilibria in the different periodic games generates
a 4ε-equilibrium in the original game. This is done in Section 5.
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Third, we have to generalize Ramsey’s theorem to this stochastic setup. This is
done in Section 4.

4. A stochastic variation of Ramsey’s theorem. In the present section we
provide a stochastic variation of Ramsey’s theorem. Let(�,A,p) be a probability
space and letF = (Fn)n≥0 be a filtration. For every setA ⊆ �, Ac = � \ A is the
complement ofA. For everyA,B ∈ A, A holds on B if and only if p(Ac ∩B) = 0.

Ramsey (1930) proved that for every function that attaches a colorc(k, l) ∈ C,
where C is a finite set, to every two nonnegative integersk < l, there is an
increasing sequence of integersk0 < k1 < · · · such thatc(k0, k1) = c(ki, kj ) for
everyi < j .

We are going to attach for every nonnegative integern and every stopping
time τ , an Fn-measurable functioncn,τ that is defined over the set{τ > n},
whose range is some finite setC. We also impose a consistency requirement: if
τ1 = τ2 > n on anFn-measurable setF , then cn,τ1 = cn,τ2 on F . Under these
conditions, we derive a weaker conclusion than that of Ramsey’s theorem: for
everyε > 0 there exists an increasing sequence of stopping timesθ0 < θ1 < · · ·
such thatP(cθ0,θ1 = cθi,θi+1 ∀ i) > 1− ε.

We now formally present the result.

DEFINITION 4.1. An NT function is a function that assigns to every integer
n ≥ 0 and every bounded stopping timeτ anFn-measurable random variable (r.v.)
that is defined over the set{τ > n}. We say that an NT functionf is C-valued for
some setC if the r.v.fn,τ is C-valued for everyn ≥ 0 and everyτ .

DEFINITION 4.2. An NT functionf is F -consistent if for everyn ≥ 0, every
Fn-measurable setF and every two bounded stopping timesτ1, τ2, we have

τ1 = τ2 > n onF implies fn,τ1 = fn,τ2 onF.

Whenf is an NT function andσ < τ are two bounded stopping times, we denote
fσ,τ (ω) = fσ(ω),τ (ω). Thusfσ,τ is anFσ -measurable r.v.

The main result of this section is the following.

THEOREM 4.3. For every finite set C of colors, every C-valued F -consistent
NT function c and every ε > 0, there exists a sequence of bounded stopping times
0 ≤ θ0 < θ1 < θ2 < · · · such that p(cθ0,θ1 = cθ1,θ2 = cθ2,θ3 = · · ·) > 1− ε.

COMMENT. The natural stochastic generalization of Ramsey’s theorem re-
quires the stronger conditionp(cθ0,θ1 = cθi,θj

∀0 ≤ i < j) ≥ 1 − ε. We do not
know whether this generalization is correct.
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The following example shows that a sequence of stopping timesθ0 < θ1 <

θ2 < · · · such thatp(cθ0,θ1 = cθ1,θ2 = · · ·) = 1 need not exist, even without the
boundedness condition.

EXAMPLE 4.4. Let Xn be a biased random walk on the integers, let
X0 = 0 and letp(Xn+1 = Xn + 1) = 1 − p(Xn+1 = Xn − 1) = 3/4. Let Fn =
σ(X0,X1, . . . ,Xn). LetR0 = � and, for everyn > 0, letRn = ⋃

1≤k≤n{Xk = −1}.
For every finite (but not necessarily bounded) stopping timeτ definecn,τ = Red
onRn ∩{τ > n} andcn,τ = Blue onRc

n ∩{τ > n}. Sincep(
⋃

n≥0 Rn) < 1, whereas
for every finite stopping timeθ and everyB ∈ Fθ , one hasp(

⋃
n≥0Rn|B) > 0, it

follows that for every sequenceθ0 < θ1 < · · · of finite stopping timesp(cθ0,θ1 =
Blue) > 0, whereasp(cθ0,θ1 = cθ1,θ2 = · · · = Blue|cθ0,θ1 = Blue) < 1.

We start by proving a slightly stronger version of Theorem 4.3 for|C| = 2.

LEMMA 4.5. Let C = {Blue,Red} and let c be a C-valued F -consistent
NT function. For every ε > 0 there exist N ∈ N, two sets R̄, B̄ ∈ FN and a sequence
N ≤ τ0 < τ1 < τ2 < · · · of bounded stopping times, such that:

(a) R̄ = B̄c;
(b) p(cτ0,τ1 = cτ1,τ2 = · · · = Red|R̄) > 1− ε;
(c) p(cτk,τl

= Blue ∀ k, l|B̄) > 1− ε.

PROOF. We claim first that for everyn ∈ N we can find two setsRn,Bn ∈ Fn

and a bounded stopping timeσn such that:

1. We havep(Rn ∪ Bn) > 1− 1/2n.
2. We have{σn > n} onRn andcn,σn = Red onRn.
3. For every bounded stopping timeτ , cn,τ = Blue onBn ∩ {τ > n}.
To see this, fixn ∈ N. Call a setF ∈ Fn red if there exists a bounded stopping
time σF such that onF both σF > n andcn,σF

= Red. Sincec is F -consistent,
if F,G ∈ Fn are red, then so isF ∪ G. Let α = supF {p(F ),F ∈ Fn is red}. For
everyk ≥ 1, letFk ∈ Fn be a red set such thatp(Fk) > α − 1

k
. Let F∗ = ⋃

k≥1Fk .
Observe thatF∗ ∈ Fn andp(F∗) = α. Moreover, no subset ofF c∗ with positive
probability is red. LetRn = F2n , let σn be a bounded stopping time such that
on Rn, σn > n andcn,σn = Red, and letBn = F c∗ . This concludes the proof of the
claim.

Let B = {Bn i.o.}, and setR = Bc. SinceR,B ∈ ∨
n Fn, N ∈ N and there are

two setsB̄, R̄ ∈ FN such that (i)R̄ = B̄c, (ii) p(B|B̄) > 1− ε and (iii) p(R|R̄) >

1 − ε. On R, and therefore also onR ∩ R̄, both Bn and (Bn ∪ Rn)
c occur

only finitely many times. By sufficiently increasingN , we assume w.l.o.g. that
p(

⋂
n≥N Rn|R ∩ R̄) > 1− ε. In particular,

p

( ⋂
n≥N

Rn

∣∣∣R̄)
> 1− 2ε.(2)
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LetN = n0 < n1 < n2 < · · · be a sequence of integers such that, for everyk ≥ 0,
p(Tk|B ∩ B̄) > 1 − ε/2k+1, whereTk = ⋃

nk≤n<ni+k
Bn. Thenp(

⋂
k≥0 Tk|B ∩

B̄) > 1− ε and, therefore,

p

( ⋂
k≥0

Tk

∣∣∣B̄)
> 1− 2ε.(3)

We now define the sequence(τk)k≥0 inductively, working separately on
R̄ and B̄. Consider first the set̄R. Define τ0 = N . Given τk, define τk+1 =∑

n∈N σn1{τk=n}∩Rn∩R̄ on R̄ ∩ ⋃
n({τk = n} ∩ Rn). Since τk and (σn)n≥0 are

bounded,τk+1 can be extended to a bounded stopping time onR̄. By definition
cτ0,τ1 = cτ1,τ2 = · · · = Red on R̄ ∩ (

⋂
n≥N Rn), and it follows from (2) that

p(cτ0,τ1 = cτ1,τ2 = · · · = Red|R̄) ≥ 1− 2ε.
Consider now the set̄B. Define τ0 = N . Define τk+1(w) = min{nk ≤ n <

nk+1,w ∈ Bn} on B̄ ∩ Tk andτk+1 = nk+1 − 1 onB̄ \ Tk . By the definition ofτk ,
for every k, l ∈ N, cτk,τl

= Blue on B̄ ∩ (
⋂

k≥0 Tk) and it follows from (3) that
p(cτk,τl

= Blue∀ k, l|B̄) > 1− 2ε. �

PROOF OFTHEOREM 4.3. We prove the theorem by induction on|C|. The
case|C| = 2 follows from Lemma 4.5. Assume we have already proven the
theorem for|C| = r and assume|C| = r + 1. Let Red be a color inC.

By considering all colors other than Red as a single fictitious color and by
applying Lemma 4.5, there existN ∈ N, two setsR̄, B̄ ∈ FN and a sequence of
stopping timesN ≤ τ0 < τ1 < · · · such that (i)R̄ = B̄c, (ii) p(cτ0,τ1 = cτ1,τ2 =
· · · = Red|R̄) > 1− ε/2 and (iii) p(cτk,τl

�= Red∀ k, l|B̄) > 1− ε/2. We defineθi

separately on̄R andB̄. On R̄, we letθi = τi .
We now restrict ourselves to the space(B̄,AB̄ , pB̄) with the filtration Gn =

Fτn ∩ B̄ . Let c̃ be theC-valued NT function overG defined byc̃n,β = cτn,τβ
for

every stopping timeβ of G, whereτβ = ∑
n τn1{β=n} is a stopping time ofF . Let

c′ be the coloring that is obtained from̃c by swapping the color Red with another
color inC, say Green:

c′
n,β =

{
c̃n,β, if c̃n,β �= Red,

Green, if c̃n,β = Red.

Since c′ is a C \ {Red}-valued G-consistent NT function, we can apply the
induction hypothesis and obtain a sequence of stopping times 0≤ β0 < β1 <

β2 < · · · of G such that

p
(
c′
β0,β1

= c′
β1,β2

= · · · |B̄)
> 1− ε/2.(4)

By (4) and (iii) it follows thatp(c̃β0,β1 = c̃β1,β2 = · · · |B̄) > 1 − ε. We define
θi = τβi

on B̄. Thus

p
(
cθ0,θ1 = cθ1,θ2 = · · · |B̄)

> 1− ε.(5)

Combining (ii) and (5) we getp(cθ0,θ1 = cθ1,θ2 = · · ·) > 1− ε, as desired. �
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5. Stopping games on finite trees. An important building block in our
analysis is stopping games that are played on a finite tree. In the present section
we define these games and study some of their properties.

5.1. The model.

DEFINITION 5.1. A stopping game on a finite tree (or simply agame on a
tree) is a tupleT = (S, S1, r, (Cs,ps,Rs)s∈S\S1), where

• (S, S1, r, (Cs)s∈S\S1) is a tree,S is a nonempty finite set ofnodes, S1 ⊆ S is a
nonempty set ofleaves, r ∈ S is the root and, for eachs ∈ S \ S1, Cs ⊆ S \ {r}
is the nonempty set ofchildren of s [we denote byS0 = S \ S1 the set of nodes
which are not leaves; for everys ∈ S, depth(s) is the depth ofs—the length of
the path that connects the root tos]

and for everys ∈ S0,

• ps is a probability distribution overCs ;
• Rs ∈ R6 is the payoff at s [the coordinates of Rs are denoted

(Ri
Q,s)i=1,2, φ �=Q⊆{1,2}].

A stopping game on a finite tree starts at the root and is played in stages. Given
the current nodes ∈ S0, and the sequence of nodes already visited, both players
decide, simultaneously and independently, whether to stop or to continue. LetQ

be the set of players that decide to stop. IfQ �= φ, the play terminates and the
terminal payoff to each playeri is Ri

Q,s . If Q = φ, a new nodes′ in Cs is chosen
according tops . The process now repeats itself, withs′ being the current node. If
s′ ∈ S1, the new current node is the rootr . Thus, players cannot stop at leaves.

The game on the tree is essentially played in rounds. The round starts at the root
and ends once it reaches a leaf.

Consider the first round of the game. Lett be the stopping stage. If no
termination occurs in the first round,t = ∞. If t < ∞, let s be the node (of deptht)
in which termination occurred and letQ be the set of players that stop at staget .
The r.v.ri = Ri

Q,s1{t<∞} is the payoff to playeri in the first round.
A stationary strategy of player 1 (resp. player 2) is a functionx :S0 → [0,1]

(resp.y :S0 → [0,1]); x(s) is the probability that player 1 stops ats. Denote
by Px,y the distribution over plays induced by(x, y), and denote byEx,y the
corresponding expectation operator.

For every pair of stationary strategies(x, y) we denote byπ(x, y) =
Px,y(t < ∞) the probability that under(x, y) the game terminates in the first round
of the game; that is, the probability that the root is visited only once along the play.
We denote byρi(x, y) = Ex,y[ri], i = 1,2, the expected payoff of playeri in a
single round. Finally, we setγ i(x, y) = ρi(x, y)/π(x, y) (by convention,00 = 0).
This is the expected payoff under(x, y). In particular,

π(x, y) × γ i(x, y) = ρi(x, y).(6)
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When we want to emphasize the dependency of these variables on the gameT ,
we writeπ(x, y;T ), ρi(x, y;T ) andγ i(x, y;T ).

Observe that for every pair of stationary strategies(x, y),

π(x,0) + π(0, y) ≥ π(x, y),(7)

where 0 is the strategy that never stops; that is, 0(s) = 0 for everys.

DEFINITION 5.2. A pair of stationary strategies(x, y) is anε-equilibrium of
the game on a treeT if, for each pair of strategies(x′, y′), γ 1(x′, y) ≤ γ 1(x, y)+ε

andγ 2(x, y′) ≤ γ 2(x, y) + ε.

COMMENT. A stopping game on a finite treeT is equivalent to a recursive
absorbing game, where each round of the gameT corresponds to a single stage
of the recursive absorbing game. A recursive absorbing game is a stochastic game
with a single nonabsorbing state in which the payoff in nonabsorbing states is 0.
Flesch, Thuijsman and Vrieze (1996) proved that every recursive absorbing game
admits anε-equilibrium in stationary strategies. This result also follows from the
analysis of Vrieze and Thuijsman (1989). However, there is no bound on the per-
round probability of termination under thisε-equilibrium and we need to bound
this quantity.

5.2. Main results concerning games on trees. Throughout this section we fix
R1,R2 ∈ R, such that at least one of them is positive, and play a game on a tree
whose payoffs(Rs)s∈S0 satisfy the following conditions for everyi = 1,2, every
∅ ⊂ Q ⊆ {1,2} and every nodes ∈ S0:

B1. For someK ∈ N, Ri
Q,s ∈ {0,± 1

K
, . . . ,±K

K
}.

B2. We haveRi{i},s ≤ Ri .

B3. WheneverR1{1},s = R1, R2{1},s < R2.

B4. WheneverR1{2},s = R2, R1{2},s < R1.

We have already seen that condition B1 can be assumed w.l.o.g. We will later
set Ri to be an upper bound of(Ri{i},n), so that condition B2 can be assumed.

The results we prove in this section are not trivial only whenR1{1},s = R1 and
R2

{2},s′ = R2 for somes, s′ ∈ S0. As we see later, when condition B3 or B4 does
not hold, a simpleε-equilibrium exists.

Assuming no player ever stops, the collection(ps)s∈S0 of probability distri-
butions at the nodes induces a probability distribution over the setS1 of leaves
or, equivalently, over the set of branches that connect the root to the leaves. For
each setD ⊆ S0, we denote bypD the probability that the chosen branch passes
throughD. For eachs ∈ S, we denote byFs the event that the chosen branch passes
throughs.

We first bound the probability of termination in a single round when the
ε-equilibrium payoff is low for at least one player.
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LEMMA 5.3. Let ε > 0 and let (x, y) be a stationary ε
2-equilibrium in T

such that γ 1(x, y) ≤ R1 − ε. Then π(0, y) ≥ ε
6 · µ1, where µ1 = µ1(T ) =

p(
⋃{Fs,R

1{1},s = R1}) is the probability that if both players never stop, the game

visits a node s with R1{1},s = R1 in the first round.

An analogous statement holds for player 2.

PROOF OFLEMMA 5.3. Consider the following strategyz of player 1:

zs =
{

1, if R1{1},s = R1,

0, otherwise.

Denote byt1 andt2 the stopping stages of the two players in the first round. By the
definition ofz, and since payoffs are bounded by 1,

ρ1(z, y) = Pz,y(t1 < min{∞, t2}) × R1 + Ez,y

[
1t2≤t1r

1]
≥ Pz,y(t1 < ∞) × R1 − 2Pz,y(t2 < ∞)(8)

= µ1R
1 − 2π(0, y).

Since(x, y) is an ε
2-equilibrium and since, by (7),π(z, y) ≤ π(0, y) + π(z,0) =

π(0, y) + µ1,

ρ1(z, y) = γ 1(z, y) × π(z, y)

≤
(
γ 1(x, y) + ε

2

)
× (

π(0, y) + µ1
)

(9)

≤
(
R1 − ε

2

)
× (

π(0, y) + µ1
)
.

Equations (8) and (9) imply thatπ(0, y) ≥ ε
6 × µ1. �

DEFINITION 5.4. Let T = (S, S1, r, (Cs,ps,Rs)s∈S0) and T ′ = (S′, S′
1,

r ′, (C′
s, p

′
s ,R

′
s)s∈S′

0
) be two games on trees. We sayT ′ is a subgame of T if

(i) S′ ⊆ S, (ii) r ′ = r and (iii) for everys ∈ S′
0, C′

s = Cs , p′
s = ps andR′

s = Rs .

In words, T ′ is a subgame ofT if we remove all the descendants (in the
strict sense) of several nodes from the tree(S, S1, r, (Cs)s∈S0) and keep all other
parameters fixed. Observe that this notion is different from the standard definition
of a subgame in game theory.

LetT = (S, S1, r, (Cs,ps,Rs)s∈S0) be a game on a tree. For each subsetD ⊆ S0,
we denote byTD the subgame ofT generated by trimmingT from D downward.
Thus, all strict descendants of nodes inD are removed.

For every subgameT ′ of T and every subgameT ′′ of T ′, let pT ′′,T ′ = pS′′
1\S′

1

be the probability that the chosen branch inT passes through a leaf ofT ′′ strictly
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before it passes through a leaf ofT ′ (here,S′
1 andS′′

1 are the sets of leaves ofT ′
andT ′′, resp.).

The next proposition analyzesε-equilibria that yield a high payoff to both
players. Since its proof is involved and independent of the rest of the paper, it
is deferred to Section 8.

PROPOSITION5.5. Let ε ∈ (0,1/(36K2)) and, for i ∈ {1,2}, let ai ≥ Ri − ε.
There exist a set D ⊆ S0 of nodes and a strategy pair (x, y) in T such that:

1. No subgame of TD has an ε-equilibrium with corresponding payoffs in [a1, a1+
ε] × [a2, a2 + ε].

2. Either (a) D = φ (so that TD = T ) or (b) (x, y) is a 9ε-equilibrium in T ,
ai − ε ≤ γ i(x, y) and π(x, y) ≥ ε2 × pD.

COMMENT. Actually we prove that in case 2(b), for every pair(x′, y′) of
strategies,γ 1(x′, y) ≤ a1 + 8ε andγ 2(x, y′) ≤ a2 + 8ε.

5.3. Coloring a finite tree. In the present section we provide an algorithm that
for every finite treeT attaches a colorc(T ) and several numbers(λj (T ))j in the
unit interval.

A rectangle[a1, a1 + ε] × [a2, a2 + ε] is bad if R1 − ε ≤ a1 andR2 − ε ≤ a2.
It is good if a1 + ε ≤ R1 − ε or a2 + ε ≤ R2 − ε.

Let M be a finite covering of[−1,1]2 with (not necessarily disjoint) rectangles
[a1, a1 + ε] × [a2, a2 + ε], all of which are either good or bad. Thus, for every
u ∈ [−1,1]2 there is a rectanglem ∈ M such thatu ∈ m. We denote byH =
{h1, h2, . . . , hJ } the set of bad rectangles inM and denote byG = {g1, g2, . . . , gV }
the set of good rectangles inM .

SetC = G ∪ {∅}. This set is composed of the setG of good rectangles together
with another symbol∅. For every game on a treeT consider the following
procedure which attaches an elementc ∈ C to T :

• SetT (0) = T .
• For 1≤ j ≤ J apply Proposition 5.5 toT (j−1) and the bad rectanglehj =

[aj,1, aj,1 + ε] × [aj,2, aj,2 + ε] to obtain a subgameT (j) of T (j−1) and

strategies(x(j)
T , y

(j)
T ) in T (j) such that:

1. No subgame ofT (j) has anε-equilibrium with corresponding payoffs inhj .
2. EitherT (j) = T (j−1) or the following three conditions hold:

(a) Fori ∈ {1,2}, aj,i − ε ≤ γ i(x
(j)
T , y

(j)
T )

(b) For every pair(x′, y′), γ 1(x′, y(j)
T ) ≤ aj,1 + 8ε and γ 2(x

(j)
T , y′) ≤

aj,2 + 8ε.

(c) We haveπ(x
(j)
T , y

(j)
T ) ≥ ε2 × pT (j),T (j−1) , where pT (j),T (j−1) is the

probability that a randomly chosen branch passes through a leaf ofT (j)

which is not a leaf ofT (j−1) (see Section 5.1).
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• If T (J ) is trivial (i.e., the only node is the root), setc(T ) = ∅; otherwise
choose a stationaryε2-equilibrium (x(0), y(0)) of T (J ). SinceT (J ) is a subgame
of eachT (j), j = 1, . . . , J , since no subgame ofT (j) has anε-equilibrium
with corresponding payoffs inhj and since everyε2-equilibrium is also an
ε-equilibrium, the correspondingε2-equilibrium payoff lies in some good
rectangleg ∈ G. Setc(T ) = g.

The strategies(x(j)
T , y

(j)
T ), as given by Proposition 5.5, are strategies inT (j−1).

We consider them as strategies inT by letting them continue from the leaves
of T (j−1) downward.

We also define, for everyj ∈ J ,

λj (T ) = pT (j),T (j−1) ,

so thatπ(x
(j)
T , y

(j)
T ) ≥ ε2 × λj (T ).

6. Representative approximations. Theorem 4.3 enables us to reduce the
analysis to finite-stage games: games that start at some stagen and terminate
at stageτ , whereτ is some bounded stopping time. Since the state space� is
arbitrary, while our game-theoretic tools allow us to analyze only games that are
defined over a finite state space, we need to approximate eachFn by a finite
σ -algebra.

Roughly, our goal here is to define a consistent NT functionT = (Tn,τ ) that
assigns for everyn ≥ 0, every bounded stopping timeτ and everyω ∈ �, a game
on a treeTn,τ (ω) that approximates the finite-stage game that is played between
stagesn andτ in a desirable way.

This is done in two stages. First, we define, for everyk ≥ n, a finite partitionGk

of � such that(Gk)k≥n contains all the information relevant to the players between
stagesn andτ . Second, given the sequence of finite partitions, we define the games
on a tree(Tn,τ (ω))ω∈�.

Throughout this section we fix a stopping game� and ε > 0. Denoteδn =
ε2/2n+2 for eachn ≥ 0. Set�n = ∑

k≥n δk = ε2/2n+1, so that
∑

n≥0 �n = ε2.

6.1. Partial games. In the present section we consider the partial game that is
played between stagesτ1 andτ2, whereτ1 ≤ τ2 are two bounded stopping times,
and we define and study the notion of approximating games on a tree.

DEFINITION 6.1. Letτ1 ≤ τ2 be two bounded stopping times. An(F , τ1, τ2)-
strategy is a sequencex = (xk) of random variables such that for everyk ≥ 0,
(i) xk : {τ1 ≤ k < τ2} → [0,1] and (ii) xk is Fk-measurable.

Thus, an(F , τ1, τ2)-strategy prescribes to the player what to play between
stagesτ1 and τ2 (excluded). If 0= τ0 < τ1 < · · · is an increasing sequence of
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bounded stopping times and if, for eachl ≥ 0, xl is an(F , τl, τl+1)-strategy, we
can naturally define a strategyx in the stopping game simply by concatenating
the strategies(xl)l≥0. Similarly, any strategyx = (xk)k≥0 in the stopping game
naturally defines an(F , τ1, τ2)-strategy for every pair of bounded stopping times
τ1 ≤ τ2 by considering the proper restriction ofx.

Whenx andy are two(F , τ1, τ2)-strategies, we define byπ(x, y;F , τ1, τ2) =
Px,y[1{τ1≤θ<τ2}|Fτ1] the conditional probability under(x, y) that the game that
starts at stageτ1 ends before stageτ2, and define by

ρ(x, y;F , τ1, τ2) = Ex,y

[
1{τ1≤θ<τ2}RQ,θ |Fτ1

]
the corresponding expected payoff. We define

γ (x, y;F , τ1, τ2) = ρ(x, y;F , τ1, τ2)

π(x, y;F , τ1, τ2)
.

These areFτ1-measurable r.v.’s.

DEFINITION 6.2. Letτ1 ≤ τ2 be two bounded stopping times. Aδ approxi-
mation of � betweenτ1 andτ2 is a pair((Gk), (qG,k)) such that for everyk ≥ 0:

1. Gk is anFk-measurable finite partition of{τ1 ≤ k ≤ τ2};
2. Rk is Gk-measurable;
3. τ1 andτ2 are measurable w.r.t.G; that is, for everyk ≥ 0, {τ1 = k} and{τ2 = k}

are unions of atoms inGk ;
4. any atomG of Gk such thatk < τ2 onG is a union of some atoms inGk+1;
5. for every atomG of Gk, qG,k is a probability distribution over the atoms of

Gk+1 that are contained inG;
6.

∑
G′∈Gk+1

|P(G′|Fk)(ω) − qG,k(G
′)| < δk for every atomG of Gk and almost

everyω ∈ G.

We identify Gk with the finite σ -algebra generated byGk and we denote
G = (Gk)k≥0.

With every δ approximation(G, (qG,k)) of � betweenτ1 and τ2 and every
atomG of Gτ1 we can attach a game on a tree.

• The root isG.
• The nodes are all nonempty atomsF of (Gk) such that (a)F ⊆ G and (b) if

F ∈ Gk , thenτ ≥ k onF .
• The leaves are all atomsF ∈ ⋃

k≥n Gk where there is equality in (b).
• The payoff is given by(Rk)τ1≤k≤τ2.
• The children of each atomF in Gk are all atomsF ′ in Gk+1 which are subsets

of F .
• The transition from any nodeF in Gk is given byqF,k.
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We denote this game on a tree byT (τ1, τ2;G, (qG,k),G).
Suppose that for every atomG of Gτ1, xG is a strategy in the game

T (τ1, τ2;G, (qG,k),G). The collection of those strategies naturally defines a
(F , τ1, τ2)-strategy.

Similarly, if x = (xk) is an (F , τ1, τ2)-strategy such that for everyk, xk is
Gk-measurable, thenx naturally defines a strategy inT (τ1, τ2;G, (qG,k),G) for
every atomG of Gτ1.

Let (x, y) be a pair of(F , τ1, τ2)-strategies such that for everyk, xk andyk

are Gk-measurable. We denote byπ(x, y; τ1, τ2,G, (qG,k)) the probability of
termination in one round of the game on a treeT (τ1, τ2;G, (qG,k),G) under the
strategies(x, y), byρ(x, y; τ1, τ2,G, (qG,k)) the expected payoff in one round, and
by

γ
(
x, y; τ1, τ2,G, (qG,k)

) = ρ(x, y; τ1, τ2,G, (qG,k))

π(x, y; τ1, τ2,G, (qG,k))

the expected payoff in the game. These three functions areGτ1-measurable.

The following lemma provides estimates for the difference between the
expected payoff and the expected probability of termination, when the filtration
is changed. Its proof is omitted.

LEMMA 6.3. Let τ1 ≤ τ2 be two bounded stopping times and let (G, (qG,k))

be a δ approximation of � between τ1 and τ2. Let x and y be a pair of (G, τ1, τ2)-
strategies. Then:

1. |ρi(x, y;F , τ1, τ2) − ρi(x, y; τ1, τ2,G, (qG,k))| < �τ1 for each i = 1,2.
2. |π(x, y;F , τ1, τ2) − π(x, y; τ1, τ2,G, (qG,k))| < �τ1.

The following lemma states that if(G, (qG,k)) is a δ approximation of�
betweenτ1 and τ2, and if the opponent plays a(G, τ1, τ2)-strategy, then the
player does not lose much by considering only(G, τ1, τ2)-strategies [rather than
(F , τ1, τ2)-strategies].

LEMMA 6.4. Let τ1 ≤ τ2 be two bounded stopping times and let (G, (qG,k))

be a δ approximation of � between τ1 and τ2. Let x be a (G, τ1, τ2)-strategy for
player 1 and set γ = ess sup{γ 2(x, y;G, τ1, τ2), y is a (G, τ1, τ2)-strategy}. Then,
for every (F , τ1, τ2)-strategy y,

ρ2(x, y;F , τ1, τ2) ≤ γ × π(x, y;F , τ1, τ2) + �τ1 a.e.

PROOF. ForH = F ,G, let

α(H) = ess sup
{
ρ2(x, y;H, τ1, τ2)

+ γ × (
1− π(x, y;H, τ1, τ2)

)
, y is a(H, τ1, τ2)-strategy

}
.
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When player 2 is restricted to use(H, τ1, τ2)-strategies,α(H) is his or her
best possible payoff in the game that starts at stageτ1 and, if no player stops
before stageτ2, terminates with payoffγ . From the definition ofγ it follows that
α(G) ≤ γ . Define recursively

α(k,H) =



γ, k ≥ τ2

max
{
xk × R2{1},k + (1− xk) × E

(
α(k + 1,H)|Hk

)
,

xk × R2{1,2},k + (1− xk) × R2{2},k
}
,

k < τ2.

(10)

The first term of the maximization in the second line corresponds to player 2 not
stopping at stagek, while the second term corresponds to player 2 stopping at that
stage. Plainlyα(H) = α(τ1,H).

Sincexk andR2
k areGk-measurable and since(G, (qG,k)) is aδ approximation

of � betweenτ1 and τ2, it follows by induction thatα(k,F ) ≤ α(k,G) +∑∞
j=k δj for every k ≥ 0. In particular,α(F ) = α(τ1,F ) ≤ α(τ1,G) + �τ1 ≤

γ + �τ1. It follows that for every(F , τ1, τ2)-strategyy, ρ2(x, y;F , τ1, τ2) +
γ × (1− π(x, y;F , τ1, τ2)) ≤ γ + �τ1, which impliesρ2(x, y;F , τ1, τ2) ≤ γ ×
π(x, y;F , τ1, τ2) + �τ1. �

6.2. Approximating the filtration F . Our main result in this section is the
following:

THEOREM 6.5. Let � be a two-player nonzero–sum stopping game. There is
a consistent NT function that assigns to every n ≥ 0 and every bounded stopping
time τ a δ approximation of � between n and τ .

The proof of this result, though quite technical, is intuitive. We start at stageτ

and we proceed backward until we reach stagen. For every stagen ≤ k ≤ τ , we
define a finite partition of�. Roughly, the partitionGk at stagek is defined in such
a way that (i) payoffs at stagek are measurable w.r.t.Gk and (ii) the conditional
probability to reach any atomG ∈ Gk+1 does not vary by much over each atom
of Gk. The construction is slightly complicated since it should be consistent.

PROOF OFTHEOREM 6.5. For everyi ≥ 0 and everyn ∈ N, choose once and
for all a partitionBn

i of the (n − 1)-dimensional simplex{r ∈ Rn :
∑n

j=1 rj = 1,

rj ≥ 0 ∀ j} such that the diameter of each element inBn
i is less thanδi in the

norm‖ · ‖1. For eachB ∈ Bn
i choose an elementqB ∈ B.

Fix a total order on the collection of subsets of�. This enables us to identify,
for every partitionG of � to n atoms, the spaceRn with the spaceRG, simply by
identifying theith coordinate ofRn with the ith atom ofG according to the total
order.
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Fix a nonnegative integern ≥ 0 and a bounded stopping timeτ . Let M be
a bound onτ . We first define a sequence of finite partitions(G̃k) recursively
from M down ton. We say thatω ≈M ω′ if and only if (i) τ (ω) = τ (ω′) = M

and (ii) RM(ω) = RM(ω′). We let G̃M be the partition of� induced by the≈M

relation. ThenG̃M ⊆ FM .
Suppose we have already defined a finite partitionG̃m+1 ⊆ Fm+1. We say that

ω ≈m ω′ if and only if one of the following two compound conditions is satisfied:

• (i) We haveτ (ω) = τ (ω′) = m and (ii) Rm(ω) = Rm(ω′).
• (i) We have τ (ω) = τ (ω′) < m, (ii) Rm(ω) = Rm(ω′) and (iii) the two

probability distributions(P(G|Fm)(ω))
G∈G̃m+1

and(P(G|Fm)(ω′))
G∈G̃m+1

have
the same support, and their restrictions to their support lie in the same element
of Bc

m, wherec = |{G ∈ Gm+1 :P(G|Fm)(ω) > 0}| is the number of atoms
of G̃m+1 in the common support.

We letG̃m be the partition of� derived by the≈m relation.
Define for everym and every atomG of G̃m a probability distributioñqG,m over

the atoms ofG̃m+1 that are contained inG simply by q̃G,m = q∗
B , whereB is the

atom ofBc
m that contains all probability distributions(P(G|Fm)(ω))G∈G̃m+1

for
ω ∈ G, andc is defined as above.

The sequence(G̃m) satisfies the following properties:

• We haveG̃m ⊆ Fm.
• We have thatRm is G̃m-measurable.
• For every atomG of G̃m,

∑
G′⊆G,G′∈G̃m+1

|P(G′|Fm)(ω) − q̃G,m(G′)| < δm.

The pair((G̃m), (q̃G,m)) is not aδ approximation of� betweenn andτ , since
(G̃m) is not increasing (see condition 4 in Definition 6.2). We remedy this flaw by
taking upward intersections. For everym ≥ n let Gm = ∨

n≤k≤m G̃k be the finite
σ -algebra spanned bỹGn, . . . , G̃m. LetG be an atom ofGm. ThenG ⊆ G̃ for some
atomG̃ of G̃m. We define a probability distributionqG,m over the atoms ofGm+1
by

qG,m(F ) =
 q̃

G̃,m
(G′), if F = G ∩ G′ for some atomG′ of G̃m+1,

0, otherwise.

It can be verified that((Gm), (qG,m)) is aδ approximation of� betweenn andτ ,
and that each step in the construction is consistent.�

Theorem 6.5, together with the discussion in Section 6.1 that relatesδ approxi-
mation to games on trees and Lemmas 6.3 and 6.4, yields the following corollary:

COROLLARY 6.6. Let � be a two-player nonzero–sum stopping game. There
is a consistent NT function T = (Tn,τ ) that assigns for every n ≥ 0, every bounded
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stopping time τ and every ω ∈ �, a game on a tree Tn,τ (ω) such that the following
hold for every n and every τ :

1. For every pair of strategies (x, y) in Tn,τ and each i = 1,2, |ρi(x, y;F , n, τ )−
ρi(x, y;Tn,τ )| < �n.

2. For every pair of strategies (x, y) in Tn,τ , |π(x, y;F , n, τ ) − π(x, y;
Tn,τ )| < �n.

3. If (x, y) is an ε-equilibrium in Tn,τ (ω) with expected payoff in [a1, a1 + ε] ×
[a2, a2 + ε], then:
(i) For every strategy y′ of player 2, ρ2(x, y′;F , n, τ ) ≤ (a2 + 2ε)π(x, y′;

F , n, τ ) + �n.
(ii) For every strategy x′ of player 1, ρ1(x′, y;F , n, τ ) ≤ (a1 + 2ε)π(x′, y;

F , n, τ ) + �n.

[In the preceding list of inequalities, we identify strategies inTn,τ with the
corresponding(F , n, τ )-strategies in�.]

7. Constructing anε-equilibrium. In the present section we use all the tools
we have developed so far to construct anε-equilibrium.

7.1. A sufficient condition for existence of an equilibrium. Here we provide a
sufficient condition for the existence of an equilibrium for games that satisfy the
following conditions:

A1. There existsK ∈ N such that for everyn ≥ 0, Rn ∈ {0,± 1
K

,± 2
K

, . . . ,±K
K

}6.
A2. For everyn ≥ 0, R1 := lim supn→∞ R1{1},n is constant andR1{1},n ≤ R1.

A3. For everyn ≥ 0, R2 := lim supn→∞ R2{2},n is constant andR2{2},n ≤ R2.

A4. WheneverR1{1},n = R1, R2{1},n < R2.

A5. WheneverR2{2},n = R2, R1{2},n < R1.

LEMMA 7.1. Let ε > 0 be given. Let � be a stopping game that satisfies
conditions A1–A5. Suppose that there is a payoff vector (a1, a2), an increasing
sequence of stopping times 0 = τ0 < τ1 < · · · and, for every k ≥ 0, a pair of
(F , τ1, τ2)-strategies (xk, yk) such that the following hold for every k ≥ 0:

D1. For i = 1,2, ρi(xk, yk;F , τk, τk+1) ≥ (ai − ε)π(xk, yk;F , τk, τk+1) − �τk
.

D2. For every (F , τk, τk+1)-strategy x′
k , ρ1(x′

k, yk;F , τk, τk+1) ≤ (a1 + ε)π(x′
k,

yk;F , τk, τk+1) + �τk
.

D3. For every (F , τk, τk+1)-strategy y′
k , ρ2(xk, y

′
k;F , τk, τk+1) ≤ (a2 + ε)π(xk,

y′
k;F , τk, τk+1) + �τk

.
D4. Almost surely,

∑
k≥0 π(xk, yk;F , τk, τk+1) = ∞.

D5. If a1 < R1 − ε, then
∑

k≥0 π(0, yk;F , τk, τk+1) = ∞ a.s.
D6. If a2 < R2 − ε, then

∑
k≥0 π(xk,0;F , τk, τk+1) = ∞ a.s.
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Then the game admits an 8ε-equilibrium.

In words, conditions D1–D3 roughly say that each(xk, yk) is anε-equilibrium
with payoffs close to(a1, a2). Condition D4 says that the concatenation of all the
(xk, yk)’s stops with probability 1, while conditions D5 and D6 say that if one
player receives a low payoff, then his or her opponent stopswith probability 1
under the concatenation. The proof of Lemma 7.1 is standard.

PROOF OFLEMMA 7.1. Denote byx (resp.y) the strategy in� that is the
concatenation of the strategies(xk)k≥0 [resp.(yk)k≥0].

By D4,Px,y(θ < ∞) = 1. By D5, ifa1 < R1−ε, thenP0,y(θ < ∞) = 1. By D6,
if a2 < R2 − ε, thenPx,0(θ < ∞) = 1. Therefore, there isL ∈ N such that

Px,y(θ < τL) ≥ 1− ε,(11)

if a1 < R1 − ε, thenP0,y(θ < τL) ≥ 1− ε,
(12)

if a2 < R2 − ε, thenPx,0(θ < τL) ≥ 1− ε.

We now define a pair of strategies(x∗, y∗), which is a slight augmentation
of (x, y): If a1 < R1 − ε, let y∗ coincide withy. If a1 ≥ R1 − ε, let y∗ be the
strategy that coincides withy up to stageτL, and from that stage onward, stops
with probabilityε wheneverR2{2},n = R2 (and with probability 0 otherwise). The
strategyx∗ is defined analogously.

We argue that(x∗, y∗) is an 8ε-equilibrium. We only prove that player 1 cannot
profit more than 8ε by deviating.

By summing D1 for i = 1 over k ≥ 0, and sincePx,y(θ < ∞) = 1 and∑∞
k=1 �τk

< ε, we obtain

γ 1(x, y) ≥ a1 − 2ε.(13)

Since(x∗, y∗) coincides with(x, y) up to stageτL and by (11),

γ 1(x∗, y∗) ≥ γ 1(x, y) − 2ε ≥ a1 − 4ε.

Let x′ be any strategy of player 1 and, for everyk ≥ 0, let x′
k be the

(F , τk, τk+1)-strategy induced byx′.
By summing D2 overk ≥ 0 and since

∑∞
k=1 �τk

< ε, we obtain

γ 1(x′, y) ≤ (a1 + ε)Px′,y(θ < +∞) + ε.(14)

If a1 < R1 − ε, then by D5,Px′,y(θ < +∞) ≥ P0,y(θ < +∞) = 1. Therefore,

γ 1(x′, y) ≤ a1 + 2ε.

Sincey∗ coincides withy up to stageτL and by (12),

γ 1(x′, y∗) ≤ γ 1(x′, y) + 2ε ≤ a1 + 4ε ≤ γ 1(x∗, y∗) + 8ε.
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We now consider the casea1 ≥ R1 − ε. By summing D2 overk = 0, . . . ,L − 1
and since

∑∞
k=1 �τk

< ε, we obtain

Ex′,y
[
R1

Q,θ1{θ<τL}
] ≤ (a1 + ε)Px′,y(θ < τL) + ε.(15)

By the definition ofy∗ after stageτL, it follows that

γ 1(x′, y∗) ≤ Ex′,y
[
R1

Q,θ1{θ<τL}
] + (R1 + ε)Px′,y(θ ≥ τL).

By (15) and sinceR1 ≤ a1 + ε,

γ 1(x′, y∗) ≤ a1 + 2ε ≤ γ 1(x∗, y∗) + 6ε,

as desired. �

As the following example shows, adding a threat of punishment might be
necessary.

EXAMPLE 7.2. Consider a game with deterministic payoffs:R{1},n = (−1,2),
R{2},n = (−2,1) and R{1,2},n = (0,−3). We first argue that allε-equilibrium
payoffs are close to(−1,2).

Given a strategyx of player 1, player 2 can always wait until the probability of
stopping underx is exhausted and then stop. Therefore, in anyε-equilibrium, the
probability of stopping is at least 1− ε, and the corresponding payoff is close to
the convex hull of(−1,2) and(−2,1). Since player 1 can always guarantee−1
by stopping at the first stage, the claim follows.

However, in everyε-equilibrium (x, y), we must haveP0,y(θ < ∞) ≥ 1/2,
otherwise player 1 receives more than−1 by never stopping.

Thus, anε-equilibrium has the following structure, for some integerN . Player 1
stops with probability at least 1− ε before stageN and with probability at mostε
after that stage; player 2 stops with probability at mostε before stageN and with
probability at least 1/2 after that stage. The strategy of player 2 serves as a threat
of punishment: if player 1 does not stop before stageN he or she will be punished
in subsequent stages.

7.2. Proof of Theorem 2.2. Define R1 = lim supn→∞ R1{1},n and R2 =
lim supn→∞ R2{2},n. These are the maximal payoffs each player can guarantee by
stopping when the opponent always continues. Recall that we assumed that the
rangeR of the payoff process is finite, so thatp-a.s. there exist infinitely manyn’s
such thatR1{1},n = R1 and infinitely manyn’s such thatR2{2},n = R2.

We fix throughoutε > 0 sufficiently small.
By Corollary 6.6 there is a consistent NT function(Tn,τ ) that assigns for every

n ≥ 0, every bounded stopping timeτ , and everyω ∈ �, a game on a tree that
satisfies several desirable properties.
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Define several subsets of� as

A− = {R1 ≤ 0 andR2 ≤ 0}
and, for everyr ∈ R,

Ar,1 = {(R1,R2) = r} ∩
{

lim sup
n→∞

R1{1},n=R1

R2{1},n ≥ R2

}
,

Ar,2 = {(R1,R2) = r} ∩
{

lim sup
n→∞

R2{2},n=R2

R1{2},n ≥ R1

}
,

Ar,3 = {(R1,R2) = r} ∩ (A− ∪ A1 ∪ A2)
c.

Recall that for every two payoff processesR and R̃ such thatE[supn∈N ‖Rn −
R̃n‖∞] < ε, every ε-equilibrium in (�,A,p,F , R̃) is a 3ε-equilibrium in
(�,A,p,F ,R).

We are now going to further partition the sets(Ar,3)r∈R. In Section 5.3 we
attached to each game on a graphT a colorc(T ) (from a finite set of possible
colors) andJ numbers in the unit interval(λj (T ))Jj=1.

By Theorem 4.3 there is an increasing sequence of stopping times 0≤ τ0 <

τ1 < · · · such that

P
(
c
(
Tτ0,τ1

) = c
(
Tτk,τk+1

) ∀ k ∈ N
)
> 1− ε.

Define the subsets ofAr,3, for everyj = 1, . . . , J ,

Ar,3;j = Ar,3 ∩
{∑

k≥0

λj

(
Tτk,τk+1

) = ∞
}

and, for each good rectangleg ∈ G,

Br,3;g = Ar,3 ∩ {
c
(
Tτk,τk+1

) = g ∀ k
}
.

Let P ∗ be the collection of setsA−, (Ar,1), (Ar,2), (Ar,3;j ), (Br,3;g). By properly
modifying the payoff process on a set with measure smaller thanε, and by
possibly dropping the first few stopping times in the sequence(τk) and renaming
the remaining stopping times, we can assume w.l.o.g. that (i) all the sets in
P ∗ areFτ0-measurable, (ii)R1{1},k ≤ R1 andR1{2},k ≤ R2 for everyk ≥ τ0, and

(iii)
∑J

j=1
∑

k≥0 λj (Tτk,τk+1) ≤ ε on
⋃

g∈G Br,3;g.
As the sets inP ∗ are not necessarily disjoint, we letP be a finite partition of�

into Fτ0-measurable sets such that for every atomB of P and every setB∗ in P ∗,
eitherB ⊆ B∗ or B ∩ B∗ = ∅.

For everyFτ0-measurable setB define the stopping game that is restricted
to B and starts at stageτ0: �B,τ0 = (B,AB,p|B, (Fτ0+k)k≥0, (Rτ0+k)k≥0), where
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AB is theσ -algebra overB induced byA andp|B is the probability distributionp
conditioned onB.

The following lemma is standard.

LEMMA 7.3. If for every atom B of P with P(B) > 0, the game �B,τ0 admits
an ε-equilibrium, then the game � admits a 3ε-equilibrium.

PROOF. It is well known that any finite-stage game admits a 0-equilibrium
[one can, e.g., adapt the proof for the zero–sum case given in Rosenberg,
Solan and Vieille(2001), Proposition 3.1]. Sinceτ0 is bounded, and since we
changed payoffs on a set of measure at mostε, the following strategy pair is a
3ε-equilibrium:

• If the game has not terminated by stageτ0, play from that stage on an
ε-equilibrium in�B,τ0, whereB is the atom ofP that containsω. Denote byγ
theFτ0-measurable payoff that corresponds to this strategy.

• Until stateτ0, play a 0-equilibrium in the game that terminates at stageτ0, if no
player stops before that stage, with terminal payoffγ . �

Thus, it remains to show that for every atomB of P , the game�B,τ0 admits
a Cε-equilibrium for someC > 0. We verify this in the next sections. For
convenience, we assume w.l.o.g. thatτ0 = 0.

7.2.1. B ⊆ A−. The game�B,n admits a 0-equilibrium: The strategy pair
where no player ever stops is a 0-equilibrium. Indeed, under this strategy the
expected payoff for both players is 0, while any playeri who stops at some stagek

receivesRi{i},k ≤ Ri ≤ 0.

7.2.2. (i)B ⊆ Ar,1 and r1 ≥ 0 or (ii) B ⊆ Ar,2 and r2 ≥ 0. We deal only with
case (i). The following strategy pair is a 2ε-equilibrium: Player 2 never stops, while
player 1 stops with probabilityε at every stagek such thatR1{1},k = R1 = r1 and
R2{1},k ≥ R2. The expected payoff to player 1 isr1, while the expected payoff to
player 2 is at leastr2. Sincer1 ≥ 0, player 1 cannot profit by deviating, while
if player 2 stops at some stagek, his or her expected payoff is bounded by
(1− ε)R2{2},k + ε ≤ (1− ε)r2 + ε ≤ r2 + 2ε.

7.2.3. (i) B ⊆ Ar,1 and r1 < 0 or (ii) B ⊆ Ar,2 and r2 < 0. We deal only
with case (i). If r2 ≤ 0, thenB ⊆ A−, so that by Section 7.2.1�B,n admits
a 0-equilibrium. Assume then thatr2 > 0. If lim supn→∞,R2{2},n=R2 R1{2},n ≥ R1,

thenB ⊆ Ar,{2}, so that by Section 7.2.2 the game�B,n admits a 2ε-equilibrium.
Assume then that lim supn→∞,R2{2},n=R2 R1{2},n < R1. Under these assumptions, the

following strategy pair is a 3ε-equilibrium: Player 1 stops at every stagek such
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thatR1{1},k = r1 andR2{1},k ≥ r2 with probability ε, while player 2 stops at every

stagek > N such thatR1{2},k < r1 with probabilityε, whereN is sufficiently large
so that under this strategy, player 1 stops with probability at least 1− ε prior to
stageN .

In the last two cases we use the coloring procedure presented in Section 5.3 and
the sufficient condition that appears in Lemma 7.1.

7.2.4. B ⊆ Ar,3;j . Recall that onAr,3;j ,∑
k≥0

λj

(
Tτk,τk+1

) = ∞.(16)

Denote by T (j)(τk, τk+1) the tree that was generated in roundj of the
coloring procedure in Section 5.3 and denote by(x(j)(τk, τk+1), y

(j)(τk, τk+1))

theε-equilibrium with payoff in a bad rectangle[a1, a1 + ε] × [a2, a2 + ε]. By the
definition ofλj ,

π
(
x(j)(τk, τk+1), y

(j)(τk, τk+1);Tτk,τk+1

) ≥ ε2 × λj

(
Tτk,τk+1

)
.(17)

We apply Lemma 7.1 with 2ε, {τk} and{(x(j)(τk, τk+1), y
(j)(τk, τk+1))}. Since

the rectangle is bad,a1 ≥ R1 − ε anda2 ≥ R2 − ε, so that conditions D5 and D6
trivially hold.

Condition D4holds by (16), (17) and Corollary 6.6.2. Condition D1 follows
from the choice of(x(j)(τk, τk+1), y

(j)(τk, τk+1)) and by Corollary 6.6. Condi-
tion D2 follows from Corollary 6.6.3. The proof that condition D3 holds is analo-
gous. The desired result follows by Lemma 7.1.

7.2.5. B ⊆ Br,3;g . Recall that onBr,3;g, c(T (τk, τk+1)) = g for everyk and∑J
j=1

∑
k≥0 λj (Tτk,τk+1) ≤ ε. Since g = [a1, a1 + ε] × [a2, a2 + ε] is a good

rectangle,a1 ≤ R1−2ε ora2 ≤ R2−2ε. We assume w.l.o.g. thata1 ≤ R1−2ε. Let
(x(0)(τk, τk+1), y

(0)(τk, τk+1)) be anε
2-equilibrium in T (J )(τk, τk+1) with payoff

in g. Sincea1 ≤ R1 − 2ε, Lemma 5.3 implies that

π
(
0, y(0)(τk, τk+1);Tτk,τk+1

) ≥ ε

6
µ1

(
T (J )(τk, τk+1)

)
(18)

≥ ε

6
µ1

(
T (τk, τk+1)

) −
J∑

j=1

λj

(
Tτk,τk+1

)
.

We apply Lemma 7.1, with 2ε, {τk} and{(x(0)(τk, τk+1), y
(0)(τk, τk+1))}. Condi-

tion D1 holds by the choice of(x(0)(τk, τk+1), y
(0)(τk, τk+1)) and by Corollary 6.6.

Conditions D2 and D3 hold as in the previous case.
We now prove that condition D5 holds. By (18) and Corollary 6.6.2,

π
(
0, y(0)(τk, τk+1);F , τk, τk+1

) ≥ ε

6
µ1

(
T (τk, τk+1)

) −
J∑

j=1

λj

(
Tτk,τk+1

) − �τk
.
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SinceR1{1},n = R1 i.o. and since
∑J

j=1
∑

k≥0 λj (Tτk,τk+1) ≤ ε on Br,3;g, it follows
that condition D5 holds.

Condition D6 follows by an analog argument. Condition D4 follows from
conditions D5 and D6, and sincea1 ≤ R1 − 2ε or a2 ≤ R2 − 2ε.

8. Proof of Proposition 5.5. This section is devoted to the proof of Proposi-
tion 5.5. We start by defining some new concepts for games on finite trees and by
studying some of their properties. The proof itself appears in Section 8.5.

Throughout the section we fix a stopping game on a tree that satisfies
conditions B1–B4.

8.1. Union of strategies. Given n stationary strategiesx1, x2, . . . , xn, we
define theirunion x by x(s) = 1 − ∏

1≤k≤n(1 − xk(s)). The probability that the
union strategy continues at each node is the probability thatall of its components
continue. We denotex = x1 +̇x2 +̇ · · · +̇xn. Givenn pairs of stationary strategies
αk = (xk, yk), 1≤ k ≤ n, we denote byα1 +̇ · · · +̇αn the stationary strategy pair
(x, y) that is defined byx = x1 +̇ · · · +̇xn andy = y1 +̇ · · · +̇yn.

Considern copies of the game that are played simultaneously, such that the
choice of a new node is the same across the copies; that is, all copies that have not
terminated at staget are at the same node. Nevertheless, the lotteries made by the
players concerning the decision whether to stop are independent. Letαk = (xk, yk),
1 ≤ k ≤ n, be the stationary strategy pair used in copyk and letα = α1 +̇ · · · +̇αn.

We consider the first round of the game. Lettk be the stopping stage in copyk,
let sk be the node in which termination occurred, letQk be the set of players that
stop at stagetk and letri

k = Ri
Qk,sk

1{tk<∞} be the payoff in the first round. Set

πk = π(xk, yk) = P(tk < ∞) and ρi
k = ρi(xk, yk) = E[ri

k].
Let t , r , ρ andπ be the analog quantities w.r.t.α: Denotingk∗ the index of

a copy that stops first (so thattk∗ = mink=1,...,n tk), we havet = tk∗ , s = sk∗ ,
Q = ⋃

k:tk=tk∗ Qk and ri = Ri
Q,s1t<+∞. Moreover,ρi = ρi(x, y) = E[ri] and

π = π(x, y) = P(t < ∞).
Let γk = γ (xk, yk) be the expected payoff underαk = (xk, yk) and letγ =

γ (x, y) be the corresponding quantity underα.
The following lemma follows from the independence of the plays given the

branch. Recall thatFs is the event that the randomly chosen branch passes
throughs.

LEMMA 8.1. Let s ∈ S0 be a node of depth j . Then, for every 1 ≤ k, l ≤ n,
l �= k, the event {tk ≤ j} and the random variable tk1{tk≤j } are independent of tl
given Fs .
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LEMMA 8.2. Let N = ∑n
k=1 1{tk<∞} be the number of copies that terminate

in the first round. Then:

1. We have
∑n

k=1 πk − E[N1{N≥2}] ≤ π ≤ ∑n
k=1 πk.

2. We have
∑n

k=1ρi
k −E[(N +1)1{N≥2}] ≤ ρi ≤ ∑n

k=1 ρi
k +E[(N +1)1{N≥2}] for

each player i ∈ {1,2}.

PROOF. Observe that

N − N1{N≥2} = 1{N=1} ≤ 1{N≥1} ≤ N =
n∑

k=1

1{tk<∞}.

The first result follows by taking expectations.
For the second result, note that

n∑
k=1

ri
k − (N + 1)1{N≥2} ≤ ri ≤

n∑
k=1

ri
k + (N + 1)1{N≥2}.(19)

Indeed, on{N ≤ 1}, (19) holds with equality and on{N ≥ 2}, the left-hand side is
at most−1, whereas the right-hand side is at least+1. The result follows by taking
expectations. �

8.2. Heavy and light nodes.

DEFINITION 8.3. Let σ = (x, y) be a pair of stationary strategies and let
δ > 0. A nodes ∈ S0 is δ-heavy with respect toσ if Pσ (t < ∞|Fs) ≥ δ; that is, the
probability of termination in the first round given that the chosen branch passes
throughs is at leastδ. The nodes is δ-light w.r.t. σ if Pσ (t < ∞|Fs) < δ.

For a fixedδ, we denote byHδ(σ ) the set ofδ-heavy nodes w.r.t.σ . Two simple
implications of this definition follow:

FACT 1. We haveHδ(α1) ⊆ Hδ(α1 +̇α2).

FACT 2. We haveHδ1(σ ) ⊆ Hδ2(σ ) wheneverδ1 ≥ δ2.

The following lemma asserts that for everyε-equilibrium (x, y) with high
payoffs,Hε(x, y) is nonempty, regardless of the size of the tree.

LEMMA 8.4. Let ε ∈ (0,1/(36K)2) and let (x, y) be a stationary ε-equi-
librium such that Ri − ε ≤ γ i(x, y), i = 1,2. Then Hε(x, y) �= φ. In particular,
by Fact 2, Hε2(x, y) �= φ.
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COMMENT. The proof hinges on the assumption thatR2{1},s < R2 whenever

R1{1},s = R1. As a counterexample when this condition does not hold, take a game

in which (a) Ri
Q,s = 1 for every i, Q and s, and (b)R1 = R2 = 1. Then any

stationary strategy pair which stops with positive probability is a 0-equilibrium.

PROOF OFLEMMA 8.4. We prove that there is a nodes such thatxsys > ε,
so thats ∈ Hε(x, y). The idea is that ifHε(x, y) is empty, then the probability
that both players stop simultaneously under(x, y) is small, but if (x, y) is an
ε-equilibrium, this probability must be high.

Denoteπ1 = Px,y(t < ∞,Q = {1}), π2 = Px,y(t < ∞,Q = {2}) andπ1,2 =
Px,y(t < ∞,Q = {1,2}). These are the probabilities that in asingle round,
player 1 stops alone, player 2 stops alone and both players stop simultaneously,
respectively.

Since for some playeri, Ri is strictly positive, and hence strictly larger thanε,
we haveγ i(x, y) ≥ Ri −ε > 0. Therefore,π1+π2+π1,2 > 0. Assume w.l.o.g. that
π1 ≥ π2.

Suppose to the contrary thatxsys ≤ ε for every nodes ∈ S0. The probability that
both players stop simultaneously ats, conditional on the game terminating ats, is

f (xs, ys) = xsys

xs(1− ys) + (1− xs)ys + xsys

.

The maximum of the functionf (xs, ys) over the set{xsys ≤ ε,0 ≤ xs, ys ≤ 1} is
attained at the pointxs = ys = √

ε. Therefore,f (xs, ys) ≤ f (
√

ε,
√

ε ) ≤ √
ε. This

implies thatπ1,2 ≤ √
ε.

Since(x, y) is anε-equilibrium and since payoffs are bounded by 1,

R2 − ε ≤ γ 2(x, y)

≤ π1 maxs∈S0 R2{1},s + π2 maxs∈S0 R2{2},s + π1,2 maxs∈S0 R2{1,2},s
π1 + π2 + π1,2

≤ π1(R
2 − 1/K) + π2R

2 + π1,2

π1 + π2 + π1,2
.

Since π1 ≥ π2 and ε < 1/4K , this implies thatπ1,2 ≥ 1/6K . In particular,√
ε ≥ π1,2 ≥ 1/6K, which is a contradiction whenε < 1/36K2. �

8.3. Orthogonal strategies.

DEFINITION 8.5. Let δ > 0. A sequence(α1, α2, . . . , αn) of stationary
strategy pairs isδ-orthogonal if αk+1(s) = (0,0) for every 1≤ k ≤ n − 1 and
every nodes ∈ Hδ(α1 +̇ · · · +̇αk); that is,αk+1 continues onδ-heavy nodes of
α1 +̇ · · · +̇αk .
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LEMMA 8.6. Let δ > 0, let (α1, . . . , αn) be a δ-orthogonal sequence of
stationary strategy pairs, let k ∈ {1, . . . , n} and let s ∈ S be a node of depth j .
Then

P

(
{j ≤ tk < ∞} ∩

(⋃
l<k

{tl < ∞}
)∣∣∣Fs

)
≤ δ × P(j ≤ tk < ∞|Fs).(20)

PROOF. Fix k ∈ {1, . . . , n}. We prove the lemma by induction on the nodes
of T , starting from the leaves and climbing up to the root.

Let s ∈ S1 be a leaf ofT . Sinces is a leaf,P(j ≤ tk < ∞) = 0 and (20) is
trivially satisfied.

Assume now thats ∈ S0. Then

P

(
{j ≤ tk < ∞} ∩

(⋃
l<k

{tl < ∞}
)∣∣∣Fs

)

= P

(
{tk = j} ∩

(⋃
l<k

{tl < ∞}
)∣∣∣Fs

)
(21)

+ ∑
s′∈Cs

ps[s′] × P

(
{j + 1 ≤ tk < ∞} ∩

(⋃
l<k

{tl < ∞}
)∣∣∣Fs′

)
.

By the induction hypothesis, for every childs′ ∈ Cs ,

P

(
{j +1 ≤ tk < ∞}∩

(⋃
l<k

{tl < ∞}
)∣∣∣Fs′

)
≤ δ ×P(j +1 ≤ tk < ∞|Fs′).(22)

By Lemma 8.1,{tk = j} and
⋃

l<k{tl < ∞} are independent givenFs . Therefore

P

(
{tk = j} ∩

(⋃
l<k

{tl < ∞}
)∣∣∣Fs

)
= P(tk = j |Fs) × P

(⋃
l<k

{tl < ∞}
∣∣∣Fs

)
.

If s is δ-light w.r.t.α1 +̇ · · · +̇αk−1, thenP(
⋃

l<k{tl < ∞}|Fs) < δ. If s is δ-heavy,
then, according to the definition of orthogonality,P(tk = j |Fs) = 0. Therefore,

P

(
{tk = j} ∩

(⋃
l<k

{tl < ∞}
)∣∣∣Fs

)
≤ δ × P(tk = j |Fs).(23)

Equations (21)–(23) yield

P

(
{j ≤ tk < ∞} ∩

(⋃
l<k

{tl < ∞}
))

≤ δ × P(tk = j |Fs) + δ × ∑
s′∈Cs

ps[s′] × P(j + 1≤ tk < ∞|Fs′)

= δ × P(j ≤ tk < ∞|Fs),
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as desired. �

Applying Lemma 8.6 to the root we get:

COROLLARY 8.7. Let δ > 0 and let (α1, . . . , αn) be a δ-orthogonal sequence
of stationary strategy pairs. For every k ∈ {1, . . . , n},

P

(
{tk < ∞} ∩

(⋃
l<k

{tl < ∞}
))

≤ δ × P({tk < ∞}) = δπk.

LEMMA 8.8. Let δ > 0, let (α1, . . . , αn) be a δ-orthogonal sequence of
stationary strategy pairs and let N = ∑n

k=1 1{tk<∞}. Then E[(N + 1)1{N≥2}] ≤
3δ(π1 + π2 + · · · + πn).

PROOF. Observe thatN + 1 ≤ 3(N − 1) on {N ≥ 2} and(N − 1)1{N≥2} =∑n
k=1 1{tk<∞}∩(

⋃
l<k{tl<∞}). Therefore,

E
[
(N + 1)1{N≥2}

] ≤ 3E
[
(N − 1)1{N≥2}

]
= 3

n∑
k=1

P

(
{tk < ∞} ∩

(⋃
l<k

{tl < ∞}
))

.

The result follows by Corollary 8.7.�

From Lemmas 8.2 and 8.8 we get the following:

COROLLARY 8.9. Let δ > 0 and let (α1, . . . , αn) be a δ-orthogonal sequence
of strategy pairs. Denote α = α1 +̇ · · · +̇αn. Then for i = 1,2:

1. We have (1− 3δ)
∑n

k=1πk ≤ π ≤ ∑n
k=1 πk.

2. We have
∑n

k=1 ρi
k − 3δ

∑n
k=1 πk ≤ ρi ≤ ∑n

k=1ρi
k + 3δ

∑n
k=1 πk .

LEMMA 8.10. Let δ > 0 and let (α1, . . . , αn) be a δ-orthogonal sequence of
stationary strategy pairs. Denote α = α1 +̇ · · · +̇αn. Then for i = 1,2,

n∑
k=1

ρi
k − 6δ

n∑
k=1

πk ≤ γ i ×
n∑

k=1

πk ≤
n∑

k=1

ρi
k + 6δ

n∑
k=1

πk.

PROOF. By Corollary 8.9 and (6),

n∑
k=1

ρi
k − 3δ

n∑
k=1

πk ≤ ρi = γ i × π ≤


γ i ×

n∑
k=1

πk, if γ i > 0,

γ i(1− 3δ)

n∑
k=1

πk, if − 1≤ γ i ≤ 0.



2760 E. SHMAYA AND E. SOLAN

In both cases, the right-hand side is bounded byγ i × ∑n
k=1πk + 3δ

∑n
k=1πk , so

that
n∑

k=1

ρi
k − 6δ

n∑
k=1

πk ≤ γ i ×
n∑

k=1

πk.

The proof of the right-hand inequality is similar.�

From Lemma 8.10 and (6) we get:

COROLLARY 8.11. Let δ > 0 and let (α1, . . . , αn) be a δ-orthogonal
sequence of stationary strategy pairs. Denote α = α1 +̇ · · · +̇αn. Let −1 ≤
u, v ≤ 1.

1. If u ≤ γ i
k for each k ∈ {1, . . . , n}, then u − 6δ ≤ γ i .

2. If γ i
k ≤ v for each k ∈ {1, . . . , n}, then γ i ≤ v + 6δ.

8.4. Strong orthogonality. In the present section we define a stronger notion
of orthogonality and study its properties.

DEFINITION 8.12. Let δ > 0. A sequence(α1, α2, . . . , αn) of stationary
strategy pairs isδ-strongly orthogonal if, for every k ∈ {1, . . . , n − 1} and
every nodes ∈ Hδ(α1 +̇ · · · +̇αk), αk+1(s

′) = (0,0) for s′ = s and for every
descendents′ of s; that is,αk+1 continues froms onward.

The following lemma provides a way to constructε-orthogonal sequences of
strategy pairs from a singleε2-strongly orthogonal sequence.

LEMMA 8.13. Let ε > 0 and let y1, y2, . . . , yn be stationary strategies of
player 2 such that the sequence ((0, y1), . . . , (0, yn)) is ε2-strongly orthogonal.
Let x̄ be any pure stationary strategy of player 1 that does not stop twice on
the same branch; that is, if x̄(s) = 1, then x̄(s′) = 0 for every descendant s′
of s. Define strategies (x̄k)

n
k=1 of player 1 in the following way: For each s ∈ S

such that x̄(s) = 1, let x̄k(s) = 1, where k ≤ n is the greatest index for which
s /∈ Hε((0, y1) +̇ · · · +̇ (0, yk−1)). Define x̄k(s) = 0 otherwise. Let ᾱk = (x̄k, yk).
Then the sequence (ᾱ1, . . . , ᾱn) is ε-orthogonal.

PROOF. By the definition of(x̄k)1≤k≤n and Fact 1, we get, for everyl ∈
{1, . . . , n − 1}:

If x̄l(s) = 1 thens ∈ Hε

(
(0, y1) +̇ · · · +̇ (0, yl)

);
(24)

If x̄l+1(s) = 1 thens /∈ Hε

(
(0, y1) +̇ · · · +̇ (0, yl)

)
.

Let l ∈ {1, . . . , n − 1} and lets ∈ S beε-heavy with respect tōσl = ᾱ1 +̇ · · · +̇ ᾱl .
We prove that̄xl+1(s) = yl+1(s) = 0.
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We first prove that̄xl+1(s) = 0. Sinces is ε-heavy w.r.t.σ̄l = ᾱ1 +̇ · · · +̇ ᾱl ,
Pσ̄l

(t < ∞|Fs) ≥ ε. Assume to the contrary thatx̄l+1(s) = 1. By (24),s is ε-light
w.r.t. (0, y1) +̇ · · · +̇ (0, yl) and, therefore,P(0,y1) +̇ ··· +̇ (0,yl)

(t < ∞|Fs) < ε. It
follows that P(x̄1,0) +̇ ··· +̇ (x̄l ,0)(t < ∞|Fs) > 0, a contradiction to the assumption
that x̄ does not stop twice on the same branch.

We proceed to prove thatyl+1(s) = 0. Assume first that there exists an
ancestors′ of s such thatx̄1(s

′) + · · · + x̄l(s
′) = 1. By (24) and Fact 1,s′ ∈

Hε((0, y1) +̇ · · · +̇ (0, yl)). Since((0, y1), . . . , (0, yn)) is ε-strongly orthogonal,
yl+1(s) = 0.

We assume now that̄x1(s
′) + · · · + x̄l(s

′) = 0 for every ancestors′ of s.
Let D̃ be the (possibly empty) set ofs ’s descendantsd that are ε-heavy
w.r.t. (0, y1) +̇ · · · +̇ (0, yl) and let D be the set that is obtained by removing
from D̃ all nodes that have strict ancestors iñD. By the definition of D,
P(0,y1) +̇ ··· +̇ (0,yl)

(t < ∞|Fd) ≥ ε for everyd ∈ D. Let Y = ⋃
d∈D Fd . Since this

is a mutually disjoint union, it follows that ifY �= φ, then

P(0,y1) +̇ ··· +̇ (0,yl)
(t < ∞|Y ) ≥ ε ≥ ε × Pσ̄l

(t < ∞|Y ).

By (24) and the definition of(x̄k)1≤k≤n, it follows that

P(0,y1) +̇ ··· +̇ (0,yl)
(t < ∞|Y c ∩ Fs) = Pσ̄l

(t < ∞|Y c ∩ Fs)

≥ ε × Pσ̄l
(t < ∞|Y c ∩ Fs).

Combining the last two inequalities and observing thatY ⊆ Fs , we get

P(0,y1) +̇ ··· +̇ (0,yl)
(t < ∞|Fs) ≥ ε × Pσ̄l

(t < ∞|Fs) ≥ ε2.

Thus s is ε2-heavy with respect to(0, y1) +̇ · · · +̇ (0, yl) and, as the sequence
((0, y1), . . . , (0, yn)) is ε2-orthogonal,yl+1(s) = 0. �

LEMMA 8.14. Let ε ∈ (0, 1
6) and let a1, a2 ∈ [−1,1]. Let (α1, . . . , αn) be an

ε2-strongly orthogonal sequence of stationary strategy pairs such that αk is an
ε-equilibrium for each k = 1, . . . , n. Assume that for each k, γk ∈ [a1, a1 + ε] ×
[a2, a2+ε], where γk is the payoff that corresponds to αk . Let α = α1 +̇ · · · +̇αn =
(x, y). Then:

(a) We have ai − ε ≤ γ i(x, y).
(b) For each pair (x′, y′) of stationary strategies, γ 1(x′, y) ≤ a1 + 8ε and

γ 2(x, y′) ≤ a2 + 8ε.

PROOF. Denoteαk = (xk, yk). We prove the result only for player 1. We first
prove (a). Sincea1 ≤ γ 1

k (xk, yk) for each 1≤ k ≤ n, it follows from Corollary 8.11
and sinceε < 1/6, thata1 − ε ≤ a1 − 6ε2 ≤ γ 1(x, y).

We now prove (b). Let̄x be a stationary strategy that maximizes player 1’s
payoff againsty: γ 1(x̄, y) = maxx′ γ 1(x′, y). Fixing y, the game reduces to a
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Markov decision process and hence such anx̄ exists. Moreover, there exists such a
strategyx̄ that is pure [i.e.,̄x(s) ∈ {0,1} for everys] and stops at most once in every
branch. Observe that since the sequence(α1, . . . , αn) is ε2-strongly orthogonal, so
is the sequence((0, y1), . . . , (0, yn)). Let x̄1, . . . , x̄k be the strategies defined in
Lemma 8.13 w.r.t.̄x andy1, . . . , yn. Thenx̄ = x̄1 +̇ · · · +̇ x̄n and(ᾱ1, . . . , ᾱn) is
ε-orthogonal, wherēαk = (x̄k, yk).

For eachk, (xk, yk) is anε-equilibrium and, therefore,γ 1(x̄k, yk) ≤ a1+2ε. By
Corollary 8.11 and the definition ofx̄, for everyx′ we haveγ 1(x′, y) ≤ γ 1(x̄, y) ≤
a1 + 2ε + 6ε = a1 + 8ε. �

8.5. Proof of Proposition 5.5. We now prove Proposition 5.5. Consider the
following recursive procedure:

1. Initialization: Start with the gamẽT = T , the strategy pairσ0 = (0,0) (always
continue) andk = 0.

2. If there exists a stationaryε-equilibrium in a subgameT ′ of T̃ with
corresponding payoff in[a1, a1 + ε] × [a2, a2 + ε]:
(a) Setk = k + 1 and letαk = (xk, yk) be any suchε-equilibrium. Extend

xk andyk to strategies onT by settingxk(s) = yk(s) = 0 for every node
s ∈ S0 \ T ′.

(b) Setσk = σk−1 +̇αk .
(c) Let Hk = Hε2(σk) be the set ofε2-heavy nodes ofσk (by Fact 1,Hk−1 ⊆

Hk). SetT̃ = THk
.

(d) Start stage 2 all over.
3. If, for all subgamesT ′ of T̃ , there are noε-equilibria inT ′ with corresponding

payoff in [a1, a1 + ε] × [a2, a2 + ε], set n = k, x = x1 +̇ · · · +̇xn, y =
y1 +̇ · · · +̇yn andD = Hn.

The idea is to keep adding strongly orthogonalε-equilibria as long as we can.
The procedure continues until there is noε-equilibrium in any subgame of̃T with
payoffs in [a1, a1 + ε] × [a2, a2 + ε]. The termination of the procedure follows
from Lemma 8.4.

The first part of Proposition 5.5 is an immediate consequence of the termination
of the procedure. We now prove thatσn = (x, y) satisfies the requirements of the
second part. SinceD = Hn is the set ofε2-heavy nodes of(x, y), π(x, y) ≥
ε2 × pD. For every 1≤ k ≤ n, γ i(xk, yk) ≥ Ri − ε, so that (xk, yk) is an
ε-equilibrium in T . Thus ((x1, y1), . . . , (xn, yn)) is an ε2-strongly orthogonal
sequence of stationaryε-equilibria. The remaining claims of Proposition 5.5
follow from Lemma 8.14.

9. More than two players. When there are more than two players, it is no
longer true that games on a tree admit stationaryε-equilibria. An example of
a three-player game where this phenomenon happens was first found by Flesch,
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Thuijsman and Vrieze (1997). Nevertheless, a consequence of Solan (1999) is that
every three-player game on a tree admits a periodicε-equilibrium, but the period
may be long [see Solan (2001)]. We do not know whether this result can be used
to generalize Proposition 5.5 for three-player games.

When there are at least four players, the existence ofε-equilibria in stopping
games on finite trees is still an open problem, even in the deterministic case; that
is, when every node in the tree has at most a single child. For more details, the
reader is referred to Solan and Vieille (2001).
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