
Abstract. We study finite zero-sum stochastic games in which players do not
observe the actions of their opponent. Rather, at each stage, each player ob-
serves a stochastic signal that may depend on the current state and on the pair
of actions chosen by the players. We assume that each player observes the state
and his/her own action. We prove that the uniform max-min value always
exists.Moreover, the uniformmax-min value is independent of the information
structure of player 2. Symmetric results hold for the uniform min-max value.

Key words: Stochastic games, Imperfect monitoring, Maxmin value, Minmax
value

1. Introduction

The classical literature on repeated games and stochastic games considers
models with perfect monitoring in which past play is observed by the players.
The strategies used by the players at equilibrium in such games are usually
history dependent, and use the observation of the past sequence of moves to
play at any given stage.

In the last two decades, models with imperfect monitoring were explored,
and several applications of these models were studied (see, e.g., Radner
(1981), Rubinstein and Yaari (1983)). Lehrer (1989, 1990, 1992a, 1992b) has
characterized the set of equilibrium payoffs for various notions of undis-
counted equilibria in infinitely repeated games with imperfect monitoring.
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avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
(E-mail: dinah@zeus.math.univ-paris13.fr)
yMEDS Department, Kellogg School of Management, Northwestern University, and School of
Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
(E-mail: eilons@post.tau.ac.il; e-solan@kellogg.northwestern.edu)
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Plainly, zero-sum repeated games have a value, and an optimal strategy for a
player is to repeatedly play his optimal strategy in the one-shot game,
whatever be the signaling structure. Unlike the situation in repeated games,
the value of a zero-sum stochastic game (possibly) changes when one intro-
duces imperfect monitoring.

In the present paper we are interested in two-player zero-sum stochastic
games with imperfect monitoring. These games are played as follows. At
every stage, the game is in one of finitely many states. Each player chooses an
action, independently of his opponent. The current state, together with the
pair of actions, determine a daily payoff that player 2 pays player 1, a
probability distribution according to which a new state is chosen, and a
probability distribution over pairs of signals, one for each player. Each player
is then informed of his private signal, and of the new state. However, no
player is informed of his opponent’s signal and of the daily payoff.

For every discount factor, the discounted game with perfect monitoring
has a value, and each player has an optimal stationary strategy, namely, an
optimal strategy that depends only on the current state (see Shapley, 1953).
Similarly, for every positive integer n, the n-stage game has a value, and each
player has an optimal strategy that depends only on the current state and on
the number of remaining stages. Consequently, in both cases, the value is
independent of the signaling structure (provided each player always observes
the current state), and the optimal strategies remain optimal in the k-dis-
counted game or the n-stage game with any signaling structure. However,
optimal strategies usually depend on the discount factor or on the length of
the game.

Here we study the uniform max-min value of stochastic games. The
uniform max-min value v exists as soon as (i) for every e > 0 player 1 has a
single strategy that ensures that the expected average payoff in every suffi-
ciently long game is at least v� e, and (ii) for every e > 0 and every strategy
of player 1, player 2 has a reply such that the expected average payoff in
every sufficiently long game is at most vþ e. The uniform min-max value is
defined analogously, by exchanging the roles of the two players.

Mertens and Neyman (1981) proved that zero-sum stochastic games with
perfect monitoring always have a uniform value – i.e., both the uniform
max-min value and the uniform min-max value exist, and they coincide. The
e-optimal strategies they constructed indeed rely on the observation of the
sequence of past moves of the opponent.

Coulomb (1992, 1999, 2001) was the first to study stochastic games with
imperfect monitoring. He studied the class of absorbing games, and proved
that the uniform max-min and min-max values exist. In addition, he provided
a formula for both values. One of Coulomb’s main findings is that the max-
min value does not depend on the signaling structure of player 2. Similarly,
the min-max value does not depend on the signaling structure of player 1. In
general, the max-min and min-max values do not coincide, hence stochastic
games with imperfect monitoring need not have a uniform value.

In the present paper we prove that all finite stochastic games have uniform
max-min and min-max values. As in the case of absorbing games, the uniform
max-min value is independent of the information structure of player 2, and
the uniform min-max value is independent of the information structure of
player 1. We also prove that these values are limits of max-min and min-max
values of certain auxiliary discounted (non-standard) games.
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The approach that we take is quite different from that of Coulomb (1992,
1999, 2001). We first define an equivalence relation over mixed actions of
player 2, that has similarities with the one used in Lehrer’s and Coulomb’s
works. Basically two actions of player 2 are said to be equivalent with respect
to a mixed move of player 1 if they induce the same distribution of signals to
player 1. However the definition takes into account the fact that we use
discounted games, hence events that occur rarely (relative to the discount
factor) do not affect the payoff. Using this equivalence relation we define a
new daily payoff function. We then define an auxiliary discounted max-min
value as a fixed point of a functional equation that is based on the auxiliary
daily payoff function. Finally, we prove that the uniform max-min value is the
limit of these auxiliary discounted max-min values.

To prove the last claim we use the method developed by Mertens and
Neyman (1981) for stochastic games with perfect monitoring. The method of
studying asymptotic properties of auxiliary discounted games by defining a
new payoff function already appears in Solan (1999) and in Solan and Vohra
(2002), in the study of equilibria in n-player absorbing games.

Independently of our work, Coulomb (2003) proved the same result, using
similar tools.

The paper is organized as follows. Section 2 contains the model and the
statement of the main results. In Section 3 we introduce a number of tools,
define the auxiliary discounted games, and study some of their basic prop-
erties. Section 4 contains a reminder of the analysis of Mertens and Neyman.
The last two sections are devoted to the two parts of the proof.

2. The model

For every finite set K, DðKÞ is the set of probability distributions over K. We
identify each element k 2 K with the element of DðKÞ that assigns probability
one to k.

A two-person zero-sum stochastic game with imperfect monitoring is
described by: (i) a set S of states, (ii) action sets A and B for the two players,
(iii) a daily reward function r : S � A� B! R, (iv) signal sets M1 and M2 and
(v) a transition function w : S � A� B! DðM1 �M2 � SÞ. All through the
paper, the sets S;A;B;M1 and M2 are assumed to be finite.

The game is played in stages. The initial state s1 is known to both players.
At each stage n 2 N, (a) the players independently choose actions an and bn;
(b) player 2 pays player 1 the amount rðsn; an; bnÞ; (c) a triple ðm1

n;m
2
n; sn þ 1Þ is

drawn according to wðsn; an; bnÞ; (d) players 1 and 2 are told respectively m1
n

and m2
n, but they are not informed of an, bn, or rðsn; an; bnÞ; and (e) the game

proceeds to stage nþ 1.
We denote by w1 (resp. w2) the marginal of w on M1 (resp. M2). These

functions represent the signal that each of the players receives. The multi-
linear extensions of r and w to S � DðAÞ � DðBÞ are still denoted by r and w
respectively.

We assume throughout that each player always knows the current state,
and the action he is playing. In terms of w, this amounts to assuming the
following: if both probabilities w1ðs; a; bÞ½m1;m2; t� and w1ðs0; a0; b0Þ½m1;m02; t0�
are positive, then ðs; a; tÞ ¼ ðs0; a0; t0Þ. A similar property holds for player 2.
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We also assume perfect recall, so each player remembers the sequence of
signals he has received so far.

We denote by Hn ¼ S � ðA� B�M1 �M2 � SÞn�1 the set of histories up
to stage n,1 and by H 1

n ¼ S � ðM1Þn�1 and H2
n ¼ S � ðM2Þn�1 the set of

private histories of the two players respectively. We also let
H1 ¼ ðS � A� B�M1 �M2ÞN denote the set of infinite plays. For i ¼ 1; 2,
Hi

n denotes the cylinder algebra over H1 induced by H i
n,

Hi
1 ¼ rðHi

n; n � 1Þ the r-algebra of events that are measurable for player
i, and H1 ¼ rðH1

1;H
2
1Þ the r-algebra generated by all the cylinder

algebras.
A (behavioral) strategy of player 1 (resp. player 2) is a sequence

r ¼ ðrnÞn�1 (resp. s ¼ ðsnÞn�1) of functions rn : H 1
n ! DðAÞ (resp.

sn : H2
n ! DðBÞ). A stationary strategy depends only on the current stage.

Hence, a stationary strategy of player 1 is described by a vector ðxsÞs2S in
ðDðAÞÞS , with the interpretation that xs is the mixed move used whenever the
current state is s 2 S. Stationary strategies of player 2 are denoted by
ðysÞs2S 2 ðDðBÞÞ

S .
We denote by Ps;r;s the probability distribution induced over ðH1;H1Þ

by a pair ðr; sÞ of strategies and an initial state s 2 S, and by Es;r;s the cor-
responding expectation operator. The expected average payoff up to stage n is

cnðs; r; sÞ ¼ Es;r;s
1

n

Xn

k¼1
rðsk; ak; bkÞ

" #
:

Definition 1. v 2 RS is the (uniform) max-min value of the game if:

� Player 1 can guarantee v: for every e > 0, there exists a strategy r of player 1
and N 2 N, such that:

8s 2 S; 8s; 8n � N ; cnðs;r; sÞ � vðsÞ � e:

� Player 2 can defend v: for every e > 0 and every strategy r of player 1 there
exists a strategy s of player 2 and N 2 N, such that:

8s 2 S; 8n � N ; cnðs; r; sÞ � vðsÞ þ e:

The definition of the (uniform) min-max value is obtained by exchanging the
roles of the two players.

Our main result is the following.

Theorem 2. Every stochastic game has a max-min value and a min-max value.
The max-min value (resp. the min-max value) depends on w only through w1

(resp. only through w2).

Note that if player 1 cannot guarantee a quantity w it does not follow that
player 2 can defend it. Therefore the first part of the theorem is not a

1 Since the signal of each player contains the current state, the next state, and his action, some
information in this representation is redundant.
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tautology. Recall that this result assumes that the game has perfect recall, and
that each player always knows the current state. The situation in which
players are not fully informed of the current state raises additional difficulties,
see Rosenberg et al. (2002) for the analysis of the one-player case.

Coulomb (1999, 2001) proved the corresponding statement for the class of
absorbing games.

We assume w.l.o.g. that payoffs are non-negative and bounded by 1. We
focus on the existence of themax-min value. The existence of themin-max value
follows using the same arguments, by exchanging the roles of players 1 and 2.

3. The max-min value

3.1. Indistinguishable moves

We start by defining an equivalence relation between mixed actions of
player 2. This equivalence relation will be used to provide a semi-explicit
formula for the max-min value. In essence, two mixed actions y and z of
player 2 are equivalent for a mixed action x of player 1 at state s if the
probability that player 1 cannot distinguish y from z is high. Variants of this
relation have played a central role in earlier analysis of games with
imperfect monitoring, such as in the work of Aumann and Maschler (1995),
Lehrer (1989, 1990, 1992a, 1992b) and Coulomb (1999, 2001).

Given e; k > 0;2 s 2 S and x 2 DðAÞ, we define a binary relation �k;e;s;x over
DðBÞ as follows:

y �k;e;s;x z if and only if w1ðs;a;yÞ ¼w1ðs;a; zÞ for every a such that x½a� � k=e:

Thus, y and z are equivalent for x at s if every action of player 1 that can be
used to distinguish between y and z is played under x with low probability
(low being defined with respect to k). Plainly, the relation �k;e;s;x is an
equivalence relation.

Remark: A simple alternative candidate for the definition of the relation is
y �k;e;s;x z if and only if kw1ðs; x; yÞ � w1ðs; x; zÞk � k=e. However, this would
not define a transitive relation.

3.2. An auxiliary daily payoff function

We define a function ~r that is to be thought of as the worst payoff consistent
with a given distribution of signals to player 1. Given e; k > 0, s 2 S and
ðx; yÞ 2 DðAÞ � DðBÞ; we set

~re
kðs; x; yÞ ¼ min

z�k;e;s;xy
rðs; x; zÞ: ð1Þ

Since the set z 2 DðBÞ : z �k;e;s;x y
� �

is compact, the minimum in the right-
hand side of (1) is reached. Note that ~re

kðs; x; yÞ ¼ ~re
kðs; x; zÞ whenever

z �k;e;s;x y, and

2 k always stands for a discount factor. Here and in the sequel we omit the condition k � 1.
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~re
kðs; x; yÞ � rðs; x; yÞ: ð2Þ

The continuity property of ~r that we need in the sequel is summarized by the
following lemma.

Lemma 3. For every d > 0, there is g > 0 such that for every s 2 S, every
x 2 DðAÞ, every k; e > 0 and every y; z 2 DðBÞ, the following is satisfied: if
kw1ðs; a; yÞ � w1ðs; a; zÞk < g for every a 2 A that satisfies x½a� � k=e, then
~re
kðs; x; yÞ � ~re

kðs; x; zÞ
�� �� < d.

The proof of Lemma 3 relies on the next result.

Lemma 4. For every d > 0 there is g > 0 such that for every s 2 S, every
x 2 DðAÞ, every y; z; z0 2 DðBÞ, and every e; k > 0, the following is satisfied. If (i)
kw1ðs; a; yÞ � w1ðs; a; zÞk < g for every a 2 A that satisfies x½a� � k=e, and (ii)
z0 �k;e;s;x z, then there exists y0 2 DðBÞ such that (a) y0 �k;e;s;x y, and (b)

y0 � z0k k < d.

Observe that Lemma 4 implies Lemma 3. Indeed, let d > 0 be given, and
let g > 0 be the one given by Lemma 4 w.r.t. d. Suppose y; z 2 DðBÞ satisfy
kw1ðs; a; yÞ � w1ðs; a; zÞk < g for every a 2 A such that x½a� � k=e. Let
z0 �k;e;s;x z satisfy ~re

kðs; x; zÞ ¼ rðs; x; z0Þ, and let y0 2 DðBÞ satisfy the conclusion
of Lemma 4 w.r.t. z0. Then by Lemma 4(b) and (2)

~re
kðs; x; zÞ ¼ rðs; x; z0Þ > rðs; x; y0Þ � d � ~re

kðs; x; y0Þ � d ¼ ~re
kðs; x; yÞ � d:

Exchanging the roles of y and z, one obtains j~re
kðs; x; zÞ � ~re

kðs; x; yÞj < d, and
Lemma 3 follows.

Proof: Since S is finite, we may assume that s is given.
Assume to the contrary that the lemma does not hold. Then there exists

d > 0 such that for every n 2 N there are xn 2 DðAÞ, yn; zn; z0n 2 DðBÞ, and
kn; en > 0 such that (i) kw1ðs; a; ynÞ � w1ðs; a; znÞk < 1=n for every a 2 A that
satisfies xn½a� � kn=en, (ii) z0n �kn;en;s;xn zn, and for every y0n 2 DðBÞ that satisfy
(a) y0n �kn;en;s;xn yn, we have (b) y0n � z0n

�� �� � d.

To derive a contradiction, we define a sequence ðy0nÞ such that for every n,
y0n �kn;en;s;xn yn and limn!1 ky0n � z0nk ¼ 0.

By taking a subsequence we assume w.l.o.g. that (A) the limits
y ¼ limn!1 yn, z ¼ limn!1 zn and z0 ¼ limn!1 z0n exist, and (B) the set
fa 2 A j xn½a� � kn=eng is independent of n.

Claim 1. For every n 2 N, z �kn;en;s;xn z0.

Let a 2 A satisfy xn½a� � kn=en for every n 2 N. Then
w1ðs; a; znÞ ¼ w1ðs; a; z0nÞ. By the continuity of w1, w1ðs; a; zÞ ¼ w1ðs; a; z0Þ, as
desired.

Claim 2. For every n 2 N, y �kn;en;s;xn z.

Let a 2 A satisfy xn½a� � kn=en for every n 2 N. Since kw1ðs; a; ynÞ�
w1ðs; a; znÞk < 1=n for every n 2 N, and by the continuity of w1, we derive
w1ðs; a; yÞ ¼ w1ðs; a; zÞ.
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Since y ¼ limn!1 yn, there exists a sequence ðan; enÞn2N such that
an 2 ½0; 1�, limn!1 an ¼ 1, en 2 DðBÞ, and yn ¼ any þ ð1� anÞen. Define
y0n ¼ anz0 þ ð1� anÞen.

Claim 3. For every n 2 N, yn �kn;en;s;xn y0n.

Let a 2 A satisfy xn½a� � kn=en for every n. By Claims 1 and 2, w1ðs; a; yÞ ¼
w1ðs; a; z0Þ. By the linearity of w, w1ðs; a; y0nÞ ¼ anw

1ðs; a; z0Þ þ ð1� anÞw1

ðs; a; enÞ ¼ anw
1ðs; a; yÞ þ ð1� anÞw1ðs; a; enÞ ¼ w1ðs; a; ynÞ, as desired.

The desired contradiction follows from Claim 3 and since limn!1 y0n ¼
z0 ¼ limn!1 z0n. j

Corollary 5. For every k; e > 0, and every s 2 S, the function ~re
kðs; 	; 	Þ is con-

tinuous w.r.t. y, and is (jointly) upper semicontinuous.

Proof: That ~re
kðs; 	; 	Þ is continuous w.r.t. y is an immediate consequence of

Lemma 4. Let s 2 S be given, and let ðxn; ynÞn2N be a convergent sequence in
DðAÞ � DðBÞ, with limit ðx; yÞ. W.l.o.g. assume that the set a2A : xn½a� � k=ef g
is independent of n 2 N; and that limn!1 ~re

kðs; xn; ynÞ exists. Let z 2 DðBÞ be
such that z �k;e;s;x y. By Lemma 4, for each k 2 N, there exists nk and znk 2DðBÞ
such that znk �k;e;s;x ynk and znk�zk k<1=k. Since znk �k;e;s;x ynk ; one has
znk �k;e;s;xnk

ynk . Indeed, if xnk ½a��k=e for every k then x½a��k=e, so that
w1ðs;a;znk Þ¼w1ðs;a;ynk Þ.

In particular, by (2), rðs;xnk ;znk Þ�~re
kðs;xnk ;znk Þ¼~re

kðs;xnk ;ynk Þ. Letting k go
to infinity, one obtains limn!1~re

kðs;xn;ynÞ �rðs;x;zÞ. Since z is arbitrary, this
also implies limn!1~re

kðs;xn;ynÞ�~re
kðs;x;yÞ: j

3.3. A functional equation

It is convenient to denote by q the marginal of w over S:
qðs0js; a; bÞ ¼ wðs; a; bÞ½M1 �M2 � fs0g� is the probability of moving from
state s to state s0 when the actions are a and b. This is the transition function
of the game, when one ignores the signals. The multi-linear extension of q to
S � DðAÞ � DðBÞ is still denoted by q.

Given k; e > 0, we define the operator Tk;e : RS ! RS as follows: for every
w : S ! R, we set

Tk;ewðsÞ :¼ max
x2DðAÞ

min
y2DðBÞ

k~re
kðs; x; yÞ þ ð1� kÞEqð	js;x;yÞ½wð	Þ�

� �
;

where Eqð	js;x;yÞ is the expectation w.r.t. qð	js; x; yÞ.
Since ~re

k is continuous w.r.t. y, the minimum in the definition of Tk;e is
attained for each x 2 DðAÞ. Since ~re

k is jointly upper semi-continuous, the
maximum is also attained.

Lemma 6. For each k; e > 0, the operator Tk;e has a unique fixed point.

Proof: Plainly, Tk;e is non-decreasing. Moreover, Tk;eðwþ c1Þ ¼ Tk;ewþ
ð1� kÞc1, for each c 2 R and w : S ! R, where 1 : S ! R is the function
defined by 1ðsÞ ¼ 1 for every s 2 S. By Blackwell’s criterion, Tk;e is strictly
contracting, hence has a unique fixed point. j
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Given k; e > 0, we let ve
k denote the unique fixed point of Tk;e. Our char-

acterization of the max-min value is the following.

Theorem 7. The limit v ¼ lime!0 limk!0 ve
k exists, and is the max-min value of

the game.

Observe that ve
k does not depend on w2, the structure of signals to player 2,

hence neither does v.

3.4. Algebraic properties

We collect in Proposition 9 below the semi-algebraic properties that are useful
for our purposes.

Lemma 8. For every state s 2 S, the function /s : ðe; k; x; yÞ7!~re
kðs; x; yÞ is semi-

algebraic.

Proof: Fix s 2 S. The set

E¼ ðe;k;x;y;y0;rÞ 2 ð0;1Þ2�DðAÞ� ðDðBÞÞ2�R : y �k;e;s;x y0;r¼ rðs;x;y0Þ
n o

is defined by finitely many polynomial inequalities. In particular, it is semi-
algebraic. Therefore the graph of /s, which is equal to
n
ðe; k; x; y; rÞ 2 ð0; 1Þ2 � DðAÞ � DðBÞ � R:

r ¼ min
n

r0 2 R; 9y0 2 DðBÞ s.t. ðe; k; x; y; y0; r0Þ 2 Eg
o

is semi-algebraic as well. j

Using Lemma 6 one can now deduce the following.

Proposition 9. For every state s 2 S, (i) the function ðk; eÞ7!ve
kðsÞ is semi-

algebraic, and (ii) the set

ðe; k; xÞ 2 ð0; 1Þ2 � DðAÞ: min
y2DðBÞ

k~re
kðs; x; yÞ þ ð1� kÞE ve

kjs; x; y
� �� �

¼ ve
kðsÞ

� �

is semi-algebraic.

In particular, for every fixed e > 0, limk!0 ve
kðsÞ exists. Observe that if

e1 > e2 then y �k;e1;s;x y0 implies that y �k;e2;s;x y0, so that ~re1
k ðs; x; zÞ � ~re2

k ðs; x; zÞ
for every s 2 S, every x 2 DðAÞ and every z 2 DðBÞ. It follows that
ve1
k ðsÞ � ve2

k ðsÞ for every k > 0 and every s 2 S. In particular, the function
e 7! limk!0 ve

kðsÞ is monotonic non-decreasing, so that the limit
vðsÞ ¼ lime!0 limk!0 ve

kðsÞ exists.
Set

G ¼ fðk; e; zÞ 2 ð0; 1Þ2 � RS j k � e2; z ¼ ve
kg: ð3Þ

G is a semi-algebraic set, whose closure contains ð0; 0; vÞ. Indeed, for every
g > 0 there is e0 > 0 sufficiently small such that k limk!0 ve

k � vk < g for every
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e 2 ð0; e0Þ. Hence for every e 2 ð0; e0Þ there is k0ðeÞ 2 ð0; 1Þ such that
kve

k � vk < 2g for every k 2 ð0; k0ðeÞÞ.3
By the Curve Selection Theorem (see, e.g., Bochnak et al., 1998, Theorem

2.5.5) there is a continuous semi-algebraic function f : ð0; 1Þ ! G such that
limr!0 f ðrÞ ¼ ð0; 0; vÞ.

Write f ðrÞ ¼ ðkðrÞ; eðrÞ; veðrÞ
kðrÞÞ. The functions r 7!kðrÞ, r 7!eðrÞ and

r 7!veðrÞ
kðrÞðsÞ (for s 2 S) are semi-algebraic, hence monotone in a neighborhood

of zero. Since k > 0 for each ðk; e; vÞ 2 G, and since limr!0 kðrÞ ¼ 0; the
function kðrÞ is invertible in a neighborhood of zero. Hence, there is a semi-
algebraic function k 7!eðkÞ such that, in a neighborhood of 0,
ðk; eðkÞ; veðkÞ

k Þ 2 G and limk!0 veðkÞ
k ¼ v.

We denote by d the degree in k of the function k 7!eðkÞ. That is,
limk!0 kd=eðkÞ 2 ð0;1Þ. By the definition of G, d 2 ð0; 1=2�.

4. Reminder on zero-sum games

We here recall a result due to Mertens and Neyman (1981, hereafter MN). We
let k 7!wk be a RS-valued semi-algebraic function defined over ð0; 1Þ, and we
set w :¼ limk!0 wk.

Let e > 0, Z > 0 and two functions k : ð0;þ1Þ ! ð0; 1Þ and
L : ð0;þ1Þ ! N be given. Assume that the following conditions are satisfied
for every z � Z, every gj j � 4 and every s 2 S:

C1 wkðzÞðsÞ � wðsÞ
�� �� � e=12;

C2 LðzÞ � ez=192;
C3 kðzþ gLðzÞÞ � kðzÞj j � ekðzÞ=48;
C4 wkðzþgLðzÞÞðsÞ � wkðzÞðsÞ
�� �� � eLðzÞkðzÞ=12;

C5
R1

Z kðzÞdz � e=12;
C6 kðzÞLðzÞ � e=48.

MN note that C1–C6 hold for Z large enough, in each of the next two cases:

Case 1: kðzÞ ¼ z�b and LðzÞ ¼ kðzÞ�ad e,4 where a 2 ð0; 1Þ satisfies kwk � wk1 <
k1�a for every k sufficiently close to 0, and b > 1 satisfy ab < 1;

Case 2: kðzÞ ¼ 1=ðz ln2 zÞ and LðzÞ ¼ 1.

Let ðr̂kÞk2N be a 0; 1½ �-valued process defined on the set of plays. Define
recursively processes ðzkÞ; ðLkÞ; ðkkÞ and ðBkÞ by the formulas

z1 ¼ Z;B1 ¼ 1;

kk ¼ kðzkÞ; Lk ¼ LðzkÞ;Bkþ1 ¼ Bk þ Lk;

zkþ1 ¼ max Z; zk þ Lkðr̂k � wðsBkþ1ÞÞ þ
e
2

n o
:

Theorem 10. (Mertens and Neyman, 1981). Suppose that r̂k is H
1
Bk
-measurable

for every k 2 N, and suppose that the strategy pair ðr; sÞ satisfies, for every k 2 N,

3 The condition k � e2 in (3) can be replaced by k � ec for any c > 1.
4 For every c 2 R, dce is the minimal integer greater than or equal to c.
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Es;r;s kkLkr̂k þ ð1� kkLkÞwkk ðsBkþ1ÞjH1
Bk

h i
� wkk ðsBk Þ �

e
12

kkLk: ð4Þ

Then there exists N0 2 N, such that for every n � N0

Es;r;s
1

n

Xn

i¼1
R̂i

" #
� wðsÞ � e; ð5Þ

where R̂i ¼ r̂k whenever Bk � i < Bkþ1. Moreover,

Es;r;s

Xþ1

k¼1
kkLk

" #
< þ1: ð6Þ

The result also holds when replacing in (4) and (5) ‘�’ by ‘�’, and the ‘)’ sign
on the right-hand side by a ‘+’ sign.

In MN, play is divided into blocks. Bk is the first stage of block k, and Lk is
the length of this block. As MN study games with perfect monitoring, where
payoffs are observed, in their setup r̂k is the average payoff in block k. In our
model payoffs are not observed, and r̂k will be an estimate for the average
payoff in block k.

Remark: Theorem 10 differs from the result proven in MN (their Section 3)
in two respects. (i) In the definition of zkþ1 we use the term Lkr̂k, whereas MN
use the sum of stage payoffs along block k, and (ii) since MN study the case of
perfect monitoring, they condition on HBk in (4), whereas we condition on
H1

Bk
. Lemma 3.4 in MN can be easily adapted to deal with the first point. The

second point does not affect the proof.

5. Player 2 can defend v

We prove in this section that player 2 can defend v.
Let an initial state s 2 S, e > 0, and a strategy r of player 1 be given. It is

enough to prove that there exists a strategy s such that
cnðs; r; sÞ � limk!0 ve

kðsÞ þ 2e for every n sufficiently large.
For every s 2 S, k > 0 and x 2 DðAÞ we choose ys

kðxÞ 2 DðBÞ such that

k~re
kðs; x; ys

kðxÞÞ þ ð1� kÞEqð	js;x;ys
kðxÞÞ ve

k

� �
� ve

kðsÞ:

We also choose zs
kðxÞ �k;e;s;x ys

kðxÞ such that rðs; x; zs
kðxÞÞ ¼ ~re

kðs; x; ys
kðxÞÞ.

We are now going to define a strategy s, in the spirit of MN (see Section 4,
Case 2 (LðzÞ ¼ 1, kðzÞ ¼ 1=ðz ln2 zÞ), with r̂n ¼ ~re

kn
ðsn; nn; y

sn
kn
Þ for nn defined

below, and wk ¼ ve
k.)

Suppose the strategy s is defined for the first n� 1 stages. At stage n, s
plays the mixed action ysn

kn
ðnnÞ, where nn is the expected mixed action of player

1 given the sequence of states visited so far: nn½a� ¼ Ps;r;sðan ¼ a j s1; . . . ; snÞ,
for each a 2 A. Since the computation of nn involves only the restriction of s
to the first n� 1 stages, there is no circularity in this definition. The calcu-
lation of kn is explicitly described in Section 4. As nn is H1

n-measurable,
ysn
kn
ðnnÞ, zsn

kn
ðnnÞ, r̂n and kn are H1

n-measurable as well.5

5 Actually, those random variables are measurable w.r.t. the coarser algebra generated by
s1; . . . ; sn.
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Applying Theorem 10 to ðr; sÞ, we conclude that both (5) (with the
inequality reversed) and (6) are satisfied.

By (6), there is N 2 N such that

Es;r;s

Xþ1

n¼N

kn

" #
<

e2

Aj j : ð7Þ

We now define the strategy s for player 2 as follows. It coincides with s up to
stage N , i.e. it plays ysn

kn
ðnnÞ in each stage n < N . In each stage n � N , s plays

zsn
kn
ðnnÞ.
The definition of s is reminiscent of the type of replies defined by Coulomb

(2001). Loosely speaking, under s, player 2 plays for good transitions up to
stage N , and for low payoffs afterwards. We now check that
cnðs; r; sÞ � vðsÞ þ 2e, for n large enough. Note that the strategy s uses only the
sequence of states, and not any additional signal that player 2 may receive.

For every n 2 N define the (random) set

An ¼ fa 2 A: nn½a� � kn=eg:
This is the set of all actions that are relevant for the equivalence relation at
stage n. By definition,

Ps;r;sðan 2 An j s1; . . . ; snÞ ¼
X

a2An

nn½a� � 1� jAjkn

e
; for each n � N :

By taking expectations, by summation over n, and using (7), this implies that

Ps;r;sðnn½an� � kn=e; 8n � NÞ � 1� e: ð8Þ
Set H1 ¼ fh 2 H1: nn½an� � kn=e; 8n � Ng. On the set H1, one has

w1ðsn; an; y
sn
kn
ðnnÞÞ ¼ w1ðsn; an; z

sn
kn
ðnnÞÞ for each n 2 N. In particular, for every

F 2H1
1, Ps;r;sðF \ H1Þ ¼ Ps;r;sðF \ H1Þ. Therefore, by (8),

supF2H1
1
Ps;r;sðF Þ � Ps;r;sðF Þ
�� �� < e. Since nn and ysn

kn
ðnnÞ are H1

n-measurable,

this yields

Es;r;s ~re
kn
ðsn; nn; y

sn
kn
ðnnÞÞ

h i
� Es;r;s ~re

kn
ðsn; nn; y

sn
kn
ðnnÞÞ

h i���
��� � e; for every n 2 N:

By the choice of zsn
kn
ðnnÞ, Es;r;s ~re

kn
ðsn; nn; y

sn
kn
ðnnÞÞ

h i
¼ Es;r;s rðsn; an; bnÞ½ �, for

every n � N . By summation, one obtains for every n � N=e,

cnðs; r; sÞ ¼ Es;r;s
1

n

Xn

i¼1
rðsi; ai; biÞ

" #
� Es;r;s

1

n

Xn

i¼1
~re
ki
ðsi; ni; y

si
ki
ðniÞÞ

" #
þ e:

By (5) with the inequality reversed, this yields

cnðs; r; sÞ � lim
k!0

ve
kðsÞ þ 2e;

for every n sufficiently large, as desired.

6. Player 1 can guarantee v

We fix e 2 ð0; 1Þ once and for all. Our goal is to construct a strategy r that
guarantees v up to 3e.
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The structure of the proof is as follows. In Section 6.1 we define a strategy
r, that plays in blocks, in the spirit of Mertens and Neyman. In Section 6.2 we
define the process ðr̂kÞ, which is used as a sufficient statistic for the average
payoff in block k in the definition of r. To apply Theorem 10 we have to show
that (4) is satisfied. We prove this in Section 6.3. We then have to relate the
average estimated payoff to the average payoff. This is done in Section 6.5.

6.1. Definition of a strategy

By Section 3.4, there is a semi-algebraic function k 7!eðkÞ such that
limk!0 eðkÞ ¼ 0, and limk!0 veðkÞ

k ðsÞ ¼ vðsÞ for every s 2 S. Recall that
d 2 ð0; 12� is the degree of k 7!eðkÞ. For notational simplicity, we abbreviate
veðkÞ
k and ~reðkÞ

k to vk and ~rk respectively. For k 2 ð0; 1Þ, we let xk 2 ðDðAÞÞS
achieve the maximum in the definition of vk. Specifically, k 7!xk is a semi-
algebraic function that satisfies for every s 2 S and every k > 0,

k~rkðs; xs
k; yÞ þ ð1� kÞEqð	js;xs

k;yÞ½vkð	Þ� � vkðsÞ 8y 2 DðBÞ: ð9Þ

Proposition 9 implies that such a function exists.
Define for every s 2 S

AðsÞ ¼ a 2 A: xs
k½a� �

k
eðkÞ ; for every ksufficiently small

� �
:

Since k 7!xk and k 7!eðkÞ are semi-algebraic, one has xs
k½a� < k

eðkÞ for every
a =2 AðsÞ and every k sufficiently small.

We now define a strategy r in the spirit of Mertens and Neyman, see
Section 4, Case 1, with wk ¼ vk. We choose a 2 ð1� d; 1Þ, and b 2 ð1; 1=aÞ.
The strategy r plays in blocks; block k starts at (random) stage Bk, and lasts
for Lk stages. During this block, player 1 plays the stationary strategy xkk . The
processes kk, Lk and Bk are explicitly defined in Section 4; the process ðr̂kÞ is
defined in the next section.

The parameter Z will be chosen later, to satisfy various conditions.

6.2. The statistic r̂k

We here proceed with the definition of r̂k. The value of r̂k depends only on the
sequence of signals received by player 1 during block k. Most of the analysis
in the subsequent sections deals with a given block. Therefore, for notational
simplicity, we drop the subscript k: we thus write L instead of Lk; k instead of
kk, etc. We also relabel the stages of block k from 1 to L, so that Bkþ1 ¼ Lþ 1.

For s 2 S and a 2 AðsÞ, we let qs;a 2 DðM1Þ stand for the empirical dis-
tribution of signals received by player 1 in the stages where a was played at
state s:

qs;a½m� ¼
jfn � L;m1

n ¼ mgj
jfn � L; ðsn; anÞ ¼ ðs; aÞgj

8m 2 M1:

For s 2 S, we let ŷs 2 DðBÞ minimize maxa2AðsÞ qs;a � w1ðs; a; 	Þ
�� ��

1. Finally,
we set

r̂ ¼ 1

L

X

s2S

Ns~rkðs; xs
k; ŷ

sÞ;
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where Ns ¼ jfn � L; sn ¼ sg is the number of visits to s during the current
block. In effect, at the end of each block, player 1 computes a stationary
strategy that is most consistent with the sequence of signals, and r̂ is the
corresponding worst payoff.

6.3. r̂k is a good approximation of the auxiliary payoff

We will prove that inequality (4) always holds, provided Z is large enough.
The proof is the same for the different blocks. Hence, we shall focus on a
generic block, and will omit the corresponding subscript k.

We set d ¼ e=ð24jSj þ 24Þ. Let g 2 ð0; 1Þ satisfy the conclusion of Lemma
3 w.r.t. d.

We introduce the mixed move yn used by player 2 at stage n. Specifically,
yn½b� ¼ Ps;r;sðbn ¼ b jH2

nÞ. We also set ys ¼ 1
Ns

P
n:sn¼s yn, for s 2 S. The sta-

tionary strategy y ¼ ðysÞs2S can thus be interpreted as the collection of
empirical mixed moves used by player 2 at the various states during the
block.6

In the next proof, we use the following observation. For e 2 ð0; 1=3Þ and
a; b > 0 one has

a=A
b=B
� 1

����

���� < 3e whenever
a
b
� 1

���
��� < e and

A
B
� 1

����

���� < e: ð10Þ

The following Proposition asserts that r̂ is a good estimate for the average
auxiliary payoff ~rk along the block.

Proposition 11. There is Z1 > 0 such that for every k, if zk � Z1, the following
holds. For every strategy s of player 2, and every s 2 S,

Es;xk;s½r̂� �
1

L
Es;xk;s

X

t2S

Nt~rkðt; xt
k; y

tÞ
" #�����

����� � 2jSjd:

Recall that k ¼ kk ¼ kðzkÞ and L ¼ Lk ¼ LðzkÞ, so that if zk is large than k is
small and L is large.

Proof: Let an initial state s 2 S and a strategy s be given. All probabilities
and expectations below are taken w.r.t. Ps;xk;s. Let t 2 S and a 2 AðtÞ be given,
and let m1 2 M1 be an arbitrary signal such that w1ðt; a; bÞ½m1� > 0 for some
b 2 B. For i ¼ 1; . . . ; L, set Wi ¼ 1 if m1

i ¼ m1, and Wi ¼ 0 otherwise. Note that
E½WijHi� ¼ w1ðsi; xk; yiÞ½m1�. The random variables Wi � E½WijHi�,
i ¼ 1; . . . ; L, are centered and uncorrelated. By Chebyshev’s inequality, letting
SL ¼ 1

L

PL
i¼1ðWi � E½WijHi�Þ, one has for every c > 0

PðjSLj � cÞ � VarðSLÞ
c2

¼ 1

L2c2
XL

i¼1
VarðWiÞ �

xt
kðaÞ
Lc2

: ð11Þ

6 Note that ys need not coincide with the empirical distribution of the actions actually chosen at
state s.
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Denote by Nt;a ¼ n � L : ðsn; anÞ ¼ ðt; aÞf gj j the number of stages in the block
where the play visited state t and player 1 played the action a, and by
Nm1 ¼ n � L: m1

n ¼ m1
� ��� �� the number of stages in the block where player 1

observed the signal m1. Since the signal contains the current state and the
chosen action, Nt;a � Nm1 (recall that there is a b such that w1ðt; a; bÞ½m1� > 0).

Note that
PL

i¼1 Wi ¼ Nm1 , while
PL

i¼1 E½WijHi� ¼ Ntxt
k½a�w

1ðt; a; ytÞ½m1�.
Hence, by (11),

P
N1

m

L
�Nt

L
xt
k½a�w

1ðt; a; ytÞ½m1�
����

���� � c
	 


� xt
k½a�
Lc2

:

Keeping a fixed and applying this upper bound for each m1 2 M1, one gets

that, with probability at least 1� jM
1jxt

k½a�
Lc2 , both

Nt;a

L
�Nt

L
xt
k½a�

����

���� < jM
1jc ð12Þ

and

Nm1

L
�Nt

L
xt
k½a�w

1ðt; a; ytÞ½m1�
����

���� < c ð13Þ

hold, for every m1 2 M1. Denote by E0 the corresponding event.
By (10), on E0 one has jqt;a½m1� � w1ðt; a; ytÞ½m1�j < 3jM1j cL

Ntxt
k½a�

, provided
jM1jcL

Ntxt
k½a�w

1ðt;a;ytÞ½m1� < 1=3. Set E1 ¼ E0 \ fNt=L � dg.
Since a 2 AðtÞ, the degree of k 7!xt

k½a� in k, degkðxt
kðaÞÞ, is at most 1� d.

Recall that 1� d < a < 1. Choose c 2 degkðxt
k½a�Þ;

degkðxt
k½a�Þþa
2

� �
. We will use

the estimates we derived in the previous paragraphs with c ¼ kc.
Provided that zk is sufficiently large, when c ¼ kc, we have, on E1,

jM1jxt
k½a�

Lc2
� d
jAj ; and

jM1jcL
Ntxt

k½a�
< g=12 < 1=2: ð14Þ

If in addition w1ðt; a; ytÞ½m1� � g=4; then

jM1jcL

Ntxt
k½a�w

1ðt; a; ytÞ½m1�
< 1=3

Therefore, on E1 one has jqt;a½m1� � w1ðt; a; ytÞ½m1�j < g whenever
w1ðt; a; ytÞ½m1� � g=4.

On the other hand, if w1ðt; a; ytÞ½m1� < g=4, one has on E1, by (12), (13),
and (14)

jqt;a½m1� � w1ðt; a; ytÞ½m1�j � Nm1

Nt;a
þ w1ðt; a; ytÞ½m1�

� Ntxt
k½a�w

1ðt; a; ytÞ½m1� þ cL
Ntxt

k½a� � jM1jcL
þ g=4

� 2
Ntxt

k½a�w
1ðt; a; ytÞ½m1� þ cL
Ntxt

k½a�
þ g=4

� 2w1ðt; a; ytÞ½m1� þ g=6þ g=4 � g
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Thus, for every t 2 S, with probability at least 1� d=jAj, one has
kqt;a � w1ðt; a; ytÞk1 < g whenever Nt=L � d.

Letting a 2 AðtÞ vary, we deduce that

P
Nt

L
� d; or kqt;a � w1ðt; a; ytÞk1 < g 8a 2 AðtÞ

	 

� 1� d:

Since kqt;a � w1ðt; a; ytÞk1 < g implies that j~rkðt; xt
k; ŷ

tÞ � ~rkðt; xt
k; y

tÞj � d, we
conclude that

E
Nt

L
~rkðt; xt

k; ŷ
tÞ � ~rkðt; xt

k; y
tÞ

�� ��
 �

� 2d:

The result follows by summation over t 2 S. j

6.4. The assumption of Theorem 10 is satisfied

We here prove that the inequality (4) holds, so that Theorem 10 can be
applied.

Proposition 12. If zk is sufficiently large the following holds. For every strategy
s of player 2, and every initial state s 2 S,

Es;xk;s½kLr̂ þ ð1� kLÞvkðsLþ1Þ� � vkðsÞ �
e
12

kL:

Proof: All expectations below are taken w.r.t. Ps;xk;s. Suppose zk is large
enough so that (i) kL � d, (ii) 0 � ð1� kÞL � ð1� kLÞ � dkL, (iii)
ð1� kÞL � 1� d, and (iv) the conclusion of Proposition 11 holds. Since
LðzÞ ¼ kðzÞd e�a, limz!1ð1� kðzÞÞLðzÞ ¼ 1, so that (iii) holds, provided zk is
sufficiently large. Since e�x þ ð1� dÞx < 1 in a positive neighborhood of 0, (ii)
holds provided zk is sufficiently large. Under (i)–(iv) one has:

E kLr̂þð1�kLÞvkðsLþ1Þ½ �� vkðsÞþ2jSjdkL ð15Þ

�E k
X

t2S

Nt~rkðt;xt
k;y

tÞþð1�kLÞvkðsLþ1Þ
" #

� vkðsÞ ð16Þ

�E k
X

t2S

Nt~rkðt;xt
k;y

tÞþð1�kÞLvkðsLþ1Þ
" #

� vkðsÞ�dkL ð17Þ

¼E k
X

t2S

Nt~rkðt;xt
k;y

tÞþ
XL

i¼1
ð1�kÞivkðsiþ1Þ�ð1�kÞi�1vkðsiÞ
� �" #

�dkL ð18Þ

¼E k
X

t2S

Nt~rkðt;xt
k;y

tÞþ
XL

i¼1
ð1�kÞi�1 ð1�kÞvkðsiþ1Þ� vkðsiÞð Þ

" #
�dkL ð19Þ

� ð1�kÞLE k
X

t2S

Nt~rkðt;xt
k;y

tÞþ
XL

i¼1
ð1�kÞvkðsiþ1Þ� vkðsiÞð Þ

" #
�2dkL ð20Þ
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¼ð1�kÞLE k
X

t2S

Nt~rkðt;xt
k;y

tÞþ
XL

i¼1
ð1�kÞEqð	jsi;x

si
k ;y

si
i Þ½vkð	Þ�� vkðsiÞ

� �" #
�2dkL ð21Þ

¼ ð1�kÞLE
X

t2S

kNt~rkðt;xt
k;y

tÞþð1�kÞ
X

i:si¼t

Eqð	jt;xt
k;y

t
iÞ½vkð	Þ�� vkðtÞ

 !" #
�2dkL ð22Þ

¼ ð1�kÞLE
X

t2S

Nt k~rkðt;xt
k;y

tÞþð1�kÞEqð	jt;xt
k;y

tÞ½vkð	Þ�� vkðtÞ
� �" #

�2dkL ð23Þ

��2dkL: ð24Þ

The transition from (15) to (16) follows from Proposition 11. The transition
from (16) to (17) holds by (ii). The transitions from (17) to (18) and from (18)
to (19) are immediate. The transition from (19) to (20) holds for the following
reasons: For the first term, observe that ð1� kÞL < 1 and payoffs are non-
negative. For the second term, observe that 0 � ð1� kÞi�1 � ð1� kÞL � d,
while E½ð1� kÞvkðsiþ1Þ � vkðsiÞjHi� � �k, so that their product is at least
�dk. The transition from (20) to (21) holds by the law of iterated expecta-
tions: E½vkðsiþ1Þ� ¼ E½E½vkðsiþ1ÞjHi�� and E½vkðsiþ1ÞjHi� ¼ Eqð	jsi;x

si
k ;y

si
i Þ vkð	Þ½ �.

The transition from (21) to (22) is a simple rewriting. The transition from (22)
to (23) holds by the linearity of q and the definition of y. The transition from
(23) to (24) holds by the optimality of xk.

The proposition follows since d ¼ e=ð24jSj þ 24Þ. j

6.5. The end of the proof: player 1 can guarantee v

We consider the strategy r that was defined in Section 6.1. We let Z be
sufficiently large so that for every k 2 N, Propositions 11 and 12 hold, and for
every s 2 S, the set fa 2 A: xs

k½a� � k=eðkÞg is independent of k, provided
k � kðZÞ. We prove that there exists N0 2 N, such that cnðs; r; sÞ � vðsÞ � 3e
for every s 2 S, every strategy s of player 2, and every n � N0.

Let an initial state s 2 S, and a strategy s be given. All expectations below
are taken w.r.t. Ps;r;s. We first rewrite the conditional average payoff in block
k. Denote by yðkÞ ¼ ðysðkÞÞs2S the empirical mixed moves played by player 2
in block k in the various states (it was previously denoted y). By the law of
iterated expectations, and the linearity of r, one has

E
1

Lk

XBkþ1�1

n¼Bk

rðsn; an; bnÞjHBk

" #
¼ E

1

Lk

XBkþ1�1

n¼Bk

Es;xkk
;s½rðsn; an; bnÞ jHn�jHBk

" #

¼ E
1

Lk

XBkþ1�1

n¼Bk

rðsn; x
sn
kk
; ysn

n ÞjHBk

" #

¼ E
1

Lk

XBkþ1�1

n¼Bk

rðsn; x
sn
kk
; ysnðkÞÞjHBk

" #
: ð25Þ

Set jn ¼ sup k : Bkþ1 � nf g. This is the index of the last block that ends before
or at stage n. One has the identity

Xn

i¼1
ðrðsi;ai;biÞ� R̂iÞ¼

Xþ1

k¼1
1jn�k

XBkþ1�1

i¼Bk

ðrðsi;ai;biÞ� R̂iÞþ
Xn

i¼Bjn

ðrðsi;ai;biÞ� R̂iÞ:
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By the law of iterated expectations, the triangle inequality, since the event
jn � kf g is HBk -measurable, and since payoffs are bounded by 1, this yields

E
Xn

i¼1
ðrðsi; ai; biÞ � R̂iÞ

" #

� E
Xþ1

k¼1
1jn�kE

XBkþ1�1

i¼Bk

ðrðsi; ai; biÞ � R̂iÞjHBk

" #" #
� E n� Bjn þ 1½ �: ð26Þ

By (C2) and the definition of (z_k),

n� Bjn þ 1 � Ljn � ezjn=192 �
eðz0 þ nð1þ e=2ÞÞ

192
:

Moreover, for each k one has by (24), (2) and Proposition 11,

E
XBkþ1�1

i¼Bk

ðrðsi; ai; biÞ � R̂iÞjHBk

" #
¼ E

XBkþ1�1

i¼Bk

ðrðsi; x
si
k ; y

siðkÞÞ � R̂iÞjHBk

" #

� E
XBkþ1�1

i¼Bk

ð~rkðsi; x
si
k ; y

siðkÞÞ � R̂iÞjHBk

" #

� �eLk:

Hence, Eq. (26) implies

E
Xn

i¼1
ðrðsi;ai;biÞ�R̂iÞ

" #
��eE

Xþ1

k¼1
1jn�kLk

" #
�eðz0þnð1þe=2ÞÞ=192��2en;

ð27Þ
where the second inequality holds for n large enough.

By Proposition 12 we can apply Theorem 10, and therefore by (5), one has
E
Pn

i¼1 R̂i
� �

� nðvðsÞ � eÞ. By (26),

E
Xn

i¼1
rðsi; ai; biÞ

" #
� nðvðsÞ � 3eÞ;

which concludes the proof.
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