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Abstract

We analyze a toy class of two-player repeated games with two-sided incom-
plete information. Two players are facing independent decision problems and
each of them holds information that is potentially valuable to the other player.
We study to what extent, and how, information can be exchanged at equilib-
rium. We show that, provided one’s initial information is valuable to the other
player, equilibria exist at which an arbitrary amount of information is exchanged
at an arbitrary high rate. The construction relies on an indefinite reciprocated
exchange of information.

Introduction

Discounted repeated games with incomplete information are not quite well-understood

yet. In the zero-sum framework of Aumann and Maschler (1995), Mayberry (1967)

exhibits an example in which the value depends in a complex way on the discount

factor. Cripps and Thomas (2003), and Peski (2008) look at games with one-sided

information, in which each of the two players knows his own payoff function, and one
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of the two is unsure of the payoff function of the other player. Cripps and Thomas

(2003) prove that a Folk Theorem type of result holds in the limit where the prior

belief converges to the case of complete information. Peski (2008) essentially shows

that all equilibria are payoff-equivalent to equilibria that involve finitely many rounds

of information revelation. Wiseman (2005) looks at situations of common uncertainty.

Players share the same information on the underlying state of nature, and refine this

information by observing actual choices and payoffs. Hörner and Lovo (2009), Hörner,

Lovo and Tomala (2010), and Tomala (2012) provide a characterization of the set of

belief-free equilibrium payoffs.

Our main goal in this paper is to analyze a toy class of simple-looking, yet thought-

provoking, games with two-sided incomplete information. Consider two agents facing

independent repeated decision problems. The two agents are unrelated, except that

each has private information that is valuable for the other. Players can communi-

cate only through their actions, which is costly. Can information be exchanged at

equilibrium?

As an illustration, consider the following two-player discounted repeated game. Two

biased coins C1 and C2 are tossed independently, once, at the outset of the game. The

parameter of each coin is equal, say, to 2
3
. Each player i has to repeatedly guess the

outcome of the coin Ci. A correct guess yields a payoff of 1, while an incorrect guess

yields 0. We assume that only past actions are observed along the play, so that there is

no room for statistical learning/experimentation.1 In addition, we assume away cheap

talk.

To make the game non-trivial, assume that once coins are tossed, each player gets

to learn only the outcome of the other player’s coin. This private information has no

‘direct’ value, since C1 and C2 are independent. In particular, it is an equilibrium for

both players to ignore their private information and to repeat throughout the action

that matches the most likely outcome of the coins. No information is ever exchanged,

and each player’s expected payoff is equal to 2
3
. It is readily checked that this is the

unique belief-free equilibrium payoff.

Since cheap talk is assumed away, private information can be disclosed to the other

player only through one’s own actions. That is, disclosing information requires that a

player conditions his play on the other coin’s outcome, and thus, play both of his actions

with some positive probability. But one of these actions will typically be myopically

1This assumption is discussed at length in, e.g., Mertens (1986).
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suboptimal, in that it will yield a lower expected stage payoff than the other. Therefore,

revelation of information is costly, and the cost depends on the player’s belief on the

outcome of his own coin.2

To illustrate this, let us ask whether a player, say player i, might be willing to ‘tell’

the outcome of Cj to player j at stage 1? The answer is plainly negative: if player j

expects to be told the outcome of Cj in stage 1, his unique best response is to play

his myopically optimal action at stage 1, and from stage 2 on to play according to the

information received from player i in stage 1. But such a strategy does not provide

player i with any information on the outcome of Ci. Since revealing information involves

playing the myopically suboptimal action with positive probability, player i will refuse

to reveal any information in stage 1.

More generally, no player is willing to disclose information, unless he expects to be

reciprocated later with valuable information. That is, no player is willing to be the

last one in disclosing information.3 This suggests that equilibria improving upon (2
3
, 2

3
)

must involve an open-ended gradual exchange of valuable information. In Section 3, we

show how to construct such equilibria and to implement a whole range of equilibrium

payoffs.

The above example is a two-player repeated game with incomplete information on

both sides and pure informational externalities – a player’s payoff depends on the other

player’s information, but not otherwise on the other player’s action. In this paper we

characterize the limit set of sequential equilibrium payoffs for such games. Formally, a

player’s payoff depends only on his type and on his own action. Both types are drawn

independently by nature at the outset of the game; the players receive private signals

on the types’ realizations, and the types remain fixed throughout the game. Along the

play, players repeatedly choose actions, which are publicly disclosed.

Our model is admittedly quite specific, in that it rules out direct strategic inter-

action. This assumption of pure informational externalities plays a dual role. On one

hand, it simplifies the analysis of the model and allows us to study the exchange of

information in isolation from other strategic considerations. On the other hand, such

games are games in which we would least expect that exchange of information might

2The variant in which players are allowed to exchange messages at a fixed cost leads to an analysis
similar to that of the present paper, as we let the cost of messages vanish.

3As is shown later, the fact that a player may be indifferent between both actions does not open
up new possibilities.
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take place. Our main purpose is to come up with new tools and ideas, and we hope

that any positive result in this highly non-generic setup may potentially pave the way

for the analysis of other, more economically relevant set-ups.

Our main result is the following. We prove that, provided that the information held

by each player is valuable to the other player, the limit set of sequential discounted

equilibrium payoffs when players become more and more patient coincides with the set

of all feasible payoffs, that are at least equal to the initial, myopic optimal payoffs. In

the simple example discussed above, this limit set is thus equal to the set [2
3
, 1]× [2

3
, 1].

That is, though the problem is a game of informational externalities and the other

player’s actions do not affect one’s own payoffs, and though transmission of information

is costly, at equilibrium information can be shared. Moreover, the rate of information

exchange can be arbitrarily high relative to the discount rate. Our equilibria share

the following features. Players start by reporting truthfully whatever information they

received on their own state. This leads to a continuation game in which no player

holds private information on his own state. As a result, each player is able to compute

how costly it is for the other player to play his suboptimal action, and is therefore able

to fine-tune his information disclosure policy, so as to provide the other player with

appropriate incentives for disclosing information.

Players next exchange information in an open-ended manner. The analysis presents

two main and mostly independent difficulties. One is to design open-ended equilibrium

processes, according to which information is exchanged. In our construction, the bulk of

information exchange takes place early in the game. Later information disclosure serves

only as a means to compensate for previously incurred costs. The second difficulty

consists in adjusting this continuation play so as to provide the incentives for truthfully

reporting one’s information on one’s own state.

Starting with Crawford and Sobel (1982), the huge literature on strategic informa-

tion transmission and on cheap-talk games addresses issues related to ours. The paper

that is closest to our work is Aumann and Hart (2003). There, prior to playing a game

once, two players, one of whom is informed of the true game to be played, exchange

messages during countably many periods. Aumann and Hart (2003) characterize the

set of equilibrium payoffs. Following an example of Forges (1990), they show that

allowing for an unbounded communication length may increase the set of equilibrium

payoffs. Results of Aumann and Hart (2003) were extended by Amitai (1996) to cheap
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talk with two-sided incomplete information. In particular, Amitai shows that the set

of equilibrium payoffs depends on the size of the message space. There are however

significant differences with our setup. On the one hand, this literature allows the

game to exhibit informational and strategic interaction as well. On the other hand,

communication is costless, unlike here.

The paper is organized as follows. Section 1 contains the model. The main result

is stated in Section 2, and many related issues are discussed there. Section 3 provides

the main insights into the proof, through the detailed discussion of the (generalized)

introductory example. Proofs are provided in the Appendix.

1 Model

We study a class of two-player repeated games with incomplete information. At the

outset of the game, a state of the world is drawn, and the players receive private

information on the realized state. At each stage n ≥ 1, the two players choose actions

from action sets A and B respectively. Actions, and only actions, are then publicly

disclosed.

We are motivated by situations in which one’s private information is valuable to the

other player, and we wish to clarify the extent to which information can be exchanged

between the players out of purely strategic reasons. To this end, we make the two

assumptions A1 and A2 below:

A1 The set of states of the world is a product set, S×T , with elements denoted (s, t).

The payoff of player i only depends on his own action and on the i-th component

of the state. That is, the payoff function of player 1 is a function u : S×A→ R,

while player 2’s payoff is given by a function v : T ×B → R.

A2 Signal sets are product sets, L = L1 ×L2 and M = M1 ×M2. The random triples

(s, l1,m2) and (t, l2,m2) are (stochastically) independent.4

Given these assumptions, the game is played as follows. At stage 0, nature chooses

independently (s, l1,m1) and (t, l2,m2) according to prior distributions p ∈ ∆(S×L1×
M1) and q ∈ ∆(T × L2 ×M2) respectively; player 1 is told (l1, l2) and player 2 is told

4Whenever useful to distinguish random variables from their realizations, we use bold letters for
the former.
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(m1,m2). At each stage n ≥ 1, players choose actions an ∈ A and bn ∈ B and the pair

(an, bn) is publicly announced.

Assumptions A1 and A2 are restrictive. Assumption A1 ensures that the game

has pure informational externalities: player 1 cares about player 2’s behavior only to

the extent that it conveys information about s. An alternative interpretation of the

model is that each player is facing a repeated decision problem.

According to assumption A2, these two decision problems are independent. This

independence assumption is common in games with two-sided information, see e.g.

Zamir (1992). Besides allowing for tractability, assumption A2 implies that behaving

myopically is an equilibrium. Indeed, the (interim) belief of player 1 on his state s

depends only on l1. By assumption A2, repeating an action that maximizes E[u(s, a) |
l1] is not informative about (t, l2). The belief held by player 2 on t does not change

along the play, and it is a best-reply to repeat an action that maximizes E[v(t, b) | m2],

and vice-versa.

Strategies of the two players will be denoted σ and τ respectively throughout. A

behavior strategy of player i maps his private information and the public history of past

actions, into a mixed action. Accordingly, behavior strategies are maps σ : L ×H →
∆(A) and τ : M ×H → ∆(B), where H = ∪n≥0(A×B)n is the set of finite sequences

of action profiles. Every strategy profile (σ, τ) (together with the prior distributions p

and q) induces a probability distribution over the set of infinite plays. Expectations

under this distribution are denoted by Ep,q,σ,τ . The expected payoff of player 1, say, is

thus equal to (1−δ)Ep,q,σ,τ

[
∞∑

n=1

δn−1u(s, an)

]
, where δ ∈ [0, 1) is the common discount

factor.

2 Main results and comments

The main question we ask is whether and how valuable information can be exchanged

at equilibrium. Our main result is a characterization of the limit set of sequential

equilibrium payoffs, as players become very patient. Loosely put, it reads as follows.

Provided that each player holds information that is valuable to the other, a Folk The-

orem holds. Information can thus be exchanged, at an arbitrarily high rate, when

players are patient enough.
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2.1 Valuable information

In equilibrium, a player will play a myopically suboptimal action only if he expects

to receive information in return, the marginal value of which offsets the cost incurred

when playing the suboptimal action. In particular, a necessary condition for improving

upon myopic play is that each player holds information that is valuable to the other.

We here formalize this insight.

Consider player 1 at the interim stage, after observing l = (l1, l2). In the absence

of additional information, his highest payoff is

u?(l1) := max
a∈A

E[u(s, a) | l1]. (1)

If player 1 could observe m1 as well, this highest payoff would instead be equal to

maxa∈A E[u(s, a) | l1,m1]. Thus, from an interim perspective, the marginal value of

the information held by player 2 is u??(l1)− u?(l1), where

u??(l1) := E[max
a∈A

E[u(s, a) | l1,m1] | l1].

The payoff u?(l1) is a function of the posterior belief of player 1 given l1. The inequality

u??(l1) ≥ u?(l1) always holds.

Definition 1 The information held by player 2 is valuable to player 1 at l1 ∈ L1 if

u??(l1) > u?(l1). (2)

Condition (2) is an interim requirement. It holds if and only if, after observing l1,

player 1 assigns positive probability to the event that his optimal action would change,

if he were to learn m1.

The ex ante value of the information held by player 2 is thus u?? − u?, where

u?? := E[u??(l1)], and u? := E[u?(l1)]. Plainly, one has u?? ≥ u?, and u?? > u? if and

only if the information of player 2 is valuable to player 1 at some l1 ∈ L1.

The functions v?(m2), v??(m2), and their expectations v?, v?? are defined in a sym-

metric way.

2.2 Main results

We now state our main result.
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Theorem 1 Assume that u??(l1) > u?(l1) and v??(m2) > v?(m2) for every l1 ∈ L1 and

m2 ∈ L2. Then, as δ → 1, the set of sequential equilibrium payoffs converges to the set

[u?, u??]× [v?, v??].

More generally, introduce the sets

L̃1 := {l1 ∈ L1, u??(l1) > u?(l1)} and M̃2 := {m2 ∈M2, v??(m2) > v?(m2)}.

The set L̃1 is the set of signals at which the information held by player 2 has a positive

value to player 1.

Theorem 2 Assume that the sets L̃1 and M̃2 are both non-empty. Then any payoff

in the interior of [u?, u?(1 − q(M̃2)) + v??q(M̃2)] × [v?, v?(1 − p(L̃1)) + v??p(L̃1)] is a

sequential equilibrium payoff for each δ close enough to 1.

A few observations are in place. Note first that (u?, v?) is the minmax point of

the repeated game. Indeed, player 1 can guarantee u? by repeating an action that

maximizes E[u(s, a) | l1], ignoring player 2’s actions. And player 2 can bring player 1’s

payoff down to at most u? – using any non-revealing strategy (that does not depend

on m1).

Note next that the limit set of feasible and individually rational payoffs is equal

to [u?, u??] × [v?, v??]. Thus, players can achieve payoffs arbitrarily close to (u??, v??)

(as δ → 1) by disclosing l2 and m2 in the first stages, and by then playing myopically.

Thus, Theorem 1 states that a Folk Theorem holds when each player always values the

information held by the other player.

Theorem 2 generalizes this finding. As soon as there is a positive ex ante probability

that a player will value the other player’s information, there exist equilibria in which

players engage in information exchange. Theorem 2 also shows that, to some extent,

the Folk Theorem holds only if each player always values the other’s information. The

logic again is that a player will not be willing to bear the cost of disclosing information

if he does not value the information held by the other player. Thus, player 2’s payoff

cannot exceed v? unless l1 ∈ L̃1, and vice-versa. Yet, Theorem 2 does not provide a

general characterization of the limit set for the following reason. It might be the case

that l1 /∈ L̃1, and the maximum in (1) is achieved at two different actions. In such a

knife-edge case, player 1 can costlessly disclose information to player 2.

The extension to an arbitrary number of players is outside of the scope of the paper.

With more than two players, there exist cases where some player i holds no private
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information, yet receives information in equilibrium. The basic intuition is that player

i may receive information from some other player j, who is compensated by a third

player k.

Throughout we rely on the following leading example, already discussed in the

Introduction.

Leading example: All four sets S, T,A and B are equal to {0, 1}. A player’s payoff,

say player 1’s payoff, is 1 if his action matches his state (s = a) and 0 otherwise (s 6=
a). For illustration purposes, we will use the leading example with various signalling

structures. Note that u?(l1) = max{pl1 , 1 − pl1}, where pl1 := p(s = 1 | l1) is the

probability assigned to state s = 1 when observing l1. The action a = 1 (resp., a = 0)

is myopically optimal if and only if pl1 ≥ 1
2

(resp., pl1 ≤ 1
2
).

The introduction discusses the case where each player knows the other player’s

state, and does not get any private information on his own state. In that specific case,

one has u?? = v?? = 1, and u? = max{p, 1− p}, v? = max{q, 1− q}, where p is the ex

ante probability of state s = 1. The condition in Theorem 1 thus holds, and the limit

set of sequential equilibrium payoffs is [u?, 1]× [v?, 1].

2.3 Comments

2.3.1 Correlated states

We assume that the states s and t are independent, and our Folk Theorem is not

robust to the introduction of correlation. One obvious reason is that myopic play need

no longer be an equilibrium. Indeed, not only myopically optimal actions may change

along the play, as players may make useful inferences from the other player’s play, but

players may have incentives to manipulate these inferences. Example 1 below provides

a simple illustration of this.

We view our main result to be the claim that efficient exchange of information is

an equilibrium outcome. We believe that this insight is likely to be robust. Indeed,

by imposing assumption A2, we have here “stacked the deck” against the exchange of

information. In a sense, introducing correlation between states may make information

exchange easier to implement. This remains speculative; we have no formal statement

to offer, and challenging technical difficulties emerge in the correlated case.

Leading Example 1
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Consider the following version of the leading example. States and signals are functions

of an auxiliary variable ω, the state of the world, which may take four possible values

ωk, k ∈ {1, 2, 3, 4}. The probabilities of the different values, and the relationship

between ω and states and signals, are as follows:

state of state of

state of nature s of nature t of signal l of signal m of

the world prob. player 1 player 2 player 1 player 2

ω1
1
6

0 0 l̄ m̄

ω2
1
3

0 0 l m̄

ω3
1
3

1 0 l̄ m

ω4
1
6

1 1 l m

When behaving in a myopically optimal way, players play as follows. In stage 1, player

2 plays b = 0. Indeed, the probability he assigns to state t = 0 is either 1 or 2
3
.

Meanwhile, player 1 plays a = 1 if l = l̄, and a = 0 if l = l. Indeed, the probability

assigned to state s = 0 is 1
3

in the former case, and 2
3

in the latter case. In stage 2,

player 1 repeats his stage 1 action. On the other hand, player 2 can deduce ω from

player 1’s stage 1 choice. If player 1 played a = 1, player 2 repeats his stage 1 action.

If instead player 1 played a = 0, player 2 will play either b = 0 or b = 1, depending on

player 2’s information. In the former case, players repeat forever their stage 2 action.

In the latter, player 1 deduces ω from player 2 stage 2’s action, and obtains a payoff

of 1 in all later stages. This creates an incentive for player 1 to deviate in stage 1,

and to always play a = 0, in order to learn the value of ω in stage 3. Thus, it is

not an equilibrium to behave myopically, for sufficiently high discount factors. In this

example, information exchange is a consequence of equilibrium behavior.

2.3.2 Pure strategies

Our construction relies on randomizing as a means of fine-tuning incentives. There

are knife-edge cases where information may be exchanged using pure strategies. Yet

such cases are highly non-generic. As an illustration, consider the version of the lead-

ing example that is described in the introduction.5 Here, myopic play is the unique

pure equilibrium outcome. To see this, assume to the contrary that there is a pure

equilibrium and a stage n, in which at least one of the players first discloses the true

5Each player knows the other state, no player has private information on his own state.
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state. The unique best reply of the other player is to play myopically in every stage,

including stage n, and is therefore a pooling strategy. But the unique best reply to a

pooling strategy is also pooling, a contradiction.

2.3.3 Finite horizon

Our equilibrium constructions rely on an indefinite, gradual and reciprocated exchange

of information, and thus require an infinite horizon. Results for the finite-horizon case

do not seem to be as clear-cut.

In many cases, myopic play is the unique equilibrium outcome when the horizon is

bounded. To illustrate this claim, we state Proposition 1, which applies to (any version

of) the leading example. The proof is in the Appendix.

Proposition 1 Assume that pl1 6= 1
2

and qm2 6= 1
2
, for every l1 ∈ L1 and m2 ∈ M2.

Then for every K ∈ N, (u?, v?) is the unique Nash equilibrium payoff of the K-stage

game.

In this statement, pl1 is the interim probability assigned by player 1 to his own

state being state 1. The meaning of qm2 is similar. Proposition 1 may be rephrased

as follows. If at the interim stage, players always have a unique optimal action, then

myopic play is the unique equilibrium outcome.

Yet, as soon as the setup is enriched, other possibilities arise. As an illustration,

consider the binary example, and add to each action set one action, denoted by 2,

and which yields payoff 2
3

irrespective of the state. The optimal action of player 1, as

a function of the belief assigned to state s = 1, is given by Figure 1 below, and the

structure of player 2’s best-response is similar.

a0 = 0 a2 = 2 a1 = 1

0 1
3

2
3

1

Figure 1: The optimal action of player 1

Assume that the two states are equally likely, that player 1 learns t, and that

player 2 learns s. Suppose that in stage 1 player 1 plays [1
3
(a0),

2
3
(a1)] if t = 0, and

[2
3
(a0),

1
3
(a1)] if t = 1, and suppose that player 2 plays in an analogous way. Player 1’s

belief in stage 2 is either [1
3
(0), 2

3
(1)] or [2

3
(0), 1

3
(1)], depending on player 2’s action in

stage 1. In the former case,6 we let player 1 play either a0 or a2 depending on t. In

6We let player 1 repeat a2 forever if player 2 played b2.
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the latter case, we let player 1 play either a1 or a2, depending on t. Let the behavior

of player 2 in stage 2 be analogous. Provided δ is high enough, this strategy pair is an

equilibrium, in which players exchange all information in two stages.

2.3.4 Observed payoffs

We assume that payoffs are not observed. This is consistent with most of the literature

on repeated games with incomplete information, see e.g. Aumann and Maschler (1995),

Hart (1985) or more recently, Hörner and Lovo (2009). Cripps and Thomas (2003) and

Peski (2008) look at games with one-sided information, in which each of the players

knows his own payoff function, and one of the two is unsure about the payoff function

of the other – again, payoffs are not observed along the play.

There are exceptions. In Wiseman (2005), there is incomplete but symmetric in-

formation about the state of the world, and payoffs are publicly observed as they are

received. The focus is on strategic learning. Strategic experimentation games, also

known as bandit games, are another exception. Similar to our model, these are in-

complete information games with pure informational externalities. A distinguishing

feature is that payoffs are random and observed. Most attention has been paid to the

symmetric information setting. Here again, there is no privately held information. We

refer to Bergemann and Valimaki (2008) for an overview.

2.3.5 Contribution games

There is an analogy between our games and dynamic games of public good contributions

(see, e.g., Admati and Perry (1991), Marx and Matthews (2000)) or dynamic resolution

of the hold-up problem (see, e.g., Che and Sakovics (2004) or Pitchford and Snyder

(2004)). Information disclosure is costly and has to be reciprocated, just as contribu-

tions are. Consequently, in the two setups, the pattern of disclosure/contributions has

to be gradual and open-ended. This analogy should not be over-emphasized. Contri-

bution games exhibit strategic externalities, whereas our games do not. The intricacy

of our analysis instead stems from incomplete information.

According to Theorem 1, there exist equilibria in which most information is ex-

changed with an asymptotically negligible delay. This stands in contrast to conclusions

for contribution games, see Compte and Jehiel (2004). The driving force behind this

difference is the following. Here, the cost of disclosing information is the opportu-

nity cost of playing a suboptimal action, while the amount of information thus being
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disclosed depends on how correlated actions are with private information. Thus, the

cost and amount are in a sense ”orthogonal”. By contrast, there is a one-to-one link

between the cost of a given contribution, and the amount being contributed.

3 The analysis of the leading example

We illustrate the main ideas of the proof with the leading example: states and actions

are binary, and a player gets a payoff of 1 when his action matches his state. In

addition, we assume throughout this section that each player knows the other state.

The complete proofs of Theorems 1 and 2 are given in the Appendix.

Given a strategy profile, we denote by pn the belief of player 1 at stage n – the

posterior probability of s = 1, given the information of player 1. Thus, we have

u?(l1) = max{p1, 1− p1} and u?? = 1. The belief of player 2 is denoted qn. For each

stage n, we abuse notations and denote by u?(pn) := maxa∈A u(pn, a) the optimal payoff

in stage n, where u(pn, a) := Epn [u(·, a)] is the mixed extension of u. As a supremum

of affine functions, u?(·) is convex. An action a is (myopically) optimal at stage n if

u(pn, a) = u?(pn). It is suboptimal otherwise.

We start in Section 3.1 by discussing the case where players have no private infor-

mation on their own state (that is, the sets L1 andM2 are singletons) – the self-ignorant

case. Thus, the beliefs pn and qn are common knowledge at stage n. This enables a

player to compute the opportunity costs incurred by the other player, and to adjust ac-

cordingly the amount of information he discloses. We next deal in Section 3.2 with the

more general case, where players receive private information on their own state. Build-

ing on Section 3.1, we show how to devise equilibria in which players report truthfully

this private information.

3.1 No private information on one’s own state

Since each player knows the other player’s state, and has no private information on his

own state, we may identify the distribution p with the ex ante probability of the state

s = 1, and identify q with the probability of state t = 1. For concreteness, we assume

that p > 1
2

and q > 1
2
.
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3.1.1 A first equilibrium profile

We here construct one equilibrum profile that will later serve as a building block.

Starting with player 1, players randomize in turn, so long as the randomizing player

plays his currently suboptimal action. As soon as this fails to be the case, players stop

randomizing and repeat their optimal action. Thus, the play path looks as follows.

In a first phase of random duration, player 1 plays suboptimally in odd stages, and

optimally in even ones, while player 2 plays optimally and suboptimally in odd and

even stages respectively. In a second phase, players repeat their optimal actions. The

equilibrium logic is that suboptimal play in any stage is reciprocated by information

in the following stage.

For tractability, we design the randomizations in such as way that the evolution of

beliefs (and of randomizations) follows a cyclical pattern in Phase 1. The evolution of

beliefs on the play path is illustrated in Figure 2. It involves a few parameters, x̄, x,

p∗ and q∗, that will later be chosen so as to meet equilibrium requirements.

p, q

p, 1− q

p, q∗

1− p, 1− q

p∗, 1− q

1− p, q

1− p, 1− q∗

p, q

1− p∗, q

p, 1− q

p, q∗

a = 0

b = 1

a = 1

b = 0

a = 0

a = 1

b = 0

a = 0

b = 1

a = 1

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 2: The play as long as both players play suboptimally.

How to read Figure 2? Start with stage 1. Player 2 plays his optimal action (which

is b = 1 since q > 1
2
), and the belief of player 1 in stage 2 is equal to p, as in stage 1.

Meanwhile, player 1 randomizes and plays the suboptimal action a = 0 with probability

x̄ if t = 1, and x if t = 0, and player 2 updates his belief to q2 = 1− q or to q2 = q∗,

depending on the action choice of player 1.

Roles are reversed in stage 2. If player 1 played the optimal action a = 1 in stage 1,

players stop randomizing and repeat their optimal actions a = 1 and b = 1. If instead
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player 1 played the suboptimal action a = 0, player 2 randomizes and assigns to the

suboptimal action, which is now b = 1, a probability of ȳ if s = 1 and of y if s = 0.

Consider next stage 3, and assume that a = 0 was played in stage 1. If the optimal

action b = 0 was played in stage 2, players repeat their optimal actions, which are

a = 1 and b = 0. Otherwise, player 1 reciprocates and plays as in stage 1, with the

roles of states/actions being exchanged. That is, following the same logic as in stage

1, the probability assigned to the suboptimal action (which is now a = 1) is set to x̄ if

the true state t is the one that player 2 currently considers more likely (state 0), and is

set to x otherwise. This ensures that the belief of player 2 in stage 4 is equal to either

q or 1− q∗. And so on. Observable deviations are ignored.

We now discuss the parameter values. Two sets of conditions have to hold. To start

with, for given q∗ > q, the values of x̄ and x should be set to x̄ =
1− q

q
× q∗ − q

q + q∗ − 1
∈

(0, 1) and x =
q

1− q
× q∗ − q

q + q∗ − 1
∈ (0, 1), so that Bayesian updating by player 2

leads to the desired beliefs 1 − q and q∗ respectively.7 From the perspective of player

2, the suboptimal action is then played with probability x := qx̄ + (1 − q)x. (One

can check that x and q∗ satisfy q = x(1− q) + (1− q)x, which reflects the martingale

property of beliefs.) Similarly, ȳ and y are given by ȳ =
1− p

p
× p∗ − p

p+ p∗ − 1
and

y =
p

1− p
× p∗ − p

p+ p∗ − 1
.

Next, the parameter values should be adjusted to ensure that a player is indifferent

whenever randomizing. For concreteness, consider stage 1. Indifference dictates that

the discounted payoff when playing the suboptimal action a = 0 be equal to u?(p).

Similarly, the indifference requirement in stage 3 dictates that the continuation payoff

of player 1 following a = 0 and b = 1 be equal to u?(1 − p), which is equal to u?(p).

The overall payoff when playing a = 0 in stage 1 is thus equal to

(1− δ)(1− u?(p)) + δ(1− δ)u?(p) + δ2 {yu?(p) + (1− y)u?(p
∗)} ,

where the first two terms are the contributions of the first two stages, and the last one

is the continuation payoff, which is given by u?(p) and u?(p
∗) with probabilities y and

7Note for instance that the likelihood ratio of the two states following a = 0 is then given by
q2

1− q2
=

x̄

x
× q

1− q
=

1− q

q
, so that q2 = 1− q, as claimed.
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1− y respectively. Equating this expression with u?(p) = max{p, 1− p} leads to

p∗ = p+ (2p− 1)
1− δ

δ2 + δ − 1
.

The same reasoning applied to player 2 yields q∗ = q + (2q − 1)
1− δ

δ2 + δ − 1
.

The values of p∗ and of q∗ must belong to [0, 1]. This is the case as soon as

εδ ≤ p, q ≤ 1− εδ, with εδ :=
1− δ

δ2 + δ − 1
. Not surprisingly, initial beliefs should not be

too precise. It is straightforward to check that, as soon as the latter condition is met,

these strategies are indeed in equilibrium.

Observe that, while the payoff to player 1 is u?(p), the payoff to player 2 is

f(q) := (1− δ)v?(q) + δ (xv?(q) + (1− x)v?(q
?))

= v?(q) +
1− δ

δ
(2v?(q)− 1) ,

so that f(q) > v?(q).

By exchanging the roles of the two players in the construction we obtain an equi-

librium with payoff (f(p), v?(q)).

3.1.2 Further equilibrium payoffs

We here build on the previous section, and explain how to implement many equilibrium

payoffs. We proceed in two steps.

We first show how to implement arbitrary payoffs for player 2, while keeping the

equilibrium payoff of player 1 equal to u?(p). As before, let p, q ∈ (0, 1) be fixed, with

p, q > 1
2
. Take any q, q̄ ∈ (0, 1] such that q < q < q̄, and let δ be high enough so that

p, q ∈ [εδ, 1 − εδ]. Consider the following strategy profile. In stage 1, player 2 plays

the optimal action, b = 1, and player 1 randomizes in such a way that the belief of

player 2 in stage 2 is equal to q and q̄ following a = 0 and a = 1 respectively. (The

existence of such randomizations was first established in Aumann and Maschler (1995),

see the so-called splitting lemma.) Following a = 1, the players switch in stage 2 to

indefinite myopic play, with a payoff vector of (u?(p), v?(q̄)). Following a = 0, the

players switch in stage 2 to “the” equilibrium that implements the equilibrium payoff

(f(p), v?(q)) in the game with initial beliefs p and q. Equilibrium properties are derived

from the following two insights. Given the first stage behavior, beliefs are either (p, q)

or (p, q̄) in stage 2, hence the continuation strategies form indeed an equilibrium in the
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continuation game. On the other hand, the function f(·) satisfies the identity

u?(p) = (1− δ)(1− u?(p)) + δf(p). (3)

Observe that the left-hand side of Eq. (3) is the overall payoff of player 1 when playing

a = 1 in stage 1, while the right-hand side is the overall payoff when playing a = 0.

Hence, by Eq. (3), player 1 is indifferent between his actions in stage 1, as claimed.

The equilibrium payoff of player 2 is given by

(1− δ)v?(q) + δ
(
(1− x)v?(q) + xv?(q̄)

)
,

where x is the unconditional probability that player 1 chooses action 1 at stage 1. Since

εδ → 0 as δ → 1, q and q̄ may be chosen arbitrarily in (0, q) and (q, 1] respectively,

and the set of corresponding equilibrium payoffs for player 2 converges to the interval

[v?(q), 1]. By symmetry, the limit set of equilibrium payoffs also contains the set

[u?(p), 1]× {v?(q)}.
We now amend slightly this construction in order to implement equilibrium payoffs

that improve upon (u?(p), v?(q)) for both players. Take any q, q̄ ∈ (0, 1) such that

q < q < q̄ and let γ be any payoff in the interval [u?(p), 1). Given a discount factor δ,

we define γ̄δ > γ by the identity

u?(p) +
δ

1− δ
γ = (1− u?(p)) +

δ

1− δ
γ̄δ. (4)

Note that γ̄δ → γ as δ → 1.

Consider the following strategy profile (σ, τ), which is well-defined for δ high enough.

Stage 1 is identical to that in the previous construction, and we consider stage 2.

Following a = 1, the players switch to an equilibrium profile with payoff (γ, v?(q̄)) of

the game with initial distributions p and q̄. Following a = 0, the players switch to an

equilibrium profile with payoff (γ̄δ, v?(q)) of the game with initial distributions p and

q.

Again, beliefs in stage 2 are either (p, q) or (p, q̄) hence continuation strategies are

in equilibrium in the continuation game. On the other hand, the relation (4) between

γ and γ̄δ ensures that player 1 is indifferent in stage 1. This implies that (σ, τ) is an

equilibrium.

Equilibrium payoffs are (1− δ)u?(p)+ δγ for player 1, and, as before, (1− δ)v?(q)+

δ
(
(1− x)v?(q) + xv?(q̄)

)
for player 2. The limit set of such payoffs as δ → 1 is equal

to [u?(p), 1]× [v?(q), 1], as desired.
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3.2 Private information on one’s own state

We here discuss a more general version of the leading example. We maintain the

assumption that each player knows the other state, but assume that each player receives

in addition a private signal on his own state. The constructions below are based on the

insight that incentives can be provided to report truthfully this private information.

We start with a preliminary digression on the provision of incentives. If l1, l
′
1 ∈ L1

are two signals following which beliefs of player 1 are the same, then the two signals

l1 and l′1 are equivalent for all relevant purposes. In particular, merging them into

a single signal does not affect the set of equilibrium payoffs. Consequently, we will

assume that p(· | l1) 6= p(· | l′1) for every two l1 6= l′1 ∈ L1 and that a similar condition

holds for player 2.8 Under this assumption, there exists a map x : L1×S → (0, 1) such

that for every l1 ∈ L1, the map λ 7→ E[x(λ, s) | l1] is uniquely maximized for λ = l1.

That is, if player 1 is asked to report a signal, and expects to receive the payoff x(λ, s)

as a function of his report λ and the state s, then truth-telling is a strictly dominant

strategy.

All of our equilibria share a common structure. We describe its main features,

focusing on the equilibrium path, that is, at private histories which are consistent with

equilibrium play.9

Equilibrium play is divided into four phases.

Phase 1 Players report truthfully l1 and m2 respectively, by means of encoding them

into finite sequences of actions.

Phase 2 is divided into two subphases. Each player sends a message (encoded as a

series of actions) in Phase 2.1, and next reacts in Phase 2.2 to the message he received in

Phase 2.1. We describe player 1’s strategy, the definition for player 2 being symmetric.

In Phase 2.1, player 1 sends a message from the set T ∪{�} (where � is some extra

symbol), which is determined as follows. Player 1 first decides (randomly) whether

to disclose some information in Phase 2.1, or not. In the latter event, player 1 sends

8The notion of equivalent signals has to be adjusted when signalling structures and payoff functions
are arbitrary; see the Appendix for more details.

9A player reacts to an observable deviation by the other, by repeating the same myopic optimal
action afterwards, that is, indefinite punishment. Thus, following one’s own observable deviation, it
is optimal to play myopically in all following stages. After deviating in an unobservable way, a player
plays a best reply to the continuation strategy of the other. We make no attempt at describing this
best-reply.
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the uninformative signal �. In the former event, player 1 draws t̃ ∈ T , and sends the

message t̃. The variable t̃ is a noisy, but precise, signal on t. That is, the conditional

law of t̃ given t has full support and assigns high probability to t.

In Phase 2.2, player 1 plays a deterministic sequence of actions which contains a

fraction x(̃s, λ) of each action a = s̃, where λ is the report of player 1 in Phase 1.

The durations of Phase 1 and of Phase 2.1 are dictated by the need for encod-

ing: Phase 2.1 lasts two stages, and the length of Phase 1 does not exceed 1 +

log2 max{|L1|, |M2|}. On the other hand, the length of Phase 2.2 will be adjusted

to the discount factor, in such a way that its contribution to the overall discounted

payoff is small, yet bounded away from zero.

We make a few remarks. When taking only these first two phases into account,

and ruling out deviations in Phase 2.2, it is a dominant strategy to report truthfully

in Phase 1, as soon as s̃ and t̃ are sufficiently correlated with s and t, and δ is high

enough.

We next comment on the design of Phase 2.1. Adding noise in the distribution of t̃

given t allows player 1 to retain private information on t. This information will be used

as a tool to deter deviations in player 2 in Phase 2.2. To be specific, any deviation

in Phase 2.2 is observable, and puts an end to the exchange of information, while

appropriate behavior in Phase 2.2 is rewarded in later phases by further information.

The main role of the uninformative message � is to allow this construction to

implement arbitrary equilibrium payoffs, and not only those close to the Pareto frontier.

Phase 3 lasts only one stage. Player 1 sends a message t̂ ∈ T . The conditional

distribution of t̂ given t and the message sent by player 1 in Phase 2.1 has full support,

and is independent of the initial report of player 2.

We denote by N the first stage of Phase 4. Players 1 and 2 compute the beliefs

qN and pN held by the other player at stage N , assuming that initial reports in Phase

1 were truthful. At that stage, they switch to an equilibrium of the self-ignorant

game with initial distributions pN and qN . This continuation equilibrium is chosen

to yield a payoff close to the myopic one (u?(pN), v?(pN)), and fine-tuned to provide

the appropriate incentives for randomizations in the earlier stages. To be precise, fix a

public history hN up to stage N . For each stage n < N , excluding all stages from Phase

19



2.2, player 1 computes the belief qn held by player 2 at stage10 n and the opportunity

cost incurred by player 2 at that stage, defined as the difference v?(qn) − v?(qn, bn)

between the myopic payoff at stage n, and the payoff of player 2 in that stage. Player

1 adds a “bonus” b2(hN) to v?(qN) to compensate for each of these opportunity costs,

and to ensure that the discounted sum of payoffs received in Phases 1, 2.1 and 3, and

of the continuation payoff v∗(qN) + b2(hN) in Phase 4 is independent of the specific

sequence of actions of player 2 along hN .

We now provide some insights into why equilibrium properties hold. By construc-

tion, no strategy that first deviates in Phase 4 can be a profitable deviation, and we

accordingly focus on deviations in earlier stages.

Assume that player 1 makes an observable deviation in some stage n < N . Assume

first that n does not belong to Phase 2.2. Since observable deviations are triggered

by myopic play, the payoff of player 1 when deviating11 is at most (1 − δ)u?(pn) +

δE[u?(pn+1) | hn, l1]. This continuation payoff will not exceed the “equilibrium” con-

tinuation payoff, thanks to the bonus in Phase 4, the convexity of u?, and martingale

properties of the sequence of beliefs.

If n instead belongs to Phase 2.2, the overall continuation payoff of player 1 when

deviating is at most u?(pn). We have little control on the incentivizing payoff x(λ, s) in

Phase 2.2, and the actual payoff of player 1 in that phase may well be below u?(pn). As

explained above, such deviations are deterred by the threat of no further information.

For this threat to be effective, Phase 2.2 should not be too long. This puts a (mild)

constraint on the length of Phase 2.2, as a function of the residual information held by

player 2.

We now discuss unobservable deviations. Assume first that player 1 reports truth-

fully in Phase 1, but deviates in either Phase 2.1 or Phase 3. Thanks to the bonus added

in Phase 4, player 1 is indifferent between his two actions in any of the corresponding

stages.

Assume instead that player 1 chooses to misreport his private information in Phase

1. By design, the information received from player 1 in Phases 2.1 and 3 is independent

of player 1’s report. Next, by design also, the bonuses b1(hN) and b2(hN) in Phase 4 are

of the order of (1−δ), hence continuation strategies in Phase 4 entail little information

10Assuming truthful reporting in Phase 1
11It might be the case that player 2 discloses information in stage n, so that pn+1 need not be equal

to pn.
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disclosure. In the Appendix, we will show that the continuation payoff of player 1 in

Phase 4 following his untruthful report is then of the order of u?(pN)+(1− δ)C, where

pN is the actual belief of player 1 at stage N , and C is some constant independent of

δ. Thus, the total gain in Phases 1, 2.1, 3 and 4 from untruthful reporting is at most

of the order of 1− δ. On the other hand, the loss in Phase 2.2 is bounded away from

zero, independently of δ. Such deviations therefore fail to be profitable, provided δ is

high enough.

The previous discussion highlighted the need for a careful choice of the various

parameters. We here add some partial explanations on this issue. Let γ1, γ2 < 1 be

the desired equilibrium payoffs. First, the level of noise in the conditional distribution

of s̃ and t̃ is set low enough, so that truthful reporting in Phase 1 is the unique way to

maximize payoffs in Phase 2.2. Second, the weight of Phase 2.2 is set small enough, so

that the value of the residual information held by the players after phase 2.1 is valuable

enough to deter observable deviations in Phase 2.2. Third, the discount factor should

be large enough so that the loss incurred in Phase 2.2 when misreporting exceeds the

potential gains in Phase 4. Finally, the randomizations in Phase 3 (and the weight

assigned to � in phase 2.1) are fine-tuned so as to induce the desired payoffs γ1 and

γ2.
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Appendix

We follow as closely as possible the structure of the text. We devote the first two

sections to the proof of Theorem 1. We start in Section A with the analysis of self-

ignorant games, in which players receive no private information on their own state. In

Section B, we build on this analysis to deal with general games. In Section C, we show

how Theorem 2 follows from the proof of Theorem 1.

A Self-Ignorant Games

We assume throughout the Appendix that all payoffs are in [0, 1]. We here deal with

self-ignorant games. Equivalently, both sets L1 and M2 are singletons. For simplicity,

we here write L and M instead of L2 and M1. We recall that, being the value function

of a decision problem, u?(p) is convex in p.
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Let initial distributions p ∈ ∆(S ×M) and q ∈ ∆(T × L) be given. We denote the

corresponding game by Γ(p, q). W.l.o.g. we assume that p(m) > 0 for each m ∈M .12

We assume that the information of each player i is valuable to player j. Since

Γ(p, q) is a self-ignorant game, this is equivalent to assuming that there is no action

a ∈ A that is optimal at all distributions pm := p(· | m), m ∈ M . Equivalently, one

has

u? = u?(p) < u?? =
∑
m∈M

p(m)u? (pm) . (5)

By Bayes’ rule, the belief pn on (s,m) of player 1 at stage n is the weighted average

of {pm ⊗ 1m,m ∈ M}, where the weight of pm ⊗ 1m is equal to the probability that

the signal of player 2 is m, given player 1’s information at stage n.13 Thus, the set of

possible values of pn is

∆†(S ×M) := conv{pm ⊗ 1m,m ∈M}. (6)

Because p(m) > 0, p lies in the (relative) interior of ∆†(S ×M), which we denote by
◦
∆
†
(S ×M). We set ql := q(· | l) for l ∈ L, and the set ∆†(T × L) is defined in a

symmetric way.

It is convenient to allow the initial distribution to vary, to account for the fact that

beliefs may change along the play. Since all beliefs lie in ∆†(S ×M) and ∆†(T × L),

we will only consider initial distributions in these sets. We still denote arbitrary such

distributions by p and q.

In this section, we prove the two propositions below.

Proposition 2 Let p ∈
◦
∆
†
(S ×M) and q ∈

◦
∆
†
(T × L) be given. There exists ε > 0

and δ̄ < 1 such that the following holds. For every δ ≥ δ̄, every payoff vector in

[u?(p), u?(p) + ε]× [v?(q), v?(q) + ε] is a sequential equilibrium payoff of Γ(p, q).

Given p, q, a discount factor δ and a payoff vector γ that satisfy the conditions

of Proposition 2, we will construct an equilibrium profile (σp,q,γ, τp,q,γ) in Γ(p, q), with

payoff γ. Proposition 3 bounds the possible gain of player 1 if player 2 follows τp,q,γ

but has an incorrect belief on p.

12And that q(l) > 0 for each l ∈ L; to avoid useless repetitions we sometimes state properties for
player 1, with the implicit understanding that analogous properties hold for player 2 as well.

13This is a way of stating that, as the play proceeds, the belief of player 1 on m evolves, but the
distribution of s conditional on m remains equal to p(· | m).
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Proposition 3 Let p ∈
◦
∆
†
(S ×M), q ∈

◦
∆
†
(T × L) and c > 0 be given. There exists

a constant C > 0 and δ̄ < 1 with the following property. For every discount factor

δ ≥ δ̄, every payoff vector γ such that ‖γ − (u?(p), v?(q))‖∞ ≤ (1 − δ)c, and every

p′ ∈ ∆†(S ×M), one has14

γ1
δ (p

′, q, σ, τp,q,γ) ≤ u?(p
′) + (1− δ)C, for every strategy σ.

In Propositions 2 and 3 as just stated, ε, C and δ̄ may depend a priori on the choice

of (p, q). We will prove in addition that they can be chosen in such a way that the

conclusions hold uniformly throughout some neighborhoods of p and q.

A.1 Notations and Preliminaries

We here start with the proof of Propositions 2 and 3, which closely mimics the analysis

of the binary case in Section 3.1. We let [p0, p1] be any segment in the interior of

∆†(S×M) such that u? is not affine on the segment [p0, p1]. The beliefs p0 and p1 take

the role of p and 1− p in the binary case.

An optimal action a at p0 is not optimal at p1 (and vice-versa). Otherwise, a would

be optimal throughout the segment [p0, p1], and then u? would coincide with the affine

map u(·, a) on that segment.

For k = 0, 1, we let ak ∈ A be an optimal action at pk. We denote by D1 the

straight line spanned by p0 and p1 in RS×M , and we denote by p and p̄ the endpoints

of the segment D1 ∩∆†(S ×M), with the convention of Figure 3.

p
p

p1
p0

∆(S ×M)

∆†(S ×M)

14Recall that γ1
δ is the δ-discounted payoff of player 1 in the whole game.
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Figure 3

Let π ∈ [p0, p̄], and assume that player 1 receives information that changes his

belief from p0 to either p1 (with probability y) or π (with probability 1 − y). For the

martingale property of beliefs to hold, we must have p0 = yp1 + (1 − y)π. Assume

moreover that from the next stage on player 1 receives his myopically optimal payoff.

The marginal gain of player 1 from the information that is revealed to him (relative to

his myopically optimal payoff at p0), is then hp0(π) = (yu?(p
1) + (1− y)u?(π))−u?(p

0).

Since u? is convex, hp0(π) ≥ 0 for each π. Since u? is not affine on the interval [p0, p1],

one also has hp0(π) > 0 for π ∈ (p0, p̄], see Figure 4. In addition, hp0 is piecewise affine,

and non-decreasing as π moves away from p0 towards p̄.

hp0(π)
u?(p0)

yu?(p1) + (1− y)u?(π)

u∗

p p1 p0 π p

Figure 4

Similarly, define hp1 : [p1, p] → R+ by hp1(π) = (yu?(p
0) + (1− y)u?(π)) − u?(p

1),

where y solves p1 = yp0 + (1− y)π.

We proceed in a symmetric way with player 2. We let [q0, q1] be an arbitrary

segment in the interior of ∆†(T × L) such that the restriction of v? to the segment

[q0, q1] is not an affine map. We denote by D2 the straight line in RT×L spanned by q0

and q1, and by q, q̄ the endpoints of the segment D2 ∩ ∆†(T × L). Finally, we define

hq0 : [q0, q̄] → R+ and hq1 : [q1, q] → R+ by adapting the definitions of hp0 and hp1 .

Given a belief π ∈ ∆(S ×M), and an action a ∈ A, the cost of a at π is defined as

the loss incurred when playing a instead of the optimal action at π:

c(π, a) := u?(π)− u(π, a).

The cost c(π, b), for π ∈ ∆(T × L) and b ∈ B, is defined analogously.

The proof of Propositions 2 and 3 relies on Lemmas 1 and 2 below.
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Lemma 1 Let δ < 1 be such that
1− δ

δ
c(pi, aj) < maxhpi and

1− δ

δ
c(qi, bj) <

maxhqi, for i, j = 0, 1. Then the vector (u?(p
0), v?(q

0) + 1−δ
δ
c(q0, b1)) is a sequential

equilibrium payoff of Γ(p0, q0).

Lemma 2 Let ε > 0 be such that ε < maxhpi, and ε < maxhqj for i, j = 0, 1. There

is δ̄ < 1, such that for every discount factor δ ≥ δ̄, every payoff in [u?(p
0), u?(p

0) +

ε]× [v?(q
0), v?(q

0) + ε] is a sequential equilibrium payoff of Γ(p0, q0).

We will prove that the conclusion holds uniformly for all initial distributions p̃i,

q̃j close to pi and qj. To be precise, there exist a neighborhood V (pi) of pi, and

a neighborhood V (qj) of qj (i, j ∈ {0, 1}) such that, for every δ ≥ δ̄, and every

p̃i ∈ V (pi), q̃j ∈ V (qj), all vectors in [u?(p̃
i), u?(p̃

i)+ε]×[v?(q̃
j), v?(q̃

j)+ε] are sequential

equilibrium payoffs of Γ(p̃i, q̃j).

A.2 Proof of Lemma 1

In the construction of Section 3, the probabilities x and y assigned to suboptimal actions

were pinned down by equilibrium requirements. The construction here is slightly more

involved because the number of signals may be larger than 2.

We let δ be as stated. Define first p̄1 ∈ [p0, p̄) by the condition hp0(p̄1) =
1− δ

δ
c(p0, a1),

and y1 ∈ [0, 1) by the equality p0 = y1p1 + (1 − y1)p̄1. The value of the information

being revealed just offsets the cost to player 1 of playing the suboptimal action a1

when the belief is p0. The belief p̄1 plays the role of p? in the binary case. For m ∈M ,

we set y1
m =

p1(m)

p0(m)
y1. Because p0 is in the (relative) interior of ∆†(S ×M), one has

p0(m) > 0 for each m, and y1
m ∈ (0, 1). Observe that y1 =

∑
m∈M p0(m)y1

m, and that

the following Bayesian updating property holds. If player 1’s belief is p0, and if player

2 plays two different actions b and b′ with respective probabilities y1
m and 1− y1

m, then

the posterior belief of player 1 is equal to p1 following b, and it is equal to p̄1 following

b′.

Similarly, we let p̄0 ∈ (p1, p) be defined by hp1(p̄0) = 1−δ
δ
c(p1, a0), and we set

y0
m =

p0(m)

p1(m)
y0 for m ∈M , where y0 solves p1 = y0p0 + (1− y0)p̄0.

We next exchange the roles of the two players, and proceed in a slightly asymmetric

way. We let q̄1 ∈ (q0, q̄) be defined by hq0(q̄1) =
1− δ

δ
c(q0, b1), we let x0 be defined by

q0 = x0q1 + (1− x0)q̄1, and we set x0
l =

p1(l)

p0(l)
x0 for l ∈ L.
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We finally define q̄0 ∈ (q1, q), x1 ∈ (0, 1), and x1
l =

q0(l)

q1(l)
x0 for l ∈ L in a similar

way.

We are now in a position to define strategies σ? and τ?. As long as players alternate

in playing their suboptimal action, player 1 (resp. player 2) randomizes in each odd

(resp. in each even) stage, and beliefs evolve cyclically:

p0, q0 → p0, q1 → p1, q1 → p1, q0 → p0, q0 → · · ·

Along this cycle, player 1 assigns a probability x1
l to his suboptimal action, a1, when

player 2’s belief is q0, and a probability x0
l to his suboptimal action, a0, when player

2’s belief is q1. Analogous properties hold for player 2. This is summarized in Figure

5 below.

Stage player 1 player 2 belief Suboptimal action

1 mod 4 [x1
l (a

1), (1− x1
l )(a

0)] b0 p0, q0 a1

2 mod 4 a0 [y1
m(b0), (1− y1

m)(b1)] p0, q1 b0

3 mod 4 [x0
l (a

0), (1− x0
l )(a

1)] b1 p1, q1 a0

0 mod 4 a1 [y0
m(b1), (1− y0

m)(b0)] p1, q0 b1

Figure 5: the first phase of play: information exchange.

As soon as either player 1 plays his optimal action in some odd stage, or player 2

plays his optimal action in some even stage, the players switch to myopic play forever,

as described in columns 3 and 4 in Figure 6. Here and later, o(p) (resp. o(q)) stands

for an optimal action of player 1 at p (resp. of player 2 at q).

First stage in which

myopically optimal action is played new belief player 1 player 2

1 mod 4 p0, q̄1 a0 o(q̄1)

2 mod 4 p̄1, q1 o(p̄1) b1

3 mod 4 p1, q̄0 a1 o(q̄0)

0 mod 4 p̄0, q0 o(p̄0) b0

Figure 6: the second phase of play: myopic play.

We complete the definition of (σ?, τ?) by specifying actions and beliefs at infor-

mation sets that are ruled out by (σ?, τ?). For concreteness, we focus on player 1.
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An information set of player 1 contains all histories of the form (l, h), for a fixed sig-

nal l ∈ L, and a fixed sequence h ∈ H of actions. Fix an information set that is

reached with probability 0 under (σ?, τ?). We denote it by I1
l,h, with h ∈ H. Write

h = (h′, (ā, b̄)), so that h′ is the longest prefix of h, and assume that I1
l,h′ is reached

with positive probability.

We distinguish two cases. Assume first that the action b̄ has probability zero con-

ditional on h′. That is, player 2 deviates in an observable way at h′. We let the belief

of player 1 at I1
l,h be equal to the belief held at I1

l,h′ – the deviation by player 2 is inter-

preted as being non-informative about m. Assume now that b̄ is played with positive

probability at h′. In that case, the belief of player 1 at I1
l,h can be computed by Bayes’

rule, from the belief held at I1
l,h′ .

In both cases, we let the belief at all subsequent information sets be equal to the

belief at I1
l,h, and we let σ? repeat forever any action that is optimal at I1

l,h.

Observe that, following any history in I1
l,h, under τ? player 2 repeats forever the

same action.15 Indeed, either the sequence h of actions has probability 0, or it has

positive probability. In the former case, the claim follows from the definition of τ? at

zero probability information sets. In the latter case, this implies that the information

set I1
l′,h has positive probability, for some l′ 6= l. Since the support of player 1’s mixed

actions in the information phase does not depend on his signal, this implies that I1
l,h

must belong to the myopic play phase. Using this observation, one can check that

beliefs are consistent with the strategy profile (σ?, τ?). We omit the proof.

Note that the strategy σ? is sequentially rational at any I1
l,h that is reached with

probability 0. Indeed, since the belief of player 1 is the same at I1
l,h and at all subsequent

information sets, it is a best reply to repeat any action that is optimal at I1
l,h.

Lemma 3 The profile (σ?, τ?) is a sequential equilibrium of Γ(p0, q0), with payoff

(u?(p
0), v?(q

0) + 1−δ
δ
c(q0, b1)).

We will use this lemma for various distributions p0, q0. To avoid confusion, we will

then denote the profile (σp0,q0

? , τ p0,q0

? ).

Proof. Each of the strategies σ? and τ? can be described by an automaton with 8

states: four states that implement the periodic play in Figure 5, and four states that

implement the myopic play in Figure 6.

15To be precise, player 2 plays the same action at I1
m,h and in all subsequent information sets.
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In addition, transitions between (automaton) states are deterministic and depend

only on the public history of actions. Hence, player i can always compute the current

state of player j’s automaton. Moreover, as can be verified inductively, the belief of

player i following any public history h of actions only depends on the current state of

player j’s automaton.

It follows that player i has a best response that can be implemented by an automa-

ton that has the same (or smaller) number of states as the automaton of player j. The

dynamic programming principle may be used to identify such a best response. Using

this principle, it is routine to verify that τ? is a best response against σ?, and vice versa.

Indeed, denoting the 8 states of the automata by Ω = {(1, periodic), (2, periodic),

(3, periodic), (0, periodic), (1, myopic), (2, myopic), (3, myopic), (0, myopic)}, the

expected payoff to player 2 starting at any given ω ∈ Ω is:

V(1, periodic) = v?(q
0) + 1−δ

δ
c(q0, b1); V(1, myopic) = v?(q

0);

V(2, periodic) = v?(q
1); V(2, myopic) = v?(q̄

1);

V(3, periodic) = v?(q
∗) + 1−δ

δ
c(q1, b0); V(3, myopic) = v?(q

1);

V(0, periodic) = v?(q
0); V(0, myopic) = v?(q̄

0).

One may verify that for every ω ∈ Ω, V solves

V(ω) = max
b∈B

{
(1− δ)r(ω, b) + δ

∑
ω′∈Ω

V(ω, b)[ω′]

}
; (7)

here r(ω, b) stands for the expected payoff of player 2 when playing b in the (automaton)

state ω, where the expectation is taken w.r.t. the belief held at state ω.

A.3 Proof of Lemma 2

Let a payoff vector γ ∈ [u?(p
0), u?(p

0) + ε] × [v?(q
0), v?(q

0) + ε] be given. For δ high

enough, we will define a sequential equilibrium profile in Γ(p0, q0) with payoff γ, using

the ideas in Section 3.1.2. We need some preparations.

Define γ1
s and γ1

o by the equations

γ1 = (1− δ)u?(p
0) + δ(1− δ)u?(p

0) + δ2γ1
o ,

γ1 = (1− δ)u(p0, a1) + δ(1− δ)u?(p
0) + δ2γ1

s .

γ1
s (resp. γ1

o) are the continuation payoffs of player 1 at stage 2, which ensure that the
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expected payoff of player 1 is γ1, if player 1 plays the myopically suboptimal (resp.

optimal) action at stage 1, and the myopically optimal action16 at stage 2.

Define γ2
o be the equality

γ2 = (1− δ)v?(q
0) + δγ2

o .

Because γ1 > u?(p
0) > u(p0, a1) and γ2 > v?(q

0) it follows that γ1
s > γ1

o ≥ u?(p
0) while

γ2
o ≥ v?(q

0). For δ high enough, and by definition of ε, one has

γ1
s < u?(p

0) + maxhp0 and γ2
o < v?(q

0) + maxhq0 .

Hence, there exist ps, po ∈ [p0, p̄), and qo ∈ [q0, q̄) such that

hp0(po) = γ1
o − u?(p

0),

hp0(ps) = γ1
s − u?(p

0),

hq0(qo) = γ1
o − v?(q

0).

Mimicking the previous section, we define

• yo,m =
p1(m)

p0(m)
yo, for m ∈M , where yo solves p0 = yop

1 + (1− yo)po.

• ys,m =
p1(m)

p0(m)
ys (m ∈M), where ys solves p0 = ysp

1 + (1− ys)ps.

• xl =
q1(m)

q0(m)
x for l ∈ L, where x solves q0 = xq1 + (1− x)qo.

We are now in a position to define a profile as follows (see also Figure 7).

Stage 1: Player 2 plays b0, while player 1 plays the two actions a1 and a0 with prob-

abilities xl and 1 − xl. By Bayesian updating, the belief of player 2 in stage 2

is equal to q1 following a1, and it is equal to qo following a0 (while the belief of

player 1 is still p0).

Stage 2: Player 2 randomizes. Following a1, player 2 plays the two actions b0 and b1

with probabilities ys,m and 1− ys,m respectively. Following a0, he plays the two

16The letters s, o remind that γ1
o and γ1

s are continuation payoffs following an optimal and a sub-
optimal action respectively.
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actions b1 and o(qo) with probabilities yo,m and 1− yo,m respectively. Meanwhile,

player 1 plays a0. By Bayesian updating, the belief of player 1 is equal to (i) p1

following either (a0, b1) or (a1, b0), (ii) to ps following (a0, o(qo)) and (iii) to po

following (a1, b1).

Stage 3 and on: If player 2 played his optimal action in stage 2, players repeat their

optimal action. The continuation payoff is then (u?(p
1), v?(q

1)) following (a1, b1)

and is (u?(p
1
s), v?(qo)) following (a0, o(qo)). Assume now that player 2 played b1

in stage 2, following a0. Beliefs are then (p1
o, qc) and players switch to the equilib-

rium profile (σ
p1

o,qo
? , τ

p1
o,qo

? ) of Γ(p1
o, qo), with payoff

(
u?(p

1
o), v?(qo) + 1−δ

δ
c(qo, b

1)
)
.

Finally, assume that player 2 played b0 in stage 2, following a1. Beliefs are then

(p1, q1), and players switch to the profile (σp1,q1

? , τ p1,q1

? ).

belief p0, q0, payoff γ

p0, q1

p0, qo

belief p1, q1, payoff u?(p1), v?(q1) + 1−δ
δ c(q1, b0)

belief po, q
1, payoff u?(po), v?(q1)

belief p1, qo, payoff u?(p1), v?(qo) + 1−δ
δ c(qo, b

1)

belief ps, qo, payoff u?(ps), v?(qo)

a1

a0

b0

b1

b1

o(qc)

Figure 7: The evolution of beliefs and of continuation payoffs.

Beliefs and actions at information sets that are ruled out by this description are

defined as in the proof of Lemma 1. The equations defining γ1
s , γ

1
o (resp. γ2

o) ensure

that player 1 is indifferent in stage 1 (resp. player 2 in stage 2) between the two actions

that are assigned positive probability. This implies the equilibrium property. Details

are standard and omitted.

A.4 Proofs of Propositions 2 and 3

We start with the proof of Proposition 2. The construction we provide here is more

complex than needed for Proposition 2. However, it will facilitate the proof of Propo-

sition 3. We let initial distributions p and q be given in the interiors of ∆†(S×M) and

∆†(T ×L). Choose a segment [p0, p1] included in the interior of ∆†(S ×M), such that

(i) u? is not affine on [p0, p1], and (ii) p ∈ (p0, p1).

By (i) and (ii), one has u?(p) < yu?(p
0) + (1− y)u?(p

1), where y solves yp0 + (1−
y)p1 = p. Observe also that the quantity ỹu?(p

0)+(1−ỹ)u?(p̃
1) (with ỹp0+(1−ỹ)p̃1 = p)
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is strictly decreasing in the neighborhood of p1, as p̃1 ∈ [p0, p1] moves away from p1

and towards p0.

By Lemma 2, there exists ε0 > 0, δ̄ < 1, and neighborhoods V (pi) and V (qj) of pi

and qj (i, j ∈ {0, 1}), such that any payoff in [u?(p̃
i), u?(p̃

i) + ε0]× [v?(q̃
j), v?(q̃

j) + ε0]

is a sequential equilibrium payoff of the game Γ(p̃i, q̃j), as soon as δ ≥ δ̄, p̃i ∈ V (pi)

and q̃j ∈ V (qj).

We now prove that the conclusion of Proposition 2 holds with ε = ε0. Let γ ∈
[u?(p), u?(p)+ ε0]× [v?(q), v?(q)+ ε0] be given. We describe an equilibrium profile that

implements γ.

One main feature of this profile is the following. As a result of information disclosure

by player 2, player 1’s belief will move in one stage from p to a belief p̃i close to either

p0 or p1. Similarly, player 2’s belief will change to a belief q̃j close to either q0 or q1 in

exactly one stage. From that point on, players implement an equilibrium of Γ(p̃i, q̃j)

with the appropriate payoff. There is however one minor difference with previously

defined equilibria. If u?(p) < γ1 < yu?(p
0) + (1− y)u?(p

1), then the expected payoff of

player 1 if we follow the previous construction will be higher than γ1, which is the target

payoff. There are two ways to overcome this difficulty. One way is to choose in this

case p0 and p1 which are closer to p, thereby lowering the expected continuation payoff

yu?(p
0) + (1 − y)u?(p

1). A second way, which we adopt here, is to delay information

revelation, so that the discounted payoff is lower than yu?(p
0) + (1− y)u?(p

1).

Define N1 ≥ 1 to be the least integer17 such that γ1
c ≥ yu?(p

0)+(1−y)u?(p
1), where

γ1
c is defined by γ1 = (1−δN1)u?(p)+δ

N1γ1
c . The inequality γ1

c ≥ yu?(p
0)+(1−y)u?(p

1)

ensures that if player 2 starts revealing information at stage N1, then one can support

γ1
c as a continuation payoff of player 1 at that stage. Define N2 in a similar way for

player 2, and assume w.l.o.g. that N1 ≤ N2. Information is first disclosed at stage N1.

The choice of N1 implies

γ1
c −

(
yu?(p

0) + (1− y)u?(p
1)

)
≤ 1− δ

δ

(
yu?(p

0) + (1− y)u?(p
1)− u?(p)

)
,

provided δ is high enough.

This implies that for δ high enough, there is p̃1 ∈ V (p1) ∩ [p0, p1] such that γ1
c =

ỹu?(p
0) + (1− ỹ)u?(p̃

1), and ỹp0 + (1− ỹ)p̃1 = p.

17N1 = ∞ if γ1 = u?(p).
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We first define a strategy pair (σ, τ) up to stage N1 +1. Player 1 repeats an optimal

action o(p) at all stages 1, . . . , N1. Player 2 plays o(q) at all stages 1, . . . , N1 − 1. In

stage N1, player 2 plays both actions o(q) and b′ 6= o(q) with probabilities such that

beliefs in stage N1 + 1 are (p0, q) following b′, and (p̃1, q) following o(q).

We now define the continuation of (σ, τ) following o(q). Define γ2
c by the equality

γ2 = (1 − δN1)v?(q) + δN1γ2
c . The continuation of (σ, τ) in the other case is defined

in an analogous way, except that γ2
c has to be replaced by γ2

c +
1− δ

δ
c(q, b′), and the

equations that describe equilibrium constraints have to be adjusted.

Let Ñ2 be the least integer (possibly infinite) such that γ̃2 ≥ xv?(q
0)+(1−x)v?(q

1),

where γ̃2 is defined by γ2
c = (1− δÑ2)v?(q) + δÑ2 γ̃2. The choice of Ñ2 implies

γ̃2 −
(
xv?(q

0) + (1− x)v?(q
1)

)
≤ 1− δ

δ

(
xu?(q

0) + (1− x)u?(q
1)− v?(q)

)
,

provided δ is high enough. This implies that for δ high enough, there is q̃1 ∈ V (q1) ∩
[q0, q1] such that γ̃2 = x̃v?(q

0) + (1− x̃)v?(q̃
1), and x̃q0 + (1− x̃)q̃1 = q.

The continuation profile is defined as follows. Player 2 repeats o(q) in all stages

N1 + 1, . . . , N1 + Ñ2. Player 1 repeats o(p̃1) in all stages N1, . . . , N1 + . . . Ñ2 − 1. In

stage N1 + Ñ2, player 1 plays both actions o(p̃1) and a 6= o(p̃1) with probabilities such

that the belief of player 2 is equal to q̃1 following o(p̃1), and to q0 following a.

Following o(p̃1), players switch to an equilibrium of the game Γ(p̃1, q̃1) with payoff

(u?(p̃
1), v?(q̃

1)). Following a, players switch to an equilibrium of the game Γ(p̃1, q0)

with payoff (u?(p̃
1) + 1−δ

δ
c(p̃1, a), v?(q

0)).

Beliefs and actions off-the-equilibrium-path are defined as in the proof of Lemma 1.

The definition of beliefs and continuation payoffs ensures that players are indifferent

whenever randomizing, and that the overall payoff is exactly γ.

Observe also that there exists a neighborhood V (p) of p, with the following property.

The two beliefs p′0 and p′1 associated with p′ ∈ V (p) can be chosen to be continuous

in p′ and x′u?(p
′0)+ (1−x′)u?(p

′1) (with x′p′0 +(1−x′)p′1 = p′) is bounded away from

u?(p
′) over V (p). Together with the symmetric property for player 2, this ensures that

the robustness result mentioned after Proposition 2 holds. This concludes the proof of

Proposition 2.

We next proceed to the proof of Proposition 3. Let p ∈
◦
∆
†
(S×M), q ∈

◦
∆
†
(T ×L),

and c > 0 be given. Let γ be such that |γ1−u?(p)| ≤ (1−δ)c and |γ2−v?(q)| ≤ (1−δ)c.
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Let [p0, p1] be the segment associated with p in the proof of Proposition 2, and let y

solve the equation p = yp0 + (1− y)p1. Set

η :=
(
yu?(p

0) + (1− y)u?(p
1)

)
− u?(p) > 0,

and let N1 be defined as in the proof of Proposition 2. By construction, one has

(1− δN1−1)u?(p) + δN1−1(u?(p) + η) < γ1 ≤ u?(p) + (1− δ)c,

hence ηδN1−1 ≤ (1 − δ)c. Similarly, one has ηδN2−1 ≤ (1 − δ)c (possibly for a lower

value of η). In the construction of Proposition 2, players repeat the same action until

stage min{N1, N2}. Therefore, for any p′ ∈ ∆†(S ×M) and every strategy σ, one has

γ1(p′, q, σ, τp,q,γ) ≤ (1− δmin{N1,N2})u?(p
′) + δmin{N1,N2}

≤ u?(p
′) + (1− δ)

δc

η
.

The result follows, with C = c/η.

B General games

We here complete the proof of Theorem 1. We find it more convenient to relabel here

L1 and M1 as LS and MS, and L2 and M2 as LT and MT . Although slightly more

cumbersome, this label is more transparent: the label S (resp. T serves as reminder

that the signals lS and mS provide information on s.

We start with a few notations and remarks in the spirit of Section A. We let initial

distributions p ∈ ∆(S×LS ×MS) and q ∈ ∆(T ×LT ×MT ) be given. W.l.o.g., we also

assume that p(lS) > 0 and p(lT ) > 0 for each lS ∈ LS and lT ∈ LT .18 We assume that

the information of each player i is valuable for the other player. This is equivalent to

assuming that, for each lS ∈ LS, there is no action a ∈ A that is optimal at all beliefs

plS ,mS
:= p(· | lS,mS), mS ∈MS.

As the play proceeds, player 2 may disclose information relative to mS, and player

1’s belief about mS may change. Analogously to the case of self-ignorant games (see

Eq. (6)), the belief pn of player 1 given lS = ls is always in the set

∆†
lS

(S ×MS) = conv{plS ,mS
⊗ 1lS ⊗ 1mS

,mS ∈MS}.
18And we make the symmetric assumption for player 2.
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Note that p(· | lS) lies in the relative interior of the set ∆†(S ×MS).

For mT ∈ MT , we define ∆†
mT

(T × LT ) in a symmetric way. The results of Sec-

tion A will be applied to the different sets ∆†
lS

(S ×MS) and ∆†
mT

(T × LT ) of initial

distributions.

B.1 Providing Incentives

For simplicity, we focus here on player 1. Analogous properties hold for player 2 as

well. We first define an equivalence relation ∼ over LS. As we will see, two signals lS
and l̄S such that lS ∼ l̄S may be merged, and treated as a single signal. Given lS ∈ LS,

we define a vector ~Z lS of size MS × A× A by

~Z lS
mS ,a,a′ := p(mS | lS) (u(plS ,mS

, a)− u(plS ,mS
, a′)) , for mS ∈MS, and a, a′ ∈ A.

Because the information held by player 2 is valuable for player 1, ~Z lS 6= ~0, for each

lS ∈ LS.19

Definition 2 Let lS, l̄S ∈ LS be given. The two signals lS and l̄S are equivalent,

written lS ∼ l̄S, if the two vectors ~Z lS and ~Z l̄S are positively collinear, that is, if

~Z l̄S = α~Z lS , for some α > 0. (8)

Plainly, if the two distributions p(· | lS) and p(· | l̄S) in ∆(S × MS) coincide, then

lS ∼ l̄S. However, the converse implication does not hold.

We wish to prove here that one can safely assume that no two signals are equivalent.

This is done by proving that any equilibrium of the game in which LS and MT are

replaced by the set of equivalence classes of signals, is an equilibrium of the original

game. Formally, this follows from the fact that, given any strategy of player 2, player 1

has a best-reply which only depends on the equivalence class of lS, see Lemma 4 below.

Observe that, if lS ∼ l̄S and ~Z l̄S = α~Z lS , then for every two mixed actions x, x′ ∈
∆(A) we have:

p(mS | l̄S)
(
u(pl̄S ,mS

, x)− u
(
pl̄S ,mS

, x′
))

= αp(mS | lS)
(
u(plS ,mS

, x)− u
(
plS ,mS

, x′
))
.

(9)

As a preparation for Lemma 4 below, observe that a strategy σ may be viewed as a

collection (σlS)lS∈LS
, with the interpretation that σlS : LT ×H → ∆(A) is the ‘interim’

strategy used if lS = lS.20

19Indeed, if ~ZlS = ~0, then any action a ∈ A is optimal at plS ,mS
, for each mS .

20To be formal, σlS (lT , h) is defined to be σ(lS , lT , h).
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Lemma 4 Let τ be any strategy of player 2. Then there exists a best reply σ of player

1 to τ such that σl̄S = σlS
whenever l̄S ∼ lS.

According to Lemma 4, player 1 has a best reply that depends only on the equiva-

lence class of lS.

Proof. Let a strategy τ of player 2 be fixed throughout. Given f : H → ∆(A),

and (lS, lT ) ∈ LS × LT , we denote by γ1(f, τ | lS, lT ) the interim expected payoff of

player 1, when getting lS = lS, lT = lT , and when playing according to f thereafter.

Given n ≥ 1, we also denote by g1
n(f, τ | lS, lT ) the corresponding payoff at stage n.

We let l̄S ∼ lS be any two equivalent signals, so that ~Z l̄S = α~Z lS for some α > 0. We

will prove that, for every two “interim strategies” f : H → ∆(A) and f ′ : H → ∆(A),

for every lT ∈ LT and every stage n ≥ 1, one has

g1
n(f, τ | l̄S, lT )− g1

n(f ′, τ | l̄S, lT ) = α
(
g1

n(f, τ | lS, lT )− g1
n(f ′, τ | lS, lT )

)
. (10)

Equation (10) will imply that

γ1(f, τ | l̄S, lT )− γ1(f ′, τ | l̄S, lT ) = α
(
γ1(f, τ | lS, lT )− γ1(f ′, τ | lS, lT )

)
,

from which the result follows. Indeed, if f is better than f ′ when the signal is l̄S, then

it is also the case when the signal is lS. Therefore if f is a best response when the

signal is l̄S, then it is also a best response when the signal is lS.

We let a stage n ≥ 1 be given. We fix (lS, lT ) ∈ LS × LT , and we decompose the

payoff g1
n(f, τ | lS, lT ) as follows. For a given sequence of actions h ∈ Hn := (A×B)n−1,

we denote by Pf,τ (h | lS, lT ) the probability that h occurs, when (lS, lT ) = (lS, lT ) and

players play according to f and τ . We denote by Pf,τ (· | h, lS, lT ) ∈ ∆(S ×MS) the

belief which is then held by player 1.

With these notations, one has

g1
n(f, τ | lS, lT ) =

∑
h∈Hn

Pf,τ (h | lS, lT )u (Pf,τ (· | h, lS, lT )), f(h)) . (11)

The belief of player 1 following h is given by

Pf,τ (s | h, lS, lT ) =
1

Pf,τ (h, lS, lT )

∑
mS∈MS

Pf,τ (s, h, lS, lT ,mS), s ∈ S,
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where Pf,τ (h, lS, lT ) = Pf,τ (h | lS, lT )p(lS)q(lT ). Because the state s and the history

of actions until stage n are conditionally independent given (lS, lT ,mS), this belief is

equal to

Pf,τ (s | h, lS, lT ) =
1

Pf,τ (h, lS, lT )

∑
mS∈MS

Pf,τ (h | lS, lT ,mS)plS ,mS
(s)p(lS,mS)q(lT ).

(12)

Plugging (12) into (11), and using the linearity of u, one gets

g1
n(f, τ | lS, lT ) =

∑
h∈Hn

∑
mS∈MS

p(mS | lS)Pf,τ (h | lS, lT ,mS)u(plS ,mS
, f(h)). (13)

Using (13) for both f and f ′, and because
∑

h∈Hn
Pσ,τ (h | lS, lT ,mS) =

∑
h′∈Hn

Pσ′,τ (h
′ |

lS, lT ,mS) = 1, we obtain:

g1
n(f, τ | lS , lT )− g1

n(f ′, τ | lS , lT ) (14)

=
∑

mS∈MS

p(mS | lS)

 ∑
h∈Hn

Pf,τ (h | lS , lT ,mS)u(plS ,mS
, f(h))−

∑
h′∈Hn

Pf ′,τ (h′ | lS , lT ,mS)u(plS ,mS
, f ′(h′))


=

∑
mS∈MS

∑
h∈Hn

∑
h′∈Hn

Pf,τ (h | lS , lT ,mS)Pf ′,τ (h′ | lS , lT ,mS)× p(mS | lS)
(
u(plS ,mS

, f(h))− u(plS ,mS
, f ′(h′))

)
.

Because lS and l̄S are equivalent, Eq. (10) follows by (9), and (14) applied to both

lS = lS and lS = l̄S.

Lemma 4 implies that any equilibrium of the modified game in which player 1

only observes the equivalence class of lS is an equilibrium of the original game. Put it

differently, the set of equilibrium payoffs of the game in which players do not distinguish

between equivalent signals is a subset of the set of equilibrium payoffs of the game we

started with. Besides, the values of u? and v? (resp. of u?? and v??) are the same for

both games.

Therefore, it is sufficient to prove that the conclusion of the Main Theorem holds

for the modified game. In particular, we may and will assume from here on that, for

every two signals l̄S 6= lS, the vectors ~Z l̄S and ~Z lS are not positively collinear. We also

make the symmetric assumption for player 2. A direct consequence of this assumption

is Corollary 3 below.

Corollary 3 Let ā ∈ A be arbitrary. For lS ∈ LS, define the vector ~Y lS of size MS×A
by

~Y lS
mS ,a := p(mS | lS) (u(plS ,mS

, a)− u(plS ,mS
, ā)) , mS ∈MS, a ∈ A.
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Then for every two signals l̄S 6= lS, the two vectors ~Y l̄S and ~Y lS are not positively

collinear.

The vector ~Y lS is equal to the projection of ~Z lS on a lower-dimensional space.

Hence, linear independence of ~Y l̄S and of ~Y lS does not follow in general from linear

independence of ~Z l̄S and ~Z lS , and an ad hoc proof is needed.

Proof. We argue by contradiction, and assume that ~Y l̄S = α~Y lS for some α > 0.

Let mS ∈ MS, a, a
′ ∈ A be arbitrary. Observe that ~Z lS

mS ,a,a′ = ~Y lS
mS ,a − ~Y lS

mS ,a′ , for

lS = l̄S, lS. Hence ~Z l̄S = α~Z lS , a contradiction.

The next lemma is central to the provision of incentives (phase 2 of the equilibrium

play). Given x : LS ×MS → ∆(A), and for every lS, k ∈ LS, we define

Ex[lS → k] =
∑

mS∈MS

p(mS | lS)u(plS ,mS
, xk,mS

),

with the following interpretation. The expression Ex[lS → k] is the expected stage

payoff when player 1 gets lS = lS ∈ LS, ‘reports’ k ∈ LS, is told mS, and plays

the mixed action xk,mS
that depends on player 1’s report, and on player 2’s signal.21

According to Lemma 5 below, the map x can be chosen in a way that this expected

payoff is highest when reporting truthfully.

Lemma 5 There exists x? : LS ×MS → ∆(A) such that

Ex? [lS → k] < Ex? [lS → lS], for every lS, k ∈ LS, lS 6= k.

Proof. Let ā ∈ A be arbitrary and let x : LS ×MS → ∆(A) be given. For k ∈ LS,

we define a vector ~Xk of size MS ×A by ~Xk
mS ,a := xk,mS

(a), mS ∈MS, a ∈ A. Observe

that xk,mS
(ā) = 1−

∑
a 6=ā

xk,mS
(a). Hence Ex[lS → k] may be rewritten as

Ex[lS → k] =
∑

mS∈MS

p(mS | lS)u(plS ,mS
, ā)

+
∑

mS∈MS

∑
a∈A

p(mS | lS)xk,mS
(a) (u (plS ,mS

, a)− u (plS ,mS
, ā))

= ~Y lS · ~Xk +
∑

mS∈MS

p(mS | lS)u(plS ,mS
, ā).

21We use the different letter k to distinguish between a signal and a report, although both belong
to the same set LS .
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Because the second term in the last displayed equation does not depend on k, it is

sufficient to construct x such that

~Y lS · ~Xk < ~Y lS · ~X lS for every lS, k ∈ LS, lS 6= k. (15)

For lS ∈ LS define

X̃ lS :=
1

‖~Y lS‖2

~Y lS ,

and let lS 6= k be arbitrary in LS. Then by the Cauchy-Schwartz inequality,

X̃k · ~Y lS =
~Y k

‖~Y k‖2

· ~Y lS < ‖~Y lS‖2 =
~Y lS

‖~Y lS‖2

· ~Y lS = X̃ lS · ~Y lS ,

where the strict inequality holds since ~Y k and ~Y lS are not positively collinear. There-

fore, Eq. 15) holds with (X̃ lS)lS∈LS
. Note that (15) still holds when the same constant

is added to all components, and/or when all components are multiplied by the same

constant φ > 0. Choose β ∈ R and φ > 0 such that all components of φX̃ lS + β lie in

(0, 1
|MS×A|), for all lS. Because Y lS

mS ,ā = 0, it suffices to set

x?
lS ,mS

(a) = φX̃ lS
mS ,a + β for a 6= ā,

and x?
lS ,mS

(ā) = 1−
∑
a 6=ā

xlS ,mS
(a).

Given ε2 : MS → ∆(MS) and lS, k ∈ LS we define

Eε2,x? [lS → k] =
∑

mS ,µ∈MS

p(mS | lS)ε2(µ | mS)u(plS ,µ, x
?
k,µ).

This is the expected stage payoff of player 1 when (i) player 1 gets lS = lS and ‘reports’

k, (ii) player 2 draws µ ∈MS according to ε2(· | mS), and (iii) player 1 plays x?
k,µ. We

here abuse notation and write plS ,µ for the belief of player 1, given lS and µ.22

Observe that the expectation Eε2,x? [lS → k] is continuous w.r.t. ε2, and that

Eε2,x? [lS → k] is equal to Ex? [lS → k] when ε2(· | mS) assigns probability 1 to mS, for

each mS. Continuity allows us to pick ε2(· | mS) with full support, while keeping the

conclusions of Lemma 5.

Corollary 4 There exists ε2 : MS →
◦
∆(MS) such that

Eε2,x? [lS → k] < Eε2,x? [lS → lS], for every lS, k ∈ LS, lS 6= k. (16)

22Note that, for fixed µ, the belief plS ,µ depends on ε2, although this is not emphasized in the
notation.
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We fix ε2 and x? for the rest of the paper. Because the distribution ε2(· | mS) has

full support, the conditional distribution plS ,µ lies in the relative interior of ∆†
lS

(S×MS)

(for each µ ∈MS). Define ε1 analogously.

B.2 Equilibrium strategies – Structure

We let a payoff vector γ = (γ1, γ2) be given, with u? < γ1 < u?? and v? < γ2 < v??.

We will construct a sequential equilibrium with payoff γ. We let the discount factor δ

be given. In the construction we add one additional message, �, to each player.

Given x ∈ ∆(A), and given a number N of stages, we denote by ~aN(x) ∈ AN , a

sequence of actions of length N that provides the best approximation of the mixed

action x in terms of discounted frequencies. That is, ~aN(x) = (an)1≤n≤N is chosen to

minimize ‖xδ(~a
N)− x‖∞, where

xδ(~a
N)[a] :=

1− δ

1− δN

N∑
n=1

δn−11{an=a}, a ∈ A.

The sequence ~aN(x?
k,µ1

) will be the sequence of actions required from player 1 in

phase 2.2, when player 1 reports k ∈ LS and player 2 sends the message µ1 ∈MS∪{�}.
For µ1 = �, we let ~aN(x?

k,µ1
) be an arbitrary sequence of actions, that does not depend

on k ∈ LS.

Similarly, ~bN(y) ∈ BN is a vector that approximates the mixed action y in terms of

discounted frequencies.

We set K1 := max{|LS|, |MT |}, and we let α1 : LS → AK1 and β1 : MT → BK1

be arbitrary one-to-one maps. Similarly, we set K2 := 1 + max{|LT |, |MS|}, and we

let α2 : LT ∪ {�} → AK2 and β2 : MS ∪ {�} → BK2 be arbitrary one-to-one maps.

The maps α1 and β1 are used to encode reports on one’s own state into sequences of

actions, while the maps α2 and β2 are used to encode messages on the other player’s

state into sequences of actions.

We let π1 ∈
◦
∆(LT ) and π2 ∈

◦
∆(MS) be arbitrary distributions with full support.

We now proceed to the definition of a strategy profile (σδ, τδ). The definition in-

volves additional parameters θ, ζ, and ψi, ψi
� (i = 1, 2), all in (0, 1), which will be

chosen later. We first define the profile only at information sets that are not ruled

out by the definition of (σδ, τδ) at earlier information sets. The definition of (σδ, τδ) at

information sets that are reached with probability zero will be provided after.
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Phase 1 It lasts K1 stages. Player 1 plays the sequence α1(lS) of actions, and player

2 plays the sequence β1(mT ) of actions.

Phase 2 It is divided into two subphases, Phase 2.1 and Phase 2.2.

Phase 2.1 It lasts K2 stages. Player 1 first draws a message λ1 ∈ LT ∪{�}. The

probability assigned to �, (resp. to each l′T ∈ LT ), is equal to 1 − ζ (resp.

ζ × ε1(l
′
T | lT )). Symmetrically, player 2 draws a message µ1 ∈ MS ∪ {�}.

The probability assigned to �, (resp. to each m′
S ∈ MS) is equal to 1 − ζ,

(resp. ζ × ε2(m
′
S | mS)).

In that phase, the players play the sequences α2(λ1) and β2(µ1) of actions.

Phase 2.2 It lasts ν := b ln(1−θ)
ln δ

c stages. Player 1 infers µ1 from the actions

played by player 2 in Phase 2.1, and plays the sequence ~aν(x?
lS ,µ1

) of actions.

Meanwhile, player 2 infers λ1 from the actions played by player 1 in Phase

2.1, and plays the sequence ~b(y?
mT ,λ1

) of actions.

Phase 3 It lasts K2 stages. Player 1 draws a message λ2 ∈ LT . The distribution of λ2

depends on λ1. If λ1 = �, the probability assigned to lT (resp. to each l′T 6= lT ),

is equal (1 − ψ1
�) + ψ1

� × π1(lT ) (resp. ψ1
� × π1(l′T )). If λ1 6= �, the probability

assigned to λ2 is equal to (1 − ψ1) + ψ1 × π1(λ2) if λ2 = lT , and it is equal

ψ1 × π1(λ2) otherwise. Player 2 draws a message µ2 ∈ MS. The distribution of

µ2 depends on µ1, and is obtained as for player 1.

In this phase, the players play the sequences α2(λ2) and β2(µ2) of actions.

Phase 4 It contains all remaining stages. We denote by N = K1 + 2K2 + ν + 1 its

first stage. Let h = (an(h), bn(h))n<N ∈ (A × B)N−1 be the history of actions

up to stage N . Player 2 infers from h the belief pn(h) held by player 1 in each

stage n < N along h. In this computation, the report of player 1 in Phase 1 is

assumed to be truthful. For n < N , the belief qn(h) ∈ ∆(T × LT ) is defined in a

symmetric way. The players compute

c1(h) = δ−N
∑

n

(1−δ)δn−1c(pn(h), an(h)) and c2(h) = δ−N
∑

n

(1−δ)δn−1c(qn(h), bn(h)),

where the sum is taken over all stages n of Phases 1, 2.1 and 3. Players

then start playing according to the equilibrium profile of the self-ignorant game

Γ(pn(h), qn(h)), with payoff (u?(pn(h)) + c1(h), v?(qn(h)) + c2(h)).
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Some interpretation may be helpful. In Phase 2.1, the message � is uninformative23

and is sent with high probability. In Phase 3, the level noise in the message sent by

player 1 depend on player 1’s first message, and is either ψ1 if the first message was

informative, or ψ1
� otherwise.

B.3 Equilibrium Strategies – Parameter values

We now fix the parameter values, starting with θ. As δ → 1, the discounted weight of

the b ln(1−θ)
ln δ

c stages of Phase 2.2 converges to θ. Thus, θ is a measure of the contribution

of the checking phase 2.2 to the total payoff. We choose θ ∈ (0, 1) to be small enough

so that the following set of inequalities is satisfied:

(1− θ)E[u?(plS ,mS
) | lS = lS, µ1 = mS] > u?(p(· | lS = lS, µ1 = mS)), ∀mS ∈MS(17)

(1− θ)u?? > γ1, (18)

together with the symmetric conditions for player 2.

By construction, the conditional distribution of mS given (lS, µ1) = (lS,mS) is

independent of ζ, and only depends on the fixed map ε2. Since ε2(· | m′
S) has full

support for each m′
S, this conditional distribution has full support. Therefore, the

residual information held by player 2 is still valuable to player 1, whatever be µ1 ∈
{�} ∪MS. In particular, (17) holds with θ = 0, and thus also for θ > 0 small enough.

Because γ1 < u??, condition (18) is also satisfied for small θ.

Condition (17) ensures that, even if payoffs in phase 2.2 are very low, the weight

θ of phase 2.2 is so small, that the residual value of the information held by player 2

can still offset the cost incurred when playing the prescribed sequence in phase 2.2.

Condition (17) is designed to make sure that, when in phase 2.2, player 1 will rather

play the prescribed sequence of actions, than switch to an optimal action.

Observe that with probability 1− ζ, player 1 receives no information prior to phase

3. Therefore, for ζ > 0 small the bulk of information exchange takes place in phase 3.

Condition (18) ensures that, even if all information exchange is postponed to phase 3,

payoffs as high as γ1 can be implemented.

Choose ζ ∈ (0, 1) to be small enough so that the two inequalities

(1− ζ)u? + ζu?? < γ1 < (1− ζ)(1− θ)u?? (19)

23Since its probability does not depend on signals.
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hold, together with the analogous inequalities for player 2.

In phase 2.2, the (conditional) optimal payoff of player 1 is u? if µ1 = �, and does

not exceed u?? if µ1 6= �. The first inequality ensures that the probability 1 − ζ of

not disclosing information in phase 2.1 (µ1 = �) is so high that the expectation of the

optimal payoff given µ1 does not exceed γ1. That is, additional information must be

disclosed in phase 3 in order to implement γ. This inequality, together with (18), will

allow us to adjust other parameter values in a way that the overall payoff is γ. The

second inequality in (19) does not play a critical role.

We now choose the value of ψ2 ∈ (0, 1) small enough so that, for every lS ∈ LS,mS ∈
MS,

(1− θ)E[u?(p(· | lS, µ1, µ2)) | lS = lS, µ1 = mS] > u?(p(· | lS = lS, µ1 = mS)). (20)

In this expression, p(· | lS, µ1, µ2)) is the belief held by player 1 at the beginning of

phase 4 after having received the two messages µ1, µ2 of player 2. The left-hand side

of (20) is continuous w.r.t. ψ2. For ψ2 = 0, µ2 is equal to mS with probability 1, and

(20) therefore holds by (17). Hence (20) holds for ψ2 > 0 small enough.

Observe that all parameters values ζ, θ, ψ2 are independent of the discount factor.

The last parameter, ψ2
� is chosen such that the expected payoff of player 1 is γ1. We

first argue that for a given ψ2
�, the limit discounted payoff of player 1, as δ → 1, is

equal to24

θE[u(p(· | lS, µ1), x
?
lS ,µ1

)] + (1− θ)E[u?(pN)]. (21)

Here is why. The contribution of Phases 1, 2.1 and 3 vanishes, as the length of

these phases is fixed independently of δ. The expected payoff in phase 2.2 converges25

to E[u(p(· | lS, µ1), x
?
lS ,µ1

)]. Finally, for a fixed δ, the expected continuation payoff

from stage N is equal to E[u?(pN) + c1(hN)]. As Lemma 6 will show, E[c1(hN)] will

converge to 0.

Observe that for ψ2
� = 0, and following µ1 = �, the message µ2 of player 2 is non-

informative. Thus, conditional on the event that µ1 = �, player 2 does not disclose

information prior to phase 4. Thus, for ψ2
� = 0, the left-hand side of (21) does not

exceed (1 − ζ)u? + ζu?? which by (19) is less than γ1. If ψ2
� = 1, following µ1 = �

the message µ2 is fully informative, and the left-hand side of (21) is at least equal to

24We here abuse notation, since N → +∞ as δ → 1. However, the limit of E[u?(pN )] is well-defined.
25Because the approximation of x? by xδ(~a(x?)) becomes perfectly accurate as δ → 1.
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ζu? + (1 − ζ) (θu? + (1− θ)u??), which exceeds γ1 by (19). It follows that for δ high

enough, say δ ≥ δ̄1, there exists ψ2
�(δ) ∈ (0, 1), such that the discounted payoff of

player 1 is equal to γ1, and such that ψ2
�(1) := limδ→1 ψ

2
�(δ) ∈ (0, 1).

We conclude this section by discussing how high should δ be, for the profile (σδ, τδ)

to be well-defined, and by discussing beliefs and actions off-equilibrium.

We first argue that the costs c1(h) and c2(h) are small.

Lemma 6 There is c > 0 such that for every δ ≥ δ̄1 and every h ∈ HN , one has

c1(h) ≤ (1− δ)c.

Proof. Because payoffs are bounded by 1, one has

c1(h) ≤ (K1 + 2K2)(1− δ)δ−N = (K1 + 2K2)
(1− δ)

δK1+2K2
δ−b

ln(1−θ)
ln δ c

≤ (K1 + 2K2)
(1− δ)

δK1+2K2+1
δ

ln(1−θ)
ln δ = (K1 + 2K2)

(1− δ)

δK1+2K2+1

1

ln(1− θ)
,

and the result follows.

For δ ≤ 1 (including δ = 1), denote by P(δ) the support of pN when ψ2
� is set to

ψ2
�(δ), and define Q(δ) in a symmetric way. Since π2 and ε2(· | mS) have full support,

and since ψ2, ψ2
�(1) ∈ (0, 1), one has pN ∈

◦
∆
†

lS
(S ×MS), with probability 1.

Because P(1) and Q(1) are finite sets, and by Proposition 2, there is δ̄2 < 1,

ε > 0, and neighborhoods V (p) of p ∈ P , V (q) of q ∈ Q, such that any payoff in

[u?(p
′), u?(p

′) + ε]× [v?(q
′), v?(q

′) + ε] is a sequential equilibrium of Γ(p′, q′), for every

p ∈ P , p′ ∈ V (p), and q ∈ Q, q′ ∈ V (q).

In addition, we choose the neighborhoods V (p), V (q) to be small enough, and

C > 0 so that the conclusion of Proposition 3 holds for every p ∈ P , p′ ∈ V (p), and

q ∈ Q, q′ ∈ V (q).

We choose δ̄3 < 1 to be high enough so that the following conditions are met for

each δ ≥ δ̄3: (i) every p′ ∈ P(δ) belongs to V (p) for some p ∈ P ; (ii) (1− δ)c ≤ ε.

For δ ≥ δ̄3, the profile (σδ, τδ) is then well-defined, at any information set that is

not ruled out by the definition of (σδ, τδ) at earlier stages.

Consider now an information set I1
l,h that is reached with probability 0, and assume

that the information set I1
l,h′ is reached with positive probability, where h′ is the longest

prefix of h.

45



If the sequence h of actions has probability zero, then we let beliefs at I1
l,h and at

all subsequent information sets coincide with the belief held at I1
l,h′ . Player 1 repeats

the action that is optimal at I1
l,h′ .

Assume now that the sequence h has positive probability. This corresponds to the

case where player 1 misreported in Phase 1, and played consistently with his report

afterwards. Then the belief of player 1 at I1
l,h is well-defined by Bayes’ rule (and is

independent of player 1’s strategy), and only assigns a positive probability to informa-

tion sets I2
m,h that are reached with positive probability under τ?. We let σ? play at

I1
l,h a best reply to τ?.

By construction, sequential rationality holds at any information set I1
l,h that is

reached with probability zero. One can verify that beliefs are consistent with (σ?, τ?).

We omit the proof.

B.4 Equilibrium properties

We claim that the profile (σδ, τδ) is a sequential equilibrium profile for δ < 1 high

enough.

Let η > 0 be small enough so that

Eε2,x? [lS → k] < Eε2,x? [lS → lS]− 2η for every lS, k ∈ LS, lS 6= k,

and we choose δ̄4 < 1 such that

Eε2,xδ(~a(x?))[lS → k] < Eε2,xδ(~a(x?))[lS → lS]− η for every lS, k ∈ LS, lS 6= k and δ ≥ δ̄4.

We finally choose δ5 < 1 to be such that 1 − δK1+2K2 + (1 − δ)C < ηδK1+2K2 for each

δ ≥ δ̄5.

We now verify that (σ?, τ?) is a sequential equilibrium as soon as δ ≥ max{δ̄4, δ̄5}.
It is sufficient to check that sequential rationality holds at any information set that is

reached with positive probability. Let such an information set Il,h be given, and let

n be the stage to which Il,h belongs. If stage n belongs to phase 4, then sequential

rationality at Il,h follows because continuation strategies in phase 4 form a sequential

equilibrium of the associated self-ignorant game. Assume then that n < N .

We will make use of the following observation that holds because ε1(·), ε2(·), π1

and π2 have full support: if IlS ,lT ,h is reached with positive probability, then the set

of actions that are played with positive probability at IlS ,lT ,h does not depend on lT ,
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and, therefore, the information set IlS ,l′T ,h is also reached with positive probability, for

every l′S ∈ LS. We note that the compensation made in phase 4 implies that player

1 is indifferent at IlS ,lT ,h between all actions that are played with positive probability.

One thus simply needs to check that player 1 cannot increase his continuation payoff

by playing some other action, a.

Assume first that n belongs to either phase 2.1, 2.2 or to phase 3. In that case,

the set of actions that are played at Il,h does not depend on l. Hence, when playing a,

player 1 triggers a myopic play by player 2, and player 1’s overall payoff in that case

does not exceed

(1− δ)u?(pn) + δE[u?(pn+1) | l, h].

On the other hand, the expected continuation payoff of player 1 at Il,h is at least

δNE[u?(pN) | l, h]. Sequential rationality then follow from the choice of parameters.

Assume finally that stage n belongs to phase 1. Again, it is not profitable to switch

to an action that triggers a myopic play from player 2. What if player 1, instead

of reporting lS, chooses to report k 6= lS? Then, as above, the choice of parameters

ensures that it is optimal for player 1 to play consistently with k, at least until phase

4. Such a deviation yields a payoff (discounted back to h) of at most

δ−n
(
δK1+K2Eε2,xδ(~a(x?))[lS → k] + (1− δ)

(
1 + · · ·+ δK1+2K2−1

)
+ δNE[u?(pN) + (1− δ)C]

)
.

On the other hand, player 1’s continuation payoff when reporting truthfully is at least

δ−n
(
δK1+K2Eε2,xδ(~a(x?))[lS → lS] + δNE[u?(pN) + (1− δ)C]

)
.

We stress that the distribution of pN is the same in both expressions, because the

distribution of (µ1, µ2) does not depend on player 1’s report. The result follows, by the

choice of δ̄4 and δ̄5.

Assume now that h is longer than K1 and that player 1 misreported in Phase 1.

By definition, the continuation strategy of player 1 is defined to be a best reply to the

continuation strategy of player 2. Hence no deviation is profitable. Before we conclude,

let us bound the highest continuation payoff at the beginning of Phase 2, conditional

on receiving lS and reporting i1 6= lS.

• If player 1 decides to fulfill the requirement of Phase 3, his continuation payoff

is at most (roughly, up to terms of the order (1 − δ)ζ2(εEε2,x[lS → i1] + (1 −
ε)E[u?(p

0(· | lS, µ1, ν1)) + (1− ζ2)u?(pB2), which is strictly less than his continu-

ation payoff, had he reported truthfully lS;
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• If player 1 decides to fail the requirement of Phase 3, his continuation payoff is

at most ζ2E[u?(p
0(· | lS, µ1))] + (1 − ζ2)u?(pB2), which is also strictly less that

his continuation payoff, had he decided to report truthfully.

Assume finally that h is shorter than K1.

• If player 1 chooses an action inconsistent with α1, his continuation payoff is (at

most) u?(p
0(· | lS)), which is less than his payoff along the profile.

• If player 1 chooses to misreport lS, and say, to report i1, then there are two cases.

If player 1’s report in phase 3 is consistent with his deviation in phase 1, then he

loses. If player 1’s report in phase 3 is inconsistent with his deviation in phase 1,

then he loses by the construction in phase 4.

C The proof of Theorem 2

We here briefly show how to deduce Theorem 2 from the proof of Theorem 1. We will

assume that with p-probability 1, player 1 has a unique myopically optimal action at

p1, and that the symmetric property26 holds for player 2.

Consider the following class of strategy profiles. In the first two stages, each player

i ‘tells’ player j whether the information held by j has positive value to i or not. This

is done as follows. In stage 1, player i plays his myopically optimal action. In stage 2,

player 1, say, repeats this action if lS /∈ L̃S, and switches to a different (suboptimal)

action if lS ∈ L̃S to signal his willingness to disclose/acquire information. If both

players switched in stage 2, they implement from stage 3 on an equilibrium such as

we designed in the proof of the Main Theorem. Otherwise, players repeat their stage

1 action. The sole role of stage 1 is to instruct the other player how to interpret the

action played in stage 2.

If ls /∈ L̃S, it is strictly dominant for player 1 to repeat his optimal action through-

out, as required. Indeed, playing a different action in stage 2 would only lower player

1’s payoff, with no benefit since player 2’s information is valueless.

If ls ∈ L̃S, player 1’s overall payoff is u?(p1) if he pretends that the information

held by player 2 is valueless. However, because there is a positive q-probability that

26If a player has two myopically optimal actions at p1, he can costlessly reveal information to the
other player.
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mT ∈ M̃T , it is a best reply for player 1 to switch to a suboptimal action in stage 2 as

soon as the value of the information disclosed by player 2 exceeds on average the cost

incurred27 in stage 2.

In such an equilibrium, conditional on lS, player 1’s payoff is u?(p1), which is then

also equal to E[u?(p̃) | lS], if lS /∈ L̃S. If instead lS ∈ L̃S, then with probability q(M̃T ),

player 1’s payoff may be as high as E[u?(p̃) | lS]. Otherwise, player 1’s payoff will be

(approximately) u?(p1). The ex ante expected payoff can therefore be as high as

u?(1− q(M̃T )) + q(M̃T )u??.

27It cannot be optimal for player 1 to pretend that lS ∈ L̃S , yet to lie about his optimal action.
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