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Abstract

We study a general model of dynamic games with purely informational externalities. We prove that eventually all motives for
experimentation disappear, and provide the exact rate at which experimentation decays. We also provide tight conditions under
which players eventually reach a consensus. These results imply extensions of many known results in the literature of social
learning and getting to agreement.
© 2008 Elsevier Inc. All rights reserved.

JEL classification: C72; C73; D83; C11

1. Introduction

The dissemination of private information, or knowledge, in a population has attracted much interest, first among
sociologists and geographers (see references in Chamley, 2004), and more recently among economists and computer
scientists. A question that has attracted a lot of attention is whether as time passes, information spreads through the
entire population, and as beliefs become more precise, whether consensus of some sort eventually arises.

Within economics, this work has developed independently in different directions, and several strands of literature
can be recast under that heading. In the literature on getting to agreement, agents are endowed with private information
over the underlying parameter, and exchange information according to some communication protocol. The main
purpose of this literature, starting with Geanakoplos and Polemarchakis (1982), is to provide some dynamic foundation
for agreement theorems (Aumann, 1976, see also Nielsen et al., 1990 and the references therein). Information is
usually publicly broadcasted, with the notable exception of Parikh and Krasucki (1990). Consensus is here agreement
say, e.g., on the posterior belief assigned to some event. Players are non-strategic, in that they make no attempt at
manipulating the protocol to gain more information.
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In the literature on learning in social networks (see Goyal, 2005 and the references therein), identical players are
identified with the vertices of a directed graph, with the interpretation that each player observes her neighbors, and
only them. Players are endowed with private information, and adapt their behavior through time, according to the
observed behavior of their neighbors. Here, consensus means conformism through the network. Players are myopic,
in that they play in every stage an action that maximizes their current expected payoff, in the light of the information
received so far.

In strategic experimentation models, by contrast, players are non-myopic. Each player faces a statistical dynamic
decision problem, such as a multi-arm bandit, and benefits from the “experimentations” performed by her fellow
players. Stylized two-arm bandit problems have been considered, see Bolton and Harris (1999), Keller et al. (2005),
Rosenberg et al. (2007a) and Murto and Välimäki (2006).

All the models above share the feature that there are no payoff externalities among players. We study a general
model of information dissemination, that includes the above models as special cases, and study the limit behavior of
the players. Our main findings are the following. (1) Consensus needs not arise. Even if we face a connected network,
so that each pair of players are connected with a directed path, and each player on the path observes the actions of the
player next to him, asymptotically one player may play actions which are perceived sub-optimal by another player.
(2) Nevertheless, if the network is connected then each player believes that her neighbors play asymptotically optimal.

We will now describe our model and then present our results in more details. The game involves finitely many
players. Before play starts, a parameter is drawn from some general measurable space of parameters, endowed with
a common prior. At each stage n ∈ N, each player first receives a private signal, then chooses an action, and finally
receives a payoff. We assume that the payoff of a player depends only on the parameter and the player’s own action.
Thus, the interaction among the players is purely informational. We assume that the players are symmetric, in that they
share the same action set and the same payoff function. By contrast, we make no a priori assumption on the degree
of informativeness of signals. In particular, we will allow for cases where (i) payoffs may or may not be observed,
publicly or privately, (ii) information is broadcasted, as in Geanakoplos and Polemarchakis (1982), (iii) neighbors’
actions are observed, as in Bala and Goyal (1998) and Gale and Kariv (2003), (iv) players observe a random sample
from the set of players, as in Ellison and Fudenberg (1995), and Banerjee and Fudenberg (2004), or (v) any combi-
nation of these, and beyond. From a game-theoretic viewpoint, we thus allow for general information and monitoring
structures, at the cost of restrictive assumptions on the payoff structure. Player i observes player j if at every stage
the signal that player i receives reveals the action that player j chose at the previous stage (a significantly weaker
definition is given below, see Definition 2.2). In this case we say that player j is a neighbor of player i. We say that
the population is connected if for every players i and j , player j is a neighbor of a neighbor of . . . of a neighbor of
player j .

In games with informational externalities, as soon as discount factors are positive, the agents face a trade-off
between optimizing and experimenting – sacrificing current payoffs for the sake of future informational benefits. We
show that if the population is connected, then in equilibrium the actions of one’s neighbors are eventually optimal
according to one’s own information. In other words, in the light of the information available to a player A, the actions
that her neighbor B plays infinitely often are myopically optimal.

Somewhat surprisingly, as we show by means of two examples, the above result does not extend to neighbors
of neighbors. That is, in equilibrium, player A may think that her neighbor B is using myopically optimal actions,
know that B thinks that her neighbor C is using myopically optimal actions, and know that C thinks that A is using
myopically optimal actions, yet, if A was asked whether C’s actions are myopically optimal in her (player A) own
eyes, the answer may have been negative. This remains true even when players observe their own payoffs and their
neighbors’ payoffs. Our examples are non-generic, and it is possible that in generic games such phenomena do not
arise.

Plainly, a player always has the option of mimicking the behavior of her neighbor (with a one-period delay) – the
so-called imitation principle. This principle is usually interpreted as implying that player A’s limit payoff is always at
least as high as her neighbor B’s limit payoff and hence, since all players are connected, that the limit payoffs of all
players do coincide. Such a statement is however ambiguous. We prove that if the network is connected, the expected
limit payoffs of all players coincide. That is, when computed at the beginning of the game the average limit payoff
that players expect to receive, all expectations coincide. On the other hand, the actual limit payoffs need not be equal,
as we show with an example. We also identify a sufficient condition under which the actual limit payoffs are equal.
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Casual intuition suggests that our limit results hold as soon as each player observes her neighbors in infinitely many
periods. This is not so, even in two-player games, as we show with an example. Instead, all of our results still hold if
the network is connected under the following definition of observability: player i observes player j if there is a subset
Bi,j of the actions that player j plays infinitely often that satisfies the following two conditions: (i) at the end of the
game player 1 knows that all the actions in Bi,j were played infinitely often, and (ii) at the end of the game player 2
knows that player 1 knows that all the actions in Bi,j were played infinitely often. Knowledge of higher level is not
needed. This condition is satisfied, e.g., if at every stage each player randomly chooses a neighbor, and observes the
action of that neighbor (as in Ellison and Fudenberg, 1995, and Banerjee and Fudenberg, 2004), and in social networks
where players occasionally visit their neighbors according to a pre-selected mechanism, as long as each player visits
her neighbors infinitely often.

The model and the basic results are presented in Section 2. In Section 3 we discuss the implication of our results
to the three strands of literature mentioned above. Examples appear in Section 4, and proofs appear in Section 5.

2. Model and main results

2.1. Setup

We consider games with incomplete information, in which identical players repeatedly choose an action, and
receive a payoff that depends on their own action, and on the underlying parameter.

The set of players is a finite set I . The set of parameters is a measurable space (Ω,A), endowed with a common
prior P. Time is discrete, and the set of stages is the set N of positive integers. At each stage n, each player i first
receives a private signal si

n from some signal set Si , then chooses an action ai
n from her action set Ai , and obtains

a utility ui(ω, ai
n). Players discount future payoffs at the common rate δ ∈ [0,1). Players are identical, only in that

they share the same action set A := Ai , the same signal set S := Si , and the same utility function1 u :Ω × A → R.
However, different players may receive different signals.

We impose the following technical assumptions:

• The common action set A is a compact metric space, endowed with the Borel σ -field.
• The common utility function u : Ω × A → R is (jointly) measurable, and continuous over A for every fixed

ω ∈ Ω . In addition, it satisfies the following boundedness condition: the highest payoff ū : ω �→ maxa∈A u(ω,a)

and the lowest payoff u : ω �→ mina∈A u(ω,a) are L2-integrable.
• The signal set S is a measurable set. The signalling function maps past histories into probability distributions

over SI , the space of signal profiles. The past history at stage n is the complete list of the parameter, and of the
actions and signals of all players in all previous stages, hence it lies in Hn := Ω × (SI ×AI )n−1. Technically, the
signalling function at stage n is any transition probability2 from Hn to SI .

A few remarks are in order. First, we emphasize that each player’s utility function only depends on the underlying
parameter, and on her own action, but does not depend on other players’ actions. In that sense, the strategic interaction
between players is purely informational: actions of player i may provide some information on player i’s signals, and
hence on the parameter. Therefore, actions of player i are relevant to player j .

We now discuss an important issue of interpretation. We assume in this paper that the payoff to a player is a
deterministic function u(ω,a) of the parameter ω and of one own’s action a, and that a player may only receive a
noisy signal about this payoff. In some applications, such as strategic experimentation models, the payoff to a player
is random, with an expectation that depends on ω and a. In such applications, it is typically assumed that the payoff is
observed. Our model accommodates such situations by setting u(ω,a) to be the expectation of the payoff, and setting
the signal of the player to include her actual (random) payoff. We discuss this issue in Section 3.2 for multi-arm bandit
games.

1 Here and in the sequel, a product of measure spaces is endowed with the product topology.
2 A transition probability from X to Y is a function f that assigns for every x ∈ X a probability distribution f (x) over Y , such that for every

measurable subset B of Y , the probability f (x)[B] assigned to B is measurable in x.
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The previous point illustrates why it is critical here to assume that payoffs may not be observed. Indeed, observing
the payoff in, say, multi-arm bandit games, amounts to observing the expected payoff associated with the arm, an
assumption which is overly restrictive.

Finally, the assumption that the set of possible signals is independent of the stage, and is the same for all players,
is without loss of generality. Indeed, one may otherwise define S as the union of all the signal sets of all players in all
stages.

2.2. Information and strategies

The space of plays is H∞ := Ω × (SI × AI )N. A private history of player i at stage n is an element of Hi
n :=

(S × A)n−1 × S, and Hi
n is the corresponding σ -algebra over H∞.

A (behavior) strategy of player i is a sequence (σ i
n), where σ i

n assigns to every private history in Hi
n a probability

distribution3 over A. We denote by Hi∞ the information of player i at the end of the game. It is the σ -algebra spanned
by (Hi

n)n∈N.
Any strategy profile σ , together with the common prior P on Ω , induces a probability distribution, Pσ , over the set

of plays H∞. Expectation w.r.t. Pσ is denoted by Eσ .
Given a strategy profile σ , and a stage n ∈ N, we denote by qi

n the conditional distribution over Ω given player
i’s information Hi

n at stage n. For a fixed (measurable) subset F ⊆ Ω , the sequence qi
n(F ) is a bounded martingale,

which converges, by the martingale convergence theorem, to Eσ [1F | Hi∞], Pσ -a.s. We set qi∞(F ) := limn→∞ qi
n(F ).

It is a probability distribution, to be interpreted as the limit belief of player i.

2.3. Main results

We focus on the asymptotic equilibrium behavior. For non-myopic players (δ > 0), we use the Nash equilibrium
notion. If δ = 0, the Nash equilibrium criterion puts no restriction on the player’s behavior beyond the first stage.
In order to get asymptotic results for myopic players, we require that if δ = 0 each player plays at every stage a
myopically optimal action. In both cases, we will simply speak of equilibria and best-replies.

Given a strategy profile σ , a stage n � 1, and an action a ∈ A, we let u(qi
n, a) := Eσ [u(·, a) | Hi

n] denote
the expected payoff at stage n (conditional on available information),4 when playing a. We also set u∗(qi

n) =
mina∈A Eσ [u(·, a) | Hi

n]; similarly, u∗(qi∞) = maxa∈A E[u(·, a) | Hi∞]. This is the lowest (expected) payoff the agent
may obtain at stage n.

Given a belief q , that is, a probability distribution over Ω , the set of myopically optimal actions w.r.t. q is5:

BR(q) := argmaxa∈A

∫
u(ω,a)q(dω) = argmaxa∈A Eq

[
u(·, a)

]
.

When playing optimally, a player faces a trade-off between optimizing – playing an action which is myopically
optimal in the light of the information accumulated so far, and experimenting, with the purpose of obtaining further
information on ω. This information refines the player’s current information, and may be used in subsequent stages to
increase the player’s myopic payoff, or she can transfer this information to other players, who will afterwards reveal
information that she needs.

An action a ∈ A is a limit action if it is a limit point of the sequence (ai
n)n∈N of the actions played by the agent

along the game.6 We denote Ai∗ the set of limit actions. Since A is compact metric, Ai∗ is compact and non-empty.
Since the actions of the agent depend on her information, Ai∗ is a random variable,7 measurable w.r.t. the information
of the agent at infinity, Hi∞.

We first note that in equilibrium, the players eventually stop experimenting.

3 Formally, it is a transition probability from (H∞, Hi
n) to A.

4 This notation is motivated by the observation that, Eσ [u(·, a) | Hi
n] is the expectation of u(·, a) under the belief qi

n of player i.
5 By dominated convergence, the map a �→ Eq [u(·, a)] is continuous. Hence, BR(q) is non-empty for each q .
6 That is, there exists an increasing sequence (nk)k∈N of stages such that a = limk→∞ ai

nk
.

7 The set of compact subsets of A is endowed with the usual, Hausdorff, distance.
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Proposition 2.1. Let σ be an equilibrium. Then Pσ (Ai∗ ⊆ BR(qi∞)) = 1, for each player i.

In the traditional literature of social networks, player i observes player j if the signal that player i receives at
every stage n reveals the action that player j chose at the previous stage n − 1. We will use a weaker definition of
observability: player i observes player j if she can identify a subset of the limit actions of player j , and player j

knows which of her limit actions were identified.

Definition 2.2. Let σ be a strategy profile. Player i observes player j w.r.t. σ if for Pσ -almost-every ω there is a
non-empty and compact set B

ij∗ (ω) ⊆ A
j∗(ω) such that B

ij∗ is both Hi∞-measurable and Hj∞-measurable.

Few examples of observability are:

(1) Players are vertices of a connected directed graph. At every stage each player observes the action of her neighbors.
In this case B

ij∗ = A
j∗.

(2) Consider the previous example, but at every stage each player observes the action of a random sample of her
neighbors that is drawn independently of previous choices (see Ellison and Fudenberg, 1995; Banerjee and Fu-
denberg, 2004). In this case, by the independence assumption, B

ij∗ = A
j∗.

(3) Consider still the setup in (1), and adopt the monitoring setup of Cripps et al. (2007): at each stage a player
does not observe her neighbor’s action, but rather a noisy signal of the neighbor’s action, that depends on her
action and on her neighbor’s action. The signals are assumed to be sufficiently revealing, in the sense that with
sufficiently many observations, the player can correctly identify, from the frequencies of the signals, any fixed
stage-game action of her neighbor (assumption 2 in Cripps et al., 2007). The identifiability assumption implies
that the empirical frequencies of signals reveal the limit actions of a player, and therefore in this case i observes
j with B

ij∗ = A
j∗ .

(4) There are finitely many locations, and in every stage each player randomly chooses a location for that stage. The
player determines which action to choose after observing who are the players in her location, and she observes
the actions of everyone in her location. In this case B

ij∗ is the set of limit actions of player j in all stages in which
she shared the same location as player i. Note that B

ij∗ may be different than B
kj∗ for i �= k.

The compactness requirement in Definition 2.2 is w.l.o.g. It is crucial that player j knows the set of her limit actions
that are observed by player i; without this requirement our results do not hold, as the example in Section 4.4 shows.

The definition of observability does not apply to the primitives of the game. That is, whether player i observes
player j depends on the strategy profile σ , as well as on the signalling function. Indeed, if player j uses, e.g., a constant
strategy, she is observed by any other player i. One can strengthen the definition of observation by requiring that the
condition in Definition 2.2 holds for every strategy profile σ . The resulting definition would be intrinsic.8

We let G denote the directed graph with vertex set I , that contains an edge i → j if and only if i observes j . The
graph G is connected if for every two players i and j there is a directed path from i to j .9

Theorem 2.3. Let σ be an equilibrium, and assume that G is connected. Then

P1. Eσ [u∗(qi∞)] = Eσ [u∗(qj∞)] for every two players i and j .

P2. Pσ (A
j∗ ⊆ BR(qi∞)) = 1, provided player i observes player j .

If G is not connected, P1 and P2 still hold provided i and j belong to the same connected component of G.
Since the graph is connected, according to P1 all players eventually perform equally well in expected terms. Even

if information is not divided equally, the relevant information spreads along the graph and guarantees asymptotic
equality. The intuition behind P1 relies on the so-called imitation principle: there is a strategy for player i that mimics

8 It would still be un-satisfactory, to the extent that checking this definition would involve considering all strategy profiles. Variants can be
devised, that are better in this respect, at the cost of some notational complexity.

9 By exchanging the roles of the two players, there is also a directed path from j to i.
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in the long run the behavior of her neighbor j : the play of player i converges to some limit action of player j . Since
the players play an equilibrium, according to player i’s information, the expected payoff of each limit action she
uses is at least as much as the expected payoff of each action that player j uses. This observation, together with
the connectedness assumption, still does not prove P1, since it is not clear that the expected payoff of the action
a according to i’s information is the same as its expected payoff according to j ’s information. The definition of
observability guarantees that in expected terms P1 would hold. As we show by means of an example in Section 4.1, it
may happen that u∗(qi∞) �= u∗(qj∞) with positive probability (and even with probability 1), even in generic networks.

According to P2, player i eventually thinks that player j is playing in an optimal way: every limit action of player
j is optimal according to player i’s information. The intuition is that by the imitation principle, every limit action of
j yields, according to player i’s information, at most as much as player i’s own limit action yields. If with positive
probability the limit action of the neighbor is strictly sub-optimal according to player i’s information, the expectation
E[u∗(qj∞)] would be strictly below E[u∗(qi∞)], which would violate P1.

P1 holds for every pair of players, but P2 holds only for neighbors. Indeed, it may well be that a limit action of a
player who is not player i’s neighbor is not optimal according to player i’s information. We stress that this negative
result is not an artefact of strategic behavior. Indeed, we provide counter examples that hold for every discount factor
(see Sections 4.2 and 4.3). Our counter examples are non-generic, and it is possible that in generic games P2 holds
also for non-neighbors.

It is natural to wonder when the equality u∗(qi∞) = u∗(qj∞) would hold path-wise (with probability 1). As Theo-
rem 2.4 below states, it is sufficient to assume that each player (eventually) observes her own payoffs.

Theorem 2.4. Let σ be an equilibrium, and assume that G is connected and that the realized payoff u(ω,ai
n) is

Hi∞-measurable for every player i and every stage n. Then

P3. u∗(qi∞) = u∗(qj∞) for every two players i and j .

Whether or not the measurability condition in Theorem 2.4 is satisfied may depend upon the strategy profile σ .
Plainly, it is satisfied as soon as the payoff u(ω,ai

n) is part of the signal si
n+1. However, as we discussed earlier, in

some models this is an extremely restrictive assumption. Even under this additional restrictive assumption, P2 does
not hold for neighbors of neighbors, as we show in Section 4.3.

3. Applications and related literature

3.1. Social networks

Many models of learning in social networks have been proposed, see e.g. Bala and Goyal (1998), Gale and Kariv
(2003), DeMarzo et al. (2003), Ellison and Fudenberg (1995), Banerjee and Fudenberg (2004), Goyal (2005) and the
references therein. We here provide a brief discussion of how our results relate to this literature. We fix the probability
space (Ω,P), the set of players I , the common action set A, and the payoff function u. Let G be a directed graph over
the set of players I . It is assumed that each player i observes (at least) the actions of her neighbors.

By Theorem 2.3 if player j is a neighbor of player i, then every action that player j plays infinitely often is optimal
according to player i’s information, and the asymptotic expected stage payoff is the same for all players. This result
was proved by Bala and Goyal (1998) under the additional assumptions that (i) A is finite, (ii) players observe the
signals received by their neighbors, and (iii) the players disregard the information revealed by their neighbors’ actions.
Since the updating of player’s beliefs is not Bayesian, Bala and Goyal’s (1998) result does not follow from our results.
This conclusion was also stated by Gale and Kariv (2003) under the additional assumptions that (i) A is finite and Ω

compact, (ii) player i’s information only consists of some initial signal and of her and her neighbors’ previous actions,
and (iii) players are myopic and Bayesian.

Our results imply that these conclusions hold in more complicated social networks, e.g., when

• players are strategic rather than myopic;
• players receive a signal at every stage; the signals of the players may be correlated, and may depend on past

actions and signals;
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• players only observe a random sample of their neighbors’ choices, such as in Ellison and Fudenberg (1995) and
Banerjee and Fudenberg (2004);

• the network changes along the play as a function of past play (as long as the underlying graph, that is defined by
observation, is connected);

• A is compact metric and Ω is general.

3.2. Strategic experimentation

Our results also apply to pure strategic experimentation models. We here introduce a stylized multi-player bandit
problem, which is already more general than the games considered in Bolton and Harris (1999) and in Keller et al.
(2005).10

Consider a finite set I of players, each of whom operates a K-arm bandit machine. Each of the K arms is of one of
several types, which is determined once and for all at the beginning of the game, and the random type θk of arm k is
common to all |I | machines. Conditional on its type, the kth arm yields a sequence of payoffs, which are identically
distributed and independent (across time, players, and arms). At every stage n ∈ N, each player chooses which arm
to operate, and receives the realized payoff. Players are here strategic, and discount future payoffs at the rate δ. For
concreteness, we assume that no two types of two arms yield the same expected payoff, hence we may identify a type
with the corresponding expected payoff. Finally we assume that there are given subsets of players (Qi

n,R
i
n)

n∈N
i∈I (some

of these sets may be empty), and at stage n player i observes the payoffs of all players in Qi
n, and the actions of all

players in Ri
n.

We first discuss how to embed this model in the general model of Section 2. Denote by Xk(i, n) the random payoff
generated by arm k if it is operated by player i at stage n. Our basic assumption is thus that the r.v.s (Xk(i, n))k,i,n are
conditionally independent given θ , with E[Xk(i, n) | θ ] = θk .

We define an auxiliary game as follows. The parameter space Ω ⊆ RK contains all possible vector types, and the
action set A = {1,2, . . . ,K} coincides with the set of arms. We denote by θ = (θ1, . . . , θK) a generic element of Ω .
Define u(θ, k) = θk ; the payoff upon selecting action k is the expected payoff of the kth arm.11 The signal to player i

at stage n+1 contains the actions chosen at stage n by all the players in Ri
n, and in addition it contains (Xk(j, n))j∈Qi

n
,

the realized payoffs of all the players in Qi
n.

Observe that the strategy set of each player in the model of strategic experimentation coincides with her strategy
set in the auxiliary game we just defined. Since the expectation of the discounted sum is the discounted sum of
expectations, one can verify that the expected payoff of every strategy profile in the two models coincide. In particular,
the set of equilibria in the model of strategic experimentation coincides with that in the auxiliary game.

Assume, as in Bolton and Harris (1999), that arm choices and payoffs are publicly observed: Qi
n = Ri

n = I for
every i and n. By Theorem 2.4 all players have asymptotically the same payoff in the auxiliary game. Since the payoff
in the auxiliary game is the expected payoff of the chosen arm, and since no two arms yield the same expected payoff,
it follows that all players end up using the same arm.

Assume now that players are organized along a directed, connected graph. Each player privately observes her
payoffs, and she also observes the actions of her neighbors. Using Theorem 2.3 again, all players end up using the
same arm.

3.3. Getting to agreement

Finally we relate our results to interactive epistemology. We limit ourselves to showing how a number of existing
results can be deduced from our results. We specialize our model as follows. Let (Ω,P) be the set of parameters,
A the action set, and u :Ω × A → R the payoff function. We will assume that players are myopic, and are endowed
with private information over the parameter. In addition, we will assume that along the play, the signals only provide
information about the moves chosen earlier by the player’s neighbors. Formally, for every player i and every stage n

10 Except that both these models are continuous-time games.
11 Since the payoff in the auxiliary game should be a deterministic function of the parameter and the action, we define it as the expected payoff of
the chosen arm.
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there is a (deterministic) set Rn
i ⊆ I \ {i}; this is the set of neighbors of i at stage n. The signal player i receives at

stage n coincides with the list of actions chosen by the players in Rn
i at stage n − 1.

Player i observes player j if j ∈ Rn
i for infinitely many n’s. Assume that the underlying graph G is connected.

Such communication protocols are called fair in Parikh and Krasucki (1990).
Let σ be an equilibrium. Since player i is myopic, she plays at each stage n an action which maximizes

Eσ [u(·, a) | Hi
n]. Here are a few examples:

• Let A = [0,1], and u(ω,a) = −(1E(ω) − a)2, for some fixed event E ⊂ Ω . Then Eσ [u(·, a) | Hi
n] is uniquely

maximized at a = pi
n = Pσ (E | Hi

n). Thus, in equilibrium, every player “plays” her current posterior belief

over E. Therefore Ai∗ = {qi∞} for every player i, so that by Theorem 2.3, whenever i observes j , {qj∞} = A
j∗ ⊆

BR(qi∞) = {qi∞}. Since the population is connected, all posterior beliefs eventually coincide. This result was first
proven by Geanakoplos and Polemarchakis (1982) under the assumption that Ω is finite and Rn

i = N for all n

and i. It was extended by Nielsen (1984) to general Ω , still assuming Rn
i = N . Theorem 2.3 yields a simple

generalization to the case of a fair protocol. Setting δ > 0, it yields a strategic version of that result, in which
players mis-represent their beliefs, to prompt other players to reveal more information.

• Let A = {0,1}, I = {i, j}, and u(ω,a) = a(1E(ω) − π), where π ∈ (0,1) is given. The optimal action at stage n

is 1 or 0 depending on whether pi
n � π . By Theorem 2.3, both players eventually agree whether the probability

of E is higher than π or not. This is the result in Sebenius and Geanakoplos (1983).
• We here let both Ω and A be finite sets. Each player is endowed with private information, described by a partition

Pi of Ω . We moreover assume that a �→ Eσ [u(·, a) | B] has a unique maximum, for any event B in the join12

of the partitions Pi , i ∈ I . Player i first considers any parameter in the atom of Pi that contains ω, Pi(ω), to
be possible, and plays the action that maximizes Eσ [u(·, a) | Pi(ω)]. With time, she may observe actions of her
neighbors that rule out some parameters in Pi(ω), and consequently she updates the set of parameters that she
views as possible. By the assumption that a �→ Eσ [u(·, a) | B] has a unique maximum it follows that the set Ai∗ of

limit actions is a singleton. By Theorem 2.3, Ai∗ = A
j∗ for any two players i, j ∈ I . This is the result in Ménager

(2006a).
• In Parikh and Krasucki (1990), the message sent by player i to her neighbors at stage k is f i

k = f (Ωi
k) where

Ωi
k ⊆ Ω is the set of parameters that player i considers possible at stage k, and f : 2Ω → R is given. It is shown

that under a so-called convexity assumption on f the sequence of messages is eventually constant; the map f is
convex if, for every two disjoint subsets S,T of Ω , f (S ∪ T ) is a proper convex combination of f (S) and f (T ).
Denoting by A the range of f , Parikh and Krasucki’s convergence result follows from Ménager (2006a), hence
from Theorem 2.3, if there is a function u :Ω × A → R such that∑

ω∈S

u(ω,a) >
∑
ω∈S

u(ω,b), ∀a ∈ A,b ∈ A \ {a}, ∀S s.t. f (S) = a. (1)

There are non-convex functions for which a function u that satisfies (1) exists. For example, when |Ω| = 2 the
function f that is defined by f ({1}) = f ({1,2}) = 1, f ({2}) = 0 is not convex, but there is a function u that
satisfies (1) for this f . Conversely, one can show that when the range of a convex function f contains at most five
values, or if f (S) only depends on the number of elements in S, there is a function u that satisfies (1). Ménager
(2006b) shows that there are convex functions f for which no such function u exists.

4. Examples

We analyze four examples to illustrate the tightness of our results. The example in Section 4.1 shows that P1 does
not hold path-wise. The example in Section 4.2 shows that P2 does not extend to neighbors of neighbors: a limit action
of a player who is not one’s neighbor may be sub-optimal according to one’s information. The example in Section 4.3
shows that even if each player observes her own payoff as well as her neighbors’ payoffs, and all players receive the
same limit payoff, P2 does not extend to neighbors of neighbors.13 The example in Section 4.4 shows that neither

12 The join of the partitions P1, . . . , Pk is the coarsest partition that refines P1, . . . , Pk .
13 The examples in Sections 4.2 and 4.3 challenge the assertion after Theorem 2 in Gale and Kariv (2003), according to which all players are using
the same limit actions.
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P1 nor P2 need hold when a player only observes her neighbors infinitely often. That is, it is important that B
ij∗ be

Hj∞-measurable (in addition to being Hi∞-measurable).
Whereas example in Section 4.1 is generic, the other three examples are not, and their conclusion hinges on the fact

that the players are indifferent between certain actions. For myopic players, in generic games with countably many
actions there are countably many possible posteriors that can arise along the play, and for each such posterior there
is a unique optimal action. Therefore all the players converge to the same limit action, and P2 holds also for players
who do not observe each other. For non-myopic players it is plausible that in generic games uniformity of behavior
arises as well, though we do not have a proof for such a result.

4.1. No convergence of payoffs

Our first example is a two player example who have a single action a. There are two parameters ω1 and ω2, player 1
knows the chosen parameter while player 2 receives no information. The payoff function is

u(ω1, a) = 1, u(ω2, a) = 2.

Since there is only one action, in the unique strategy profile (which is the unique equilibrium) both players play a in
all stages. Unless P(ω1) ∈ {0,1} the expected payoff of the two players, given their information, differs.

4.2. Neighbors of neighbors

Our second example is a three-player example. There are two equally likely parameters, ω1 and ω2. At stage 1, both
players 2 and 3 receive an informative signal in {s1, s2}. The signal to player 2 reveals the parameter with probability
2/3: P(sk | ωk) = 2/3, for k = 1,2, so that P(ωk | sk) = 2/3 as well. The signal to player 3 reveals the parameter with
probability 5/6. No further information about ω is provided.

There are three actions, A = {a, b, c}. Denoting p the belief assigned to ω1, the utility function u is such that action
a is myopically optimal for p ∈ [2/7,5/7], action b is myopically optimal for p ∈ [0,2/7], and action c is myopically
optimal for p ∈ [5/7,1]. An example for such a payoff function is (see Fig. 1):

u(ω1, a) = −2/7, u(ω1, b) = 2/7, u(ω1, c) = −1,

u(ω2, a) = 5/7, u(ω2, b) = −5/7, u(ω2, c) = 1.

Fig. 1. The utility function.
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Fig. 2. The strategies of the players, and the evolution of the beliefs.

At each stage n > 1, each player i observes only the action of player i + 1 (modulo 3) in the previous stage. We
assume that players are myopic, and describe below one equilibrium profile (see Fig. 2).14

Stage 1. Player 1’s prior belief assigns probability 1/2 to ω1, hence she plays a. Player 2’s posterior probability is
either 1/3 or 2/3, depending on whether her signal is s1 or s2, hence she plays a. Player 3’s posterior belief is either
1/6 or 5/6, hence she plays either b or c, depending on whether her signal is s1 or s2.

Stage 2. Players 1 and 3 hold the same belief as at stage 1, and therefore repeat their action. Player 2 infers player 3’s
signal from her action at stage 1, and she revises her belief accordingly.

If both signals are equal to s1 (resp. s2), player 2’s posterior belief becomes
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(resp. equal to 1/11 < 2/7). Hence player 2 switches to c (resp. to b).
If the signals of players 2 and 3 mismatch, player 2’s new posterior belief is 5/7 if she received s1, and 2/7 if she

received s2. In the former case, she is indifferent between a and c, whereas in the latter she is indifferent between a

and b. In our equilibrium she plays a.

Stage 3. Players 2 and 3 hold the same belief as at stage 2. If the signals of players 2 and 3 match, the action of
player 2 at stage 2 reveals the common signal, and player 1 revises her belief accordingly. If the two signals mismatch,
the belief of player 1 remains 1/2.

Stage 4. Now only the beliefs of player 3 may change, but actions remain as at stage 3. After stage 3 beliefs and
actions do not change.

In Fig. 2, the signals received by players 2 and 3 appear in the left-most column. Subsequent columns describe the
belief of each player at each stage and the players’ actions.

Observe that the limit action of player 3 is either b or c. If the signals of players 2 and 3 differ, the limit belief of
player 1 is 1/2. Hence, player 3’s limit action is not optimal in the eyes of player 1. Moreover, in this case player 1’s
limit conditional payoff, u∗(q1∞), is 3/14, while the limit conditional payoff of players 2 and 3 is 3/7 (if the signals
are s1s2) or 0 (if the signals are s2s1). Thus, u∗(q1∞) �= u∗(q2∞) with probability 1: the players do not agree about their
limit payoff.

This phenomenon is due to the fact that player 2 may be indifferent between two actions. For games in which no
player may ever be indifferent, Ménager (2006a) has shown that all players eventually play the same action.

14 It can be checked that this profile is actually an equilibrium for every discount factor.
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Fig. 3. The parameters and the payoff functions.

This example is non-generic. Nevertheless, if we slightly perturb the prior distribution as well as the probabilities
by which the signals are chosen, one can find a utility function for which the same equilibrium behavior will hold.

4.3. Observed payoffs

Here we assume that each player observes her own payoffs. There are four players N = {1,2,3,4}, four actions
A = {a, b, c, d}, and five parameters Ω = {ω0,ω1,ω2,ω3,ω4}. Each player i observes her own payoffs, as well as
the actions of player i + 1 (modulo 4).15 The discount factor is arbitrary. In Fig. 3 we graphically describe the five
parameters. Below each parameter appear four numbers – the payoffs of the four actions at that parameter (from left
to right). Thus, for example,

u(ω1, a) = 1, u(ω1, b) = 1, u(ω1, c) = 0, u(ω1, d) = 1.

Fig. 4 describes the information of the four players, as well as a stationary strategy for each player. The information
of the players is described by a partition of the parameter space; each player has three information sets. The action
each player plays is written below the parameter.

Fig. 4. The partitions of the players, and their strategies.

15 Our argument will be valid if player i observes the payoff of player i + 1 (modulo 4) as well.
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Since the payoffs of a player are measurable w.r.t. her information, and since the strategy of each player is measur-
able w.r.t. the information of the player who observes her, the players do not learn anything along the game.

Under the strategy described in Fig. 4, the payoff of all players is 1 regardless of the parameter. Since 1 is the
maximal possible payoff, these strategies form an equilibrium. Nevertheless, in all parameters there is at least one
player whose limit action is sub-optimal in the eyes of some other player. For example, in ω0 player 3’s limit actions
is sub-optimal in the eyes of player 1 (and vice versa), and in ω1 players 3 and 4’s limit action is sub-optimal in the
eyes of player 1.

4.4. Unknown observed stages

In this example, there are two players, two actions A = {T ,B}, and four equally likely parameters Ω =
{ω1,ω2,ω3,ω4}.

The payoff function is given by:

u(ω1, T ) = u(ω3, T ) = 1, u(ω1,B) = u(ω3,B) = 0,

u(ω2, T ) = u(ω4, T ) = 0, u(ω2,B) = u(ω4,B) = 1.

Thus, if the parameter is ω1 or ω3 one would like to play T , while if the parameter is ω2 or ω4 one would like to
play B .

At stage 1, the two players receive some information about ω. This information is described by the two partitions
F1 = {{ω1}, {ω2}, {ω3,ω4}} and F2 = {{ω1,ω2}, {ω3,ω4}}. Thus, player 1 knows when ω1 is drawn, knows also when
ω2 is drawn, but cannot distinguish ω3 from ω4. No further information about ω is given.

At each stage n > 1, player 1 is informed of the action played by player 2 at the previous stage. By contrast, player
2 observes player 1 either in odd stages (if the parameter is ω1 or ω2) or in even stages (if the parameter is ω3 or ω4).

The tables in Fig. 5 describe one strategy profile. The left-hand side (resp. right-hand side) table contains the
sequence of moves of player 1 (resp. player 2) in every possible parameter. The size of the letters T and B represents
whether they are observed by the other player: actions that appear in large (resp. small) letters are observed (resp. not
observed) by the other player.

According to this profile, no player ever refines her initial information. This is obvious for player 1 since player 2
always plays B . On the other hand, if the parameter is in {ω1,ω2} player 2 observes player 1 in odd stages, and in
those stages player 1 plays T . If the parameter is in {ω3,ω4} player 2 observes player 1 in even stages, and in those
stages player 1 plays B . Thus, player 2 does not gain any information along the play either.

The actions played by the players are myopically optimal, hence this profile is an equilibrium when players are
myopic.16

We observe that B is the only limit action of player 2, but in ω1 player 1 believes that B is sub-optimal.

Fig. 5. The partitions, signals, and strategies of the players.

16 As in the previous examples, it turns out that it is an equilibrium for every discount factor.
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5. Proofs

5.1. Proof of Proposition 2.1

We start with two technical lemmas.

Lemma 5.1. The sequence (u∗(qi
n)) is a submartingale. It converges to u∗(qi∞), Pσ -a.s.

Proof. Let a stage n ∈ N be given. For each action a ∈ A, one has

u
(
qi
n, a

) = Eσ

[
u(·, a) | Hi

n

] = Eσ

[
Eσ

[
u(·, a) | Hi

n+1

] | Hi
n

]
� Eσ

[
u∗

(
qi
n+1

) | Hi
n

]
.

Taking the supremum over a countable dense subset of A, one obtains u∗(qi
n) � Eσ [u∗(qi

n+1) | Hi
n], hence (u∗(qi

n))

is a submartingale.
By the integrability condition on u, (u∗(qi

n)) is uniformly integrable, hence it converges, both Pσ -a.s. and in L1.
It remains to prove that the limit is u∗(qi∞). Let ε > 0 be given. For given ω ∈ Ω , and by the compactness of A,

the map a �→ u(ω,a) is uniformly continuous. By dominated convergence, there exists η > 0 such that

Eσ

[
max

a,b∈A,d(a,b)�η

∣∣u(ω,a) − u(ω,b)
∣∣] < ε. (2)

Since A is compact, there is a finite subset Af ⊆ A, such that every action a ∈ A lies at distance at most η from
some action in Af .

For each a ∈ Af , the martingale (u(qi
n, a)) converges to u(qi∞, a) (Pσ -a.s. and in L1). Hence, and since Af is

finite, there exists N , such that

Eσ

[
max
a∈Af

∣∣u(
qi
n, a

) − u
(
qi∞, a

)∣∣] < ε, for all n � N. (3)

Observe next that

Eσ

[∣∣u∗
(
qi
n

) − u∗
(
qi∞

)∣∣] � Eσ

[
max
a∈A

∣∣u(
qi
n, a

) − u
(
qi∞, a

)∣∣]. (4)

On the other hand, for a given n, one has by the definition of u(qi
n, a), by the law of iterated expectations, and

by (2):

Eσ

[
max

a,b∈A,d(a,b)�η

∣∣u(
qi
n, a

) − u
(
qi
n, b

)∣∣]

= Eσ

[
max

a,b∈A,d(a,b)�η

∣∣Eσ

[
u(·, a) − u(·, b) | Hi

n

]∣∣]

� Eσ

[
Eσ

[
max

a,b∈A,d(a,b)�η

∣∣u(·, a) − u(·, b)
∣∣ | Hi

n

]]

= Eσ

[
max

a,b∈A,d(a,b)�η

∣∣u(ω,a) − u(ω,b)
∣∣] < ε. (5)

A similar inequality holds with n = +∞.
By (3) and by definition of Af , it follows that

Eσ

[
max
a∈A

∣∣u(
qi
n, a

) − u
(
qi∞, a

)∣∣] < 3ε, for every n � N. (6)

It follows from (4) and (3) that (u∗(qi
n)) converges to u∗(qi∞).

Let ai∗ be a measurable selection17 of Ai∗. For every n let m(n) � n satisfy

d
(
ai
m(n), a

i∗
) = min

m�n
d
(
ai
m, ai∗

)
.

17 A selection f of a set valued function F :X → Y is a function f :X → Y such that f (x) ∈ F(x) for every x ∈ X.
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ai
m(n) is the action that is closest to ai∗ among the actions chosen by player i up to stage n. Since ai∗ is a limit action of

player i it follows that limn→∞ ai
m(n)

= ai∗. By the triangle inequality,

Eσ

[∣∣u(
qi
m(n), a

i
m(n)

) − u
(
qi∞, ai∗

)∣∣]
� Eσ

[∣∣u(
qi
m(n), a

i
m(n)

) − u
(
qi
m(n), a

i∗
)∣∣ + ∣∣u(

qi
m(n), a

i∗
) − u

(
qi∞, ai∗

)∣∣]
= Eσ

[∣∣u(
qi
m(n), a

i
m(n)

) − u
(
qi
m(n), a

i∗
)∣∣] + Eσ

[∣∣u(
qi
m(n), a

i∗
) − u

(
qi∞, ai∗

)∣∣].
By (5) the first term goes to 0, and by (6) the second term goes to 0. It follows that

lim inf
n→∞ u

(
qi
n, a

i
n

) = u
(
qi∞, ai∗

)
, Pσ -a.s. � (7)

Lemma 5.2. The sequence maxa∈A |u(qi
n, a) − u(qi∞, a)| converges to zero, Pσ -a.s.

Proof. Set Xn := maxa∈A |u(qi
n, a) − u(qi∞, a)|. As mentioned at the end of the previous proof, the sequence (Xn)

converges to zero in the L1 sense. Hence, it has a subsequence, which we denote (Xφ(n)), that converges Pσ -a.s. to
zero.

Let ε > 0 be given. Given N , let F stand for the event {supn�N Xφ(n) � ε}. Provided N is large enough, one has
Pσ (F ) � 1 − ε.

Let n � φ(N) be an arbitrary stage, and choose m � N with φ(m) � n. For each action a ∈ A, one has

∣∣u(
qi
n, a

) − u
(
qi∞, a

)∣∣
= ∣∣Eσ

[
u
(
qi∞, a

) | Hi
n

] − u
(
qi∞, a

)∣∣
�

∣∣Eσ

[
u
(
qi
φ(m), a

)
1F | Hi

n

] − u
(
qi
φ(m), a

)
1F

∣∣ + 2E
[
1F̄ |ū| | Hi

n

] + ε
(
Pσ

(
F | Hi

n

) + 1F

)
= ∣∣u(

qi
φ(m), a

)
Pσ

(
F | Hi

n

) − u
(
qi
φ(m), a

)
1F

∣∣ + 2E
[
1F̄ |ū| | Hi

n

] + ε
(
Pσ

(
F | Hi

n

) + 1F

)
� Eσ

[|ū| | Hi
n

](
Pσ

(
F | Hi

n

) − 1F

) + 2E
[
1F̄ |ū| | Hi

n

] + ε
(
Pσ

(
F | Hi

n

) + 1F

)

where F̄ stands for the complement of F . The first inequality holds by definition of F , and the following equality
holds since n � φ(m).

Since the final right-hand side is independent of a ∈ A, it follows that

Xn � Eσ

[|ū| | Hi
n

]∣∣Pσ

(
F | Hi

n

) − 1F

∣∣ + 2E
[
1F̄ |ū| | Hi

n

] + ε
(
Pσ

(
F | Hi

n

) + 1F

)
, (8)

for every n � φ(N). On the event F , the right-hand side of (8) converges Pσ -a.s. to 2ε, hence lim supXn � 2ε in that
case. It follows that Pσ (lim supXn � 2ε) � 1 − ε. Since ε is arbitrary, this implies that Xn converges to 0, Pσ -a.s., as
desired. �
Proof of Proposition 2.1. Let (εk) be a positive sequence that converges to 0, and let an equilibrium σ be given.
Given σ−i , player i faces a sequential decision problem. An implication of Theorem 1 in Rosenberg et al. (2007b) is
that u∗(qi

n) − u(ai
n, q

i
n) converges to zero, Pσ -a.s.

In particular, for every ε > 0 there exists a (random) time N(ε) such that

u
(
qi
n, a

i
n

)
� u∗

(
qi
n

) − ε, ∀n � N(ε). (9)

Let ai∗ be a measurable selection of Ai∗. Then by (7), (9) and since (u∗(qi
n)) converges to u∗(qi∞), Pσ -a.s. one has:

u
(
qi∞, ai∞

) = lim inf
n→∞ u

(
qi
n, a

i
n

)
� lim

n→∞u∗
(
qi
n

) − ε = u∗
(
qi∞

) − ε.

Since this holds for every ε > 0, the result follows. �



Author's personal copy

D. Rosenberg et al. / Games and Economic Behavior 66 (2009) 979–994 993

5.2. Proof of Theorem 2.3

For simplicity, we write i → j whenever player i observes player j .
We start with a simple observation. Given any σ -field F over H∞, the map (ω, a) �→ Eσ [u(·, a) | F ](ω)

is F -measurable. Hence, for any F -measurable function ω �→ a(ω), the composition ω �→ u(qF (ω), a(ω)) :=
Eσ [u(·, a(ω)) | F ](ω) is also F -measurable.

The proof of the following lemma is standard, hence omitted.

Lemma 5.3. Assume that a is F -measurable. Then

Eσ

[
u
(
qF (ω), a(ω)

)] = Eσ

[
u
(
ω,a(ω)

)]
.

We now prove Theorem 2.3. Let two players i, j ∈ I be given, with i → j . By assumption, the set-valued function
ω �→ B

ij∗ is both Hj∞- and Hi∞-measurable.

Plainly, the map ω �→ B
ij∗ (ω) is B

ij∗ -measurable, with non-empty and compact values. Fix a B
ij∗ -measurable se-

lection ω �→ aj (ω); its existence is guaranteed since B
ij∗ has compact values, see Kuratowski and Ryll-Nardzewski

(1965). In particular, aj (ω) is both Hi∞-measurable and Hj∞-measurable.
From Lemma 5.3 we deduce that

E
[
u
(
q

j∞(ω), aj (ω)
)] = E

[
u
(
ω,aj (ω)

)] = E
[
u
(
qi∞(ω), aj (ω)

)]
. (10)

Consider now a path i0 → i1 → ·· · → iK in G, that visits all vertices at least once, and such that iK = i0. Summing
(10) over all pairs ik → ik+1, we deduce that

0 =
K−1∑
k=0

E
[
u
(
q

ik+1∞ (ω), aik+1(ω)
)] −

K−1∑
k=0

E
[
u
(
qik∞(ω), aik+1(ω)

)]
(11)

=
K−1∑
k=0

E
[
u
(
qik∞(ω), aik (ω)

) − u
(
qik∞(ω), aik+1(ω)

)]
. (12)

By Proposition 2.1, each summand in (12) is non-negative, and therefore

E
[
u
(
qik∞(ω), aik (ω)

) − u
(
qik∞(ω), aik+1(ω)

)] = 0, ∀k. (13)

By (10) and (13) we have

E
[
u
(
q

ik+1∞ (ω), aik+1(ω)
)] = E

[
u
(
qik∞(ω), aik+1(ω)

)] = E
[
u
(
qik∞(ω), aik (ω)

)]
.

Since this equality holds for every k, and since the path visits all players, P1 is proven.
By Proposition 2.1 we moreover have that u(qi∞(ω), ai(ω)) − u(qi∞(ω), ai+1(ω)) is non-negative with probabil-

ity 1, and therefore with probability 1

u
(
qik∞(ω), aik (ω)

) = u
(
qik∞(ω), aik+1(ω)

)
.

P2 is proven as well.

5.3. Proof of Theorem 2.4

We will use the following observation. Let an arbitrary measure space (Ω,A,P) be given, together with a σ -
algebra B ⊆ A, and a random variable X ∈ L2(P). Since the conditional expectation operator is a projection operator
(in L2), one has∥∥E[X | B]∥∥2 � ‖X‖2, (14)

with equality if and only X is B-measurable.

We proceed with the proof of Theorem 2.4. Let i, j ∈ I be any two players such that i → j . As in the proof of
Theorem 2.3, let aj (ω) be a selection of B

ij∗ which is both Hi∞- and Hj∞-measurable.
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By P2, one has u∗(qi∞) = Eσ [u(ω,aj (ω)) | Hi∞]. Since player j observes her own payoffs, u(ω,a
j
n) is Hj∞-

measurable. By Proposition 2.1 this implies that u(·, aj (·)) = u∗(qj∞), Pσ -a.s.
Therefore, by (14),∥∥u∗

(
qi∞

)∥∥
2 = ∥∥Eσ

[
u∗

(
q

j∞
) | Hi∞

]∥∥
2 �

∥∥u∗
(
q

j∞
)∥∥

2. (15)

Consider now any path i0 → i1 → ·· · → iK that visits all vertices at least once, and such that iK = i0. When applying
(15) to all edges in this path, one obtains∥∥u∗

(
qi0∞

)∥∥
2 = ∥∥Eσ

[
u∗

(
qi1∞

) | Hi0∞
]∥∥

2 �
∥∥u∗

(
qi1∞

)∥∥
2

= ∥∥Eσ

[
u∗

(
qi2∞

) | Hi1∞
]∥∥

2 � · · · � ∥∥u∗
(
qi0∞

)∥∥
2.

Thus, all inequalities hold with an equality. This implies that u∗(qi1∞) is Hi0∞-measurable – player i0 knows the limit
payoffs of player i1. Since player i0 observes the actions of player i1, and her payoffs, and since she plays an optimal
strategy, we must have u∗(qi0∞) � u∗(qi1∞). Since ‖u∗(qi0∞)‖2 = ‖u∗(qi1∞)‖2, this implies that u∗(qi0∞) = u∗(qi1∞). Since
the path visits all players, the result follows.
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